1. Technical Field
This invention relates to surgical apparatus and procedures in general, and more particularly to surgical apparatus and procedures for reconstructing a ligament.
2. Background of Related Art
A ligament is a piece of fibrous tissue which connects one bone to another. Ligaments are frequently damaged (e.g., detached or torn or ruptured, etc.) as the result of injury and/or accident. A damaged ligament can cause instability, impede proper motion of a joint and cause pain. Various procedures have been developed to repair or replace a damaged ligament. The specific procedure used depends on the particular ligament which is to be restored and on the extent of the damage.
One ligament which is frequently damaged as the result of injury and/or accident is the anterior cruciate ligament (i.e., the ACL). Looking first at
Various procedures have been developed to restore and/or reconstruct a damaged ACL through a graft ligament replacement. Traditionally, this procedure is performed utilizing a trans-tibial approach. In this approach, a bone tunnel 20 (
Looking next at
Looking next at
All of these prior art tibial tunnel positioning guides, while utilizing different referencing points and methods, still share the same overall approach: each of these guides is used to orient the tibial tunnel first, but in a position deemed appropriate for the femoral tunnel, which is thereafter drilled through that tibial tunnel. The limitations of such an approach is that the position of the tibial tunnel is often compromised in order to later drill an appropriate femoral tunnel. This often results in the tibial tunnel being placed in a position which is more posterior and more vertical than is anatomically desired.
Proper placement of the femoral tunnel is imperative in order for the ACL graft to be properly positioned on the femur. However, as a result of using the aforementioned trans-tibial technique, the position of the femoral tunnel is effectively dictated by the position of the first-drilled tibial tunnel. This often results in a femoral tunnel position, and thus, an ACL reconstruction (i.e., graft orientation, etc.) that is less than optimal.
In an attempt to better position the femoral tunnel, surgeons have recently begun utilizing the so-called “medial portal technique” to drill and create the femoral tunnel. An embodiment of a femoral drill guide for use in medial portal techniques is described in commonly owned patent application Ser. No. 12/366,967, the content of which are incorporated by reference in its entirety, and is shown generally as femoral guide 100 in
anatomical position. While the medial portal approach greatly improves the ability of the surgeon to more accurately position the femoral tunnel, the older, simple trans-tibial guides are still used by the surgeon to position the tibial tunnel.
Therefore, it would be beneficial to have a device and method for orienting the position of a second-drilled tibial tunnel based on a first-drilled femoral tunnel. It would further be beneficial to have a device and method for positioning a tibial tunnel utilizing the medial portal approach prior to drilling a femoral tunnel.
A device for positioning a tibial tunnel during ACL reconstruction is provided. The device includes a portion insertable into a pre-formed opening in the femur. The device may further include an elongated body having proximal and distal ends and an arm extending at an angle from the distal end of the elongated body, the arm being configured for insertion through a medial portal. The portion insertable into a pre-formed opening in the femur may include a tip formed on a distal end of the arm.
The elongated body of the positioning device may be arced. The arm may be configured to point to the position of the resulting tibial tunnel on a tibial plateau when the distal tip is disposed in a femoral tunnel. The arm may include a pointed elbow configured to point to the position of the resulting tibial tunnel on the tibial plateau/ACL footprint. The arm may be configured to orient the angle of the resulting graft in the sagittal plane. The arm may extend from elongated body at an angle from about fifty degrees (50°) to about sixty degrees (60°). The angle between the elongated body and the arm may be adjustable. The arm may include a lateral projection. The proximal end of the elongated body may be configured for connection to an outrigger. The outrigger may be configured to direct a guide wire through the tibial. Also provided is a method for positioning a tibial tunnel during ACL reconstruction. The method includes the steps of forming an opening in a femur bone, inserting a portion of a device into the opening, and using the device to position an opening in a tibia bone. The step of creating an opening in a femur bone may performed using a medial portal approach. The device may include an elongated body, an arm extending at an angle from a distal end of the elongated body, and a tip formed on a distal end of the arm, the tip being configured for insertion into the femoral tunnel. The method may further include the step of positioning the device by referencing at least one of a lateral wall of the femoral notch and one or more tibial spines.
The device may further include a lateral projection for referencing the femoral notch. The method may further include the step of adjusting the coronal medial/lateral orientation angle of the arm of the device in a way that mimics an intact ACL. The arm of the device may be configured for insertion through a medial portal. The method may further include the step of flexing the knee through a range of motion to check for resultant graft impingement. A proximal end of the arm may include an elbow for engaging the tibia.
Additionally provided is a method for positioning a tibial tunnel during ACL reconstruction. The method includes the steps of providing a tibial guide including an elongated body, an arm extending at an angle from a distal end of the elongated body, and a tip formed on a distal end of the arm, the tip including a point for engaging a femur, inserting the distal end of the elongated body into a knee joint using a medial portal approach, engaging the pointed tip with the femur in a position corresponding to that of a desired femoral tunnel, and positioning the tibial guide by referencing at least one of a lateral wall of the femoral notch and one or more tibial spines.
In accordance with various embodiments, the present invention may also provide a device for positioning a tibial tunnel during ACL reconstruction, the device comprising: a distal portion including a body and a distal arm extending from the distal end of the body, and an outrigger configured to be held by a user, the outrigger and the distal portion being selectively rotatable relative to each other such that the distal portion and the outrigger may be selectively moved out of alignment relative to each other when viewed from above. The outrigger may be selectively disconnectable from the distal portion. The distal portion may include a body and a distal tip, and the distal tip may be configured for insertion into a pre-formed opening in a femur.
The outrigger and the distal portion may be rotatably moveable to a position at which they are disposed at an angle of about thirty degrees (30°) relative to each other. At least one of the outrigger and the distal portion may include a physical stop for preventing the distal portion from being over-rotated relative to the outrigger. The distal portion may include a generally round proximal end that is configured to be rotatably received within a generally round receiving bore of the outrigger. At least one of the outrigger and the distal portion may include a locking feature for selectively locking the outrigger and the distal portion relative to each other. The locking feature may include a threaded bore on the outrigger, the threaded bore in communication with the receiving bore of the outrigger and configured to receive a set screw, the set screw being actuatable so as to selectively engage and lock into position the proximal end of distal portion within the receiving bore. At least one of the outrigger and the distal portion may include an indication feature for providing an indication to a user that the outrigger and the distal portion are in a particular orientation relative to each other. The indication feature may include a groove, a knurl, a protrusion or a detent for providing a tactile indication to a user that the outrigger and the distal portion are in a particular orientation relative to each other. At least one of the outrigger and the distal portion may include indicia for providing a visual indication to a user that the outrigger and the distal portion are in a particular orientation relative to each other. The indicia may include one or more of numbers, markings, symbols and arrows.
Looking now at
Arm 210 may further include a lateral projection 215. Lateral projection 215 is configured to reference the lateral wall of the femoral notch to help position the resulting tibial tunnel to avoid lateral wall impingement once the graft ligament is positioned. Lateral projection 215 also aids the surgeon in orienting the medial-lateral position of tibial tunnel 20 and its orientation angle in the coronal plane. In this manner, the surgeon may set the coronal medial/lateral orientation angle of the resultant graft position in a way that mimics an intact ACL. Arm 210 may also include a pointed “elbow” which points to the resulting tibial tunnel's guide wire position on the tibial plateau/ACL footprint.
Arced body 220 extends proximally from arm 210 and is configured to facilitate insertion through the medial portal. The configuration of arced body 220 accounts for medial portal positioning to avoid the position of the portal influencing guide placement. More particularly, arm 210 of tibial tunnel positioning guide 200 may be sized and shaped to mirror the size and shape of the ligament graft to be positioned. This allows the surgeon a visual reference of what the resulting graft will look like when placed in the knee. It should be appreciated that forming arm 210 to mirror the form of the ligament graft also allows the surgeon to check for any impingement prior to drilling tibial tunnel 20. For example, once tibial tunnel positioning guide 200 is docked into the pre-drilled femoral tunnel (i.e., by placing the distal ball tip in the femoral tunnel), the surgeon may bring the knee through a range of motion to check for resultant graft impingement before creating the tibial tunnel.
Arced body 220 may also be configured for connection to an outrigger 225. (
Looking next at
Lastly, with an outrigger attached to tibial tunnel positioning guide 200, the surgeon may move the starting point of the tibial tunnel on the outer cortex, (e.g., medially and away from the MCL), if desired. With the aforementioned positions and references set, tibial tunnel positioning guide 200 is now in place so that the surgeon can confidently drill the tibial tunnel.
Looking now at
While some of the particular embodiments shown hereinabove have the outrigger 225 and the distal portion of the device, e.g., the body 220 and the arm 210, being integrally formed and/or rigidly connected to each other, it should be recognized that the present invention may also include other embodiments in which the outrigger 225 and the distal portion of the device, e.g., the body 220 and the arm 210, are not integrally formed or not rigidly connected to each other. For example, various embodiments of the present invention may include an arrangement in which the outrigger 225 and the distal portion of the device, e.g., the body 220 and the arm 210, are separate components that are moveable relative to each other.
Providing an arrangement in which the outrigger 225 and the distal portion 206 of the device, e.g., the body 220 and the arm 210, are separate components that are moveable, e.g., rotatably and/or selectively disconnectable, relative to each other may provide additional advantages as compared to embodiments in which the outrigger 225 and the distal portion of the device, e.g., the body 220 and the arm 210, are integrally formed and/or rigidly connected to each other. For example, and as described hereinabove, in embodiments in which the outrigger 225 and the distal portion 206 of the device, e.g., the body 220 and the arm 210, are integrally formed and/or rigidly connected to each other, the outrigger 225 and the distal portion 206 of the device are typically disposed so as to be aligned relative to each other when viewed from above. Specifically, when a surgeon utilizes a convention tibial tunnel positioning guide, e.g., in which the outrigger 225 and the distal portion 206 of the device are aligned relative to each other when viewed from above, the surgeon must change the position of the device during the surgical procedure, e.g., to account for whether he or she is performing the procedure on the patient's right knee or the left knee. In addition, when a surgeon utilizes a convention tibial tunnel positioning guide, e.g., in which the outrigger 225 and the distal portion 206 of the device are aligned relative to each other when viewed from above, the surgeon is limited to the size and shape of the distal portion 206 attached to the outrigger and can not change the distal portion 206 if he or she determines that the distal portion is undesirable or otherwise less than optimal.
In contrast, by providing an arrangement in which the outrigger 225 and the distal portion 206 of the device, e.g., the body 220 and the arm 210, are separate components that are moveable, e.g., rotatably and/or selectively disconnectable, relative to each other, a surgeon may selectively adjust the relative positions of the outrigger 225 and the distal portion 206 of the device so as to be misaligned relative to each other when viewed from above, thereby providing improved tunnel positioning. Furthermore, the surgeon need not change the position of the device during the surgical procedure to account for whether he or she is performing the procedure on the patient's right knee or the left knee, but rather may adjust the relative positions of the outrigger 225 and the distal portion 206 of the device so as to match the specific knee being worked on. In addition, by providing an arrangement in which the outrigger 225 and the distal portion 206 of the device, e.g., the body 220 and the arm 210, are separate components that are moveable, e.g., rotatably and/or selectively disconnectable, relative to each other, a surgeon is not limited to the size and shape of the distal portion 206 attached to the outrigger, but rather is able to change the distal portion 206 if he or she determines that the distal portion 206 is undesirable or otherwise less than optimal. Such movability, e.g., rotatability and/or selectively disconnectability, of the outrigger 225 and the distal portion 206 of the device may allow the surgeon to adjust the relative positions of the components, and thereby the position of the tibial tunnel, to accommodate variations in a surgeon's tunnel position preference, to accommodate different patients' anatomy, e.g., different size patients, to avoid PCL impingement, etc.
The present invention contemplates various ways in which a surgeon may cause the outrigger 225 and the distal portion 206 of the device 300 to move, e.g., rotate, between the first and second positions. For example, the tibial tunnel positioning device 300 may include a generally round proximal end 2209 that extends into a generally round bore 1226 as shown in
The tibial tunnel positioning device 300 may also include selectively lockable features that, when unlocked, enable a surgeon to physically move the outrigger 225 relative to the distal portion 206 to a desired position, and when locked by the surgeon, prevent relative movement of the outrigger 225 and the distal portion 206.
While the tibial tunnel positioning device 300 may be configured so as to enable the distal portion 206 to freely move, e.g., freely rotate, relative to the outrigger 225, it should be recognized that, in alternative embodiments, the tibial tunnel positioning device 300 may provide features that regulate, restrict or otherwise control the free movement of the distal portion 206 relative to the outrigger 225. For example, the tibial tunnel positioning device 300 may provide features that limit the range of motion of the distal portion 206 relative to the outrigger 225. Such a feature may include physical stops that prevent the distal portion 206 from being over-rotated relative to the outrigger 225. For example, either or both of the outrigger 225 and the body 220 may include one or more physical stops that contact each other when, e.g., the outrigger 225 and the body 220 are in a first relative position and/or when the outrigger 225 and the body 220 are rotated to a second relative position, and that prevent the outrigger 225 and the body 220 from being pivoted beyond the desired angles relative to each other. Such physical stops may be features that extend radially from the outrigger 225 and/or the body 220, e.g., corresponding nubs or shoulders.
While the tibial tunnel positioning device 300 may provide features that regulate or restrict the free movement of the outrigger 225 and the body 220 relative to each other by limiting the range of motion of the arm 210 and the body 220 relative to each other, it should be recognized that, additionally or alternatively, the tibial tunnel positioning device 300 may provide features that regulate or restrict the free movement of the outrigger 225 and the body 220 relative to each other by providing resistance to the movement of the outrigger 225 and the body 220 relative to each other. Such features may include grooves or knurls on one or more of the outrigger 225 and the body 220. Such features may generate increased friction between the outrigger 225 and the body 220 when moved, as compared to a relatively lower friction that would be present without such features. The friction generated by such features may be relatively low, such that there is little resistance needed to move the outrigger 225 and the body 220 relative to each other. Alternatively, such friction may be relatively high, such that, absent a force exerted by the surgeon, the outrigger 225 and the body 220 will remain in their relative positions. Such features may also include one or more of protrusions and/or detents on one or more of the outrigger 225 and the body 220. Such protrusions and/or detents may be located at specific positions of the outrigger 225 and/or the body 220. For example, in an embodiment, such protrusions and/or detents are located at specific positions of the outrigger 225 and/or the body 220 such that a surgeon will experience a tactile indication when the outrigger 225 and the body 220 are at specific positions relative to each other, e.g., when they are positioned 30° out of alignment in either the left or right directions as shown in
In addition, the tibial tunnel positioning device 300 may provide indicia that provide an indication to the surgeon of the position of the outrigger 225 and the body 220 relative to each other. Such indicia, an example of which is shown in
It should be understood that many additional changes in the details, materials, steps and arrangements of parts, which have been herein described and illustrated in order to explain the nature of the present invention, may be made by those skilled in the art while still remaining within the principles and scope of the invention.
This application is a continuation-in part of, and claims the benefit of priority to, U.S. patent application Ser. No. 12/367,007, filed Feb. 6, 2009, entitled “Device for Orienting the Tibial Tunnel Position During an ACL Reconstruction” and U.S. Provisional Patent Application Ser. No. 61/066,572, filed Feb. 21, 2008, entitled “Device for Orienting the Tibial Tunnel Position During an ACL Reconstruction,” the disclosures of each being incorporated herein by reference in their entirety. In addition, this application is related to U.S. Provisional Patent Application Ser. No. 61/066,575, filed Feb. 21, 2008, entitled “Guide for Creating a Femoral Tunnel During an ACL Reconstruction” and U.S. patent application Ser. No. 12/366,967, filed Feb. 6, 2009, entitled “Guide for Creating a Femoral Tunnel During an ACL Reconstruction,” the disclosures of each also being incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4535768 | Hourahane et al. | Aug 1985 | A |
4672957 | Hourahane | Jun 1987 | A |
4708139 | Dunbar, IV | Nov 1987 | A |
4739751 | Sapega et al. | Apr 1988 | A |
4781182 | Purnell et al. | Nov 1988 | A |
4823780 | Odensten et al. | Apr 1989 | A |
4883048 | Purnell et al. | Nov 1989 | A |
4901711 | Goble et al. | Feb 1990 | A |
4920958 | Walt et al. | May 1990 | A |
4945904 | Bolton et al. | Aug 1990 | A |
5112335 | Laboureau et al. | May 1992 | A |
5112337 | Paulos et al. | May 1992 | A |
5139520 | Rosenberg et al. | Aug 1992 | A |
5154720 | Trott et al. | Oct 1992 | A |
5163940 | Bourque | Nov 1992 | A |
5250055 | Moore et al. | Oct 1993 | A |
5269786 | Morgan | Dec 1993 | A |
5300077 | Howell | Apr 1994 | A |
5320115 | Kenna | Jun 1994 | A |
5350383 | Schmieding et al. | Sep 1994 | A |
5374269 | Rosenberg | Dec 1994 | A |
5409494 | Morgan | Apr 1995 | A |
5458602 | Goble et al. | Oct 1995 | A |
5464407 | McGuire | Nov 1995 | A |
5520694 | Dance et al. | May 1996 | A |
5562664 | Durlacher et al. | Oct 1996 | A |
5562669 | McGuire | Oct 1996 | A |
5570706 | Howell | Nov 1996 | A |
5613971 | Lower et al. | Mar 1997 | A |
5643273 | Clark | Jul 1997 | A |
5681320 | McGuire | Oct 1997 | A |
5688284 | Chervitz et al. | Nov 1997 | A |
5743909 | Collette | Apr 1998 | A |
5891150 | Chan | Apr 1999 | A |
5968050 | Torrie | Oct 1999 | A |
6019767 | Howell | Feb 2000 | A |
6120511 | Chan | Sep 2000 | A |
6254604 | Howell | Jul 2001 | B1 |
6254605 | Howell | Jul 2001 | B1 |
6264694 | Weiler | Jul 2001 | B1 |
6280472 | Boucher et al. | Aug 2001 | B1 |
6306138 | Clark et al. | Oct 2001 | B1 |
6499486 | Chervitz et al. | Dec 2002 | B1 |
6764513 | Dowling | Jul 2004 | B1 |
6958067 | Whittaker et al. | Oct 2005 | B2 |
7025786 | Goble et al. | Apr 2006 | B2 |
7063724 | Re et al. | Jun 2006 | B2 |
7131974 | Keyer et al. | Nov 2006 | B2 |
7229448 | Goble et al. | Jun 2007 | B2 |
7238189 | Schmieding et al. | Jul 2007 | B2 |
7326247 | Schmieding et al. | Feb 2008 | B2 |
7458975 | May et al. | Dec 2008 | B2 |
7473267 | Nguyen et al. | Jan 2009 | B2 |
7520898 | Re et al. | Apr 2009 | B2 |
7527648 | May et al. | May 2009 | B2 |
7575578 | Wetzler et al. | Aug 2009 | B2 |
7578824 | Justin et al. | Aug 2009 | B2 |
7594917 | Whittaker et al. | Sep 2009 | B2 |
20020133165 | Whittaker et al. | Sep 2002 | A1 |
20030009173 | McGuire et al. | Jan 2003 | A1 |
20030050642 | Schmieding | Mar 2003 | A1 |
20030065391 | Re et al. | Apr 2003 | A1 |
20030191530 | Sklar | Oct 2003 | A1 |
20040106928 | Ek | Jun 2004 | A1 |
20040172034 | Re et al. | Sep 2004 | A1 |
20040199166 | Schmieding et al. | Oct 2004 | A1 |
20040254585 | Whittaker et al. | Dec 2004 | A1 |
20050234469 | Whittaker et al. | Oct 2005 | A1 |
20060074434 | Wenstrom, Jr. et al. | Apr 2006 | A1 |
20060265064 | Re et al. | Nov 2006 | A1 |
20060271059 | Reay-Young et al. | Nov 2006 | A1 |
20060293689 | Miller et al. | Dec 2006 | A1 |
20070123902 | Berberich et al. | May 2007 | A1 |
20070191853 | Stone | Aug 2007 | A1 |
20070203499 | Boucher et al. | Aug 2007 | A1 |
20070213819 | McKernan et al. | Sep 2007 | A1 |
20070233128 | Schmieding et al. | Oct 2007 | A1 |
20070233151 | Chudik | Oct 2007 | A1 |
20070250067 | Schmieding et al. | Oct 2007 | A1 |
20070270857 | Lombardo et al. | Nov 2007 | A1 |
20080103506 | Volpi et al. | May 2008 | A1 |
20080119929 | Schmieding et al. | May 2008 | A1 |
20080140197 | Goble et al. | Jun 2008 | A1 |
20080188935 | Saylor et al. | Aug 2008 | A1 |
20080234819 | Schmieding et al. | Sep 2008 | A1 |
20090018654 | Schmieding et al. | Jan 2009 | A1 |
20090030417 | Takahashi | Jan 2009 | A1 |
20090171355 | Amis et al. | Jul 2009 | A1 |
20090187244 | Dross | Jul 2009 | A1 |
20090216236 | Re | Aug 2009 | A1 |
Number | Date | Country |
---|---|---|
2654485 | Aug 2009 | CA |
2654486 | Aug 2009 | CA |
2092900 | Aug 2009 | EP |
2716364 | Aug 1995 | FR |
2744621 | Aug 1997 | FR |
WO 9929237 | Jun 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20100049196 A1 | Feb 2010 | US |
Number | Date | Country | |
---|---|---|---|
61066572 | Feb 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12367007 | Feb 2009 | US |
Child | 12548630 | US |