The invention relates to electronic circuits, and more particularly the invention relates to a thyristor power control circuit.
Thyristor dimmer circuits are frequently used to control incandescent lamps, LED lamps and other loads.
If the thyristor circuit 104 is used to feed an active load such as a power converter, instead of the incandescent lamp 108, the power converter will not provide the resistive damping or the holding current.
As discussed before, the power converter 228 does not provide the resistive damping to the EMI. Also, the power converter 228 does not instantaneously provide the necessary holding current to the thyristor circuit 204. Consequently, ringing current, shown in
A thyristor power control circuit prevents EMI from leaving a power converter. The power control circuit also maintains a holding current in the thyristor to prevent flickering at a load. The power control circuit includes a thyristor configured to receive an input AC voltage, and responsive to a gate pulse generates a modified AC voltage. A rectifier receives the modified AC voltage and generates a rectified DC voltage. A power converter coupled to the rectifier receives the rectified DC voltage and generates a controlled output current. A damping circuit coupled to an output terminal of the rectifier includes a damping resistor for maintaining a holding current in the thyristor during an ON period of the thyristor. The damping circuit includes a first capacitor coupled in series to the damping resistor and a diode coupled in parallel to the damping resistor. The diode enables the first capacitor to discharge without causing power loss at the damping resistor. The power control circuit further includes an input filter coupled to the thyristor to prevent EMI from leaving the power converter.
For a more complete understanding of the features, example embodiments and possible advantages of the present invention, reference is now made to the detailed description of the invention along with the accompanying figures and in which:
A series damping resistor 424 is connected to the rectifier output terminal 426. The series damping resistor 424 is also connected to a capacitor 428. A high-frequency pulsed current drawn by a power converter circuit 432 is filtered by the capacitor 428. The output of the capacitor 428 is provided to the power converter circuit 432 via a terminal 426. The power converter circuit 432 generates a controlled output current at a terminal 434. The controlled output current is filtered by a power converter filter capacitor 436 and is provided to an LED bank 440.
The series damping resistor 424 suppresses EMI generated by the power converter circuit 432. The series damping resistor 424 also dampens ringing current generated by the input filter 410, thereby maintaining the necessary holding current through the thyristor 404. The series damping resistor 424 also prevents the capacitor 428 from charging too quickly, causing voltage overshoot. Thus, by providing the series damping resistor 424 at the rectifier output terminal 422, the holding current through the thyristor 404 is maintained, thereby preventing flickering at the LED bank 440.
The damping resistors 512 and 516 damp the ringing current generated by the input filter 510. The damping resistors 512 and 516 also maintain a holding current through the thyristor 504, thus preventing flickering at the LED bank 544.
An R-C network 626, formed by a resistor 628 connected in series with a capacitor 624, is connected in parallel to the rectifier output terminal 620. The R-C network 626 eliminates ringing current and maintains the necessary holding current flowing in the thyristor 604. By maintaining the holding current, flickering of the LED bank 640 is prevented.
In one example embodiment, the thyristor power control circuits illustrated in
It will also be appreciated that one or more of the elements depicted in the drawings/figures can also be implemented in a more separated or integrated manner, or even removed or rendered as inoperable in certain cases, as is useful in accordance with a particular application.
As used in the description herein and throughout the claims that follow, “a”, “an”, and “the” includes plural references unless the context clearly dictates otherwise. Also, as used in the description herein and throughout the claims that follow, the meaning of “in” includes “in” and “on” unless the context clearly dictates otherwise.
The foregoing description of illustrated embodiments of the present invention, including what is described in the Abstract, is not intended to be exhaustive or to limit the invention to the precise forms disclosed herein. While specific embodiments of, and examples for, the invention are described herein for illustrative purposes only, various equivalent modifications are possible within the spirit and scope of the present invention, as those skilled in the relevant art will recognize and appreciate. As indicated, these modifications may be made to the present invention in light of the foregoing description of illustrated embodiments of the present invention and are to be included within the spirit and scope of the present invention.
Thus, while the present invention has been described herein with reference to particular embodiments thereof, a latitude of modification, various changes and substitutions are intended in the foregoing disclosures, and it will be appreciated that in some instances some features of embodiments of the invention will be employed without a corresponding use of other features without departing from the scope and spirit of the invention as set forth. Therefore, many modifications may be made to adapt a particular situation or material to the essential scope and spirit of the present invention. It is intended that the invention not be limited to the particular terms used in following claims and/or to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include any and all embodiments and equivalents falling within the scope of the appended claims. Thus, the scope of the invention is to be determined solely by the appended claims.
Pursuant to 35 U.S.C. §119 (e), this application claims priority from, and hereby incorporates by reference for all purposes, U.S. Provisional Patent Application Ser. No. 60/927,687, entitled METHOD FOR MAKING A POWER CONVERTER LED DRIVER DIMMABLE WITH A COMMON THYRISTOR DIMMER, and filed May 4, 2007.
Number | Name | Date | Kind |
---|---|---|---|
3270270 | Yenisey | Aug 1966 | A |
3470444 | Bixby | Sep 1969 | A |
4051425 | Smith | Sep 1977 | A |
4316125 | Noguchi | Feb 1982 | A |
4321662 | Yokoyama | Mar 1982 | A |
4368419 | Welty | Jan 1983 | A |
4665476 | Masuda | May 1987 | A |
4733102 | Nakayama et al. | Mar 1988 | A |
4959766 | Jain | Sep 1990 | A |
5027039 | Matsui et al. | Jun 1991 | A |
5192896 | Qin | Mar 1993 | A |
5515262 | Johnston et al. | May 1996 | A |
5812386 | Youn | Sep 1998 | A |
6269012 | Kusakabe et al. | Jul 2001 | B1 |
20090122580 | Stamm et al. | May 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20090122580 A1 | May 2009 | US |
Number | Date | Country | |
---|---|---|---|
60927687 | May 2007 | US |