1. Field of the Invention
The present invention relates to orthopedic prostheses and, particularly, to proximal tibial prostheses.
2. Description of the Related Art
Orthopedic prostheses are commonly utilized to repair and/or replace damaged bone and tissue in the human body. For example, a knee prosthesis may be implanted during a total knee arthroplasty to replace damaged or destroyed bone in the tibia and/or femur and to recreate the natural, anatomical articulation of the knee joint. The knee prosthesis may include a femoral prosthesis shaped to replicate one or both of the natural femoral condyles. After resecting the distal end of the femur, one side of the femoral prosthesis is secured to the femur and the opposing side of the femoral prosthesis is configured for articulation against a tibial prosthesis.
A tibial prosthesis may include a first bearing component having a concave articular portion configured for articulation with the femoral prosthesis. The bearing component of the tibial prosthesis may be secured to a tibial tray. The tibial tray has a side secured to the bone stock of a resected proximal tibia. By securing the bearing component of the tibial prosthesis to the tibial tray to prevent translation and/or rotation of the bearing component relative to the tibial tray, a fixed bearing tibial prosthesis is created. The bearing component of the tibial prosthesis may be made from a polymeric material to facilitate articulation with the femoral component, while the tibial tray of the tibial prosthesis may be made from a metallic material to provide sufficient strength and rigidity to the tibial prosthesis. The femoral prosthesis and the tibial prosthesis seek to replicate the natural, anatomical articulation of the knee joint.
The present disclosure provides a tibial prosthesis with a bearing component configured for an anterior-medial insertion, which advantageously avoids the extensor mechanism of the knee. A tibial tray may include a banana-shaped boss that corresponds to a notch formed in the bearing component. After the bearing component is inserted along the anterior-medial path, the boss is received within the notch by rotating the bearing component with respect to the tibial tray. This rotation seats the bearing component upon the tibial tray in the manner of a fixed-bearing prosthesis. Alternatively, the boss and notch may define angled central axes which allow straight anterior-medial insertion of the bearing component and locking engagement to the tibial tray.
For the purposes of this document, “anterior-medial insertion” means insertion along a path from a starting point displaced anteriorly and medially from the desired implanted position.
After the initial anterior-medial insertion, the bearing component may be rotated to a position that provides for proper final alignment of the bearing component with the tibial tray. A locking mechanism is used during this rotation to fix the bearing component to the tibial tray. Alternatively, the bearing component may be inserted along an anterior-medial insertion path and urged into a fixed position with the tibial tray along a single anterior-medial insertion trajectory. A locking mechanism engages as the bearing component is urged into the fixed position to lock the bearing component to the tibial tray when the bearing component is at the end of its travel. The locking mechanism fixes the bearing component to the tibial tray, which prevents relative movement therebetween such that the tibial prosthesis is a “fixed-bearing” design. Advantageously, the anterior-medial insertion avoids the extensor mechanism of the knee during the implantation of the bearing component.
The tibial tray may have a boss that is banana-shaped from a proximal-distal plan view and that corresponds to and is received into a notch of the bearing component. The boss has a pair of elongated sides, one concave and one convex. The concave side faces the lateral edge of the tibial tray, and the convex side faces the medial edge of the tibial tray. The geometry of the tibial boss allows an anterior-medially inserted bearing component to be rotated about a laterally positioned axis of rotation to complete seating of the bearing component atop the tibial tray.
The tibial tray may alternatively have a boss with a pair of angled, elongated sides, one of which faces a lateral edge and the other of which faces a medial edge of the tibial tray. The elongated sides may each angled about 8 to 10 degrees from an axis that is positioned through an anterior edge of the tibial tray and that is parallel to a sagittal plane of a body, though angles ranging from between about 0 to 90 degrees are contemplated. The geometry of this alternative tibial boss allows an anterior-medially inserted bearing component to be urged into a final, fixed position along an anterior-medial insertion trajectory corresponding to the angle of the elongated sides of the tibial tray boss to complete seating of the bearing component atop the tibial tray.
As used herein, “micromotion” refers to the small motions that may exist between prosthesis components, such as between tibial tray 14 and bearing component 12, upon application of force. Such small motions may occur as a result of material deformation in one or both of the interacting components, or may result from slight spaces or clearances therebetween, for example. Micromotion is distinguished from “mobile bearing” applications, which experience relatively larger motions as a tibial bearing articulates with respect to a tibial tray (such as by sliding or rotating) along a desired motion path.
As used herein, a “fixed bearing” tibial prosthesis is a prosthesis in which a bearing component is seated atop the tibial tray in a final, locked position. In this locked position, lift-off of the bearing component from the tibial tray as well as transverse movement of the bearing component relative to the tibial tray is prevented during natural articulation of the knee. While some micromotion may exist between the tibial bearing component and tibial tray in a fixed bearing prosthesis, no such motion occurs by design along a designated path.
A locking mechanism may be employed to fix the bearing component to the tibial tray, thereby creating a fixed bearing prosthesis. Such as a mechanism may including a dovetail boss on the tibial tray cooperating with a corresponding notch on a bearing component, a peripheral rail of the tibial tray cooperating with a corresponding recessed portion of the bearing component, a pair of anterior wedges projecting from an anterior edge of the bearing component that cooperate with an undercut within an anterior peripheral rail of the tibial tray, or any combination of these devices. Locking mechanisms of the present disclosure may also dictate the insertion trajectory of the bearing component relative to the tibial tray.
In one form thereof, the present disclosure provides a tibial prosthesis for replacing at least part of a natural knee, the tibial prosthesis comprising: a bearing component comprising: a proximal surface defining at least one concave articulating surface, and a distal surface opposite the proximal surface, the distal surface having a notch formed therein; and a tibial tray comprising: a support surface sized to support the distal surface of the bearing component, the support surface having a lateral edge and a medial edge, and a boss projecting proximally from the support surface, the boss having a concave lateral side facing the lateral edge of the tibial tray and a convex medial side facing the medial edge of the tibial tray, the bearing component rotatable about an axis of rotation between a disassembled position and an assembled position, the axis of rotation displaced laterally from the medial side of the boss, such that rotation of the bearing component from the disassembled position to the assembled position advances the boss of the tibial tray into the notch of the bearing component, the bearing component locked to the tibial tray in the assembled position to create a fixed bearing prosthesis.
In another form thereof, the present disclosure provides a method of inserting a bearing component onto a tibial tray via an incision providing access to a knee, the knee having an extensor mechanism, the method comprising: providing a tibial tray having a support surface sized to receive the bearing component; positioning the tibial tray within the knee via the incision; providing the bearing component having at least one concave articulating surface and an opposing distal surface; inserting the bearing component, while avoiding the extensor mechanism, through the incision in an anterior-medial insertion direction to position a distal surface of the bearing component atop the support surface of the tibial tray; and seating the bearing component onto the tibial tray.
In another form thereof, the present disclosure provides a tibial prosthesis for replacing at least part of a natural knee, the tibial prosthesis comprising: a bearing component comprising: at least one concave articulating surface; a distal surface opposite the concave articulating surface; and a distal tab projecting distally from the distal surface, the distal tab having a distal tab perimeter, and a tibial tray comprising: a support surface sized to support the distal surface of the bearing component, the support surface having a lateral edge and a medial edge; a proximal depression formed in the support surface and sized to receive of the distal tab of the bearing component, the proximal depression having a proximal depression perimeter, the proximal depression perimeter substantially congruent to the distal tab perimeter; and a ramped proximal groove sized to receive the distal tab of the bearing component, the ramped proximal groove having an anterior end at an anterior edge of the tibial tray and a posterior end adjacent the proximal depression.
The above-mentioned and other features and advantages of this disclosure, and the manner of attaining them, will become more apparent and the invention itself will be better understood by reference to the following descriptions of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate exemplary embodiments of the invention, and such exemplifications are not to be construed as limiting the scope of the disclosure in any manner.
To implant a tibial prosthesis including a tibial tray and a bearing component, the proximal portion of a patent's tibia is resected to provide a substantially flat surface for receipt of the tibial tray. Once the proximal tibia is resected, the tibial tray may be positioned on the proximal tibial in a location and orientation that maximizes coverage of the resected tibial surface while avoiding or minimizing overhang beyond the resected surface. With the tibial baseplate secured, the bearing component may be inserted onto the tibial tray via an incision made to access a knee during surgery. Minimally invasive surgical techniques and associated implant components may be used.
The knee prosthesis and associated methods of the present disclosure desirably allow for implantation of a bearing component for securement atop an implanted tibial tray along an anterior-medial insertion path which, advantageously, allows for implantation of the bearing component without disturbing the extensor mechanism of the knee.
The methods of this disclosure utilize a tibial knee prosthesis that is implantable into the knee in a manner that avoids the extensor mechanism described above. The exemplary embodiments of the present disclosure described below include a tibial tray that is provided by a medical professional, such as a surgeon, and positioned within the knee through incision S. The tibial tray includes a bearing component support, which is sized and shaped to receive a bearing component. The bearing component is also provided by the medical professional (e.g., surgeon) and is also inserted through incision S. The first three exemplary embodiments each have bearing components that are inserted in an anterior-medial insertion direction through incision S and are then rotated to a final seating position atop the tibial tray. An exemplary fourth embodiment includes a bearing component that is inserted in an anterior-medial insertion direction and which can be moved to a final, seated position by movement along the anterior-medial insertion trajectory alone, with no final rotational movement.
The first exemplary embodiment, described below in detail, allows for a rotational seating of a bearing component atop a tibial tray. Referring to
Referring to
As shown in
Tibial tray 14 also includes a support for bearing component 12. The support may be a tibial plateau or support surface 41 that is capable of supporting bearing component 12. The support may directly or indirectly communicate with bearing component 12. Where the communication is indirect, other components may be positioned between bearing component 12 and the support of tibial tray 14.
As shown in
In one exemplary embodiment, boss 48 (
Referring to
Bearing component 12 further includes banana-shaped notch 78 shaped to receive boss 48 of tibial tray 14 (
While in one exemplary embodiment, the tibial tray may include a tray with a tibial stem, stem fin, and distally projecting stem shaft assembly that projects into the tibia on implantation, other types of tibial trays for use with this method are within the scope of this disclosure.
As described in more detail below, bearing component 12 is implanted along an anterior-medial insertion path I (
The structure of tibial prosthesis 10 advantageously allows for an anterior-medial insertion of bearing component 12. Specifically, as mentioned above, the structure of tibial prosthesis 10 allows for implantation of bearing component 12 while avoiding the extensor mechanism of the knee. With tibial tray 14 implanted and securely fixed to a patient's tibia, bearing component 12 can be inserted through an incision made through the outer layers of skin and developed to provide access to the knee joint along an anterior-medial insertion trajectory.
Specifically, lateral edge 22 of bearing component 12 provides a leading edge for the insertion of bearing component 12 along an anterior-medial insertion trajectory. Stated another way, lateral edge 22 is the first aspect of bearing component 12 to reach the patient's knee during insertion. Thus, referring to a generally medial-lateral axis passing through the lateral-most and medial most points of bearing component 12 (where “medial” and “lateral” are with regard to the implanted orientation), insertion of bearing component 12 occurs with the medial-lateral axis of bearing component 12 generally aligned with the anterior-medial insertion direction. When the initial, anterior-medial insertion of bearing component 12 is complete, bearing component 12 is oriented relative to tibial tray 14 as shown in
To achieve the position shown in
The generally linear anterior-medial insertion of bearing component 12 is complete when lateral edge 22 of bearing component 12 abuts lateral edge 46 of tibial tray 14. In this position, a portion of projecting rail 66 is received in groove 26. Further, as described above, distal surface 80 of bearing component 12 is not yet fully seated or flush with support surface 41 in the initial insertion position illustrated in
To achieve final seating of bearing component 12 atop tibial tray 14, bearing component 12 is rotated along an axis generally parallel to a sagittal plane and positioned laterally of an anterior-posterior midline of tibial tray 14. An exemplary rotational direction R about axis A is illustrated in
In the initial phases of rotation R in which a leading end of boss rail 58 is first received into internal groove 72 of bearing component 12 (
As rotation R continues as shown in
Similarly to rail 58 and groove 72, a relatively thinner portion of projecting rail 68 is first received within a relatively thicker portion of groove 28 at the medial aspect of the tibial prosthesis, and as rotation R continues, the relative thicknesses of projecting rail 68 and groove 28 will converge until the final seated position in which projecting rail 68 substantially fills groove 26.
In the rotation position illustrated in
In some instances, rotation R also causes elastic deformation of the walls forming grooves 26, 28, and 72. As rotation R progresses, such deformation increases pressure between various structures of bearing component 12 with tibial tray 14 (which structures interact as described above). The attendant increase in frictional forces between such structures increases resistance to further rotation R of bearing component 12 along rotational direction R until anterior edge 21 of bearing component 12 passes anterior rail 40A of tibial tray 14 and bearing component 12 snaps into position with a firm connection created by the cooperation of anterior edge 21 of bearing component 12 with an interior side of anterior rail 40A of tibial tray 14.
In a final seated position of bearing component 12 atop tibial tray 14, projecting rails 66 and 68 and boss rail 58 substantially fill grooves 26 and 28 and internal groove 72, respectively, and resist lift-off of bearing component 12 from tibial tray 14. Further, anterior edge 21 of bearing component 12 snaps into firm abutting engagement with the interior side of anterior rail 40A, which faces posterior edge 42 of tibial tray 14. This abutting engagement resists movement of bearing component 12 relative to tibial tray 14 along support surface 41 of tibial tray 14. The above-described interactions between structures on bearing component 12 and tibial tray 14 form locking mechanisms which cooperate to immobilize bearing component 12 with respect to tibial tray 14 in the final seated position, thereby forming a fixed-bearing prosthesis.
Optionally, an anterior rail of a tibial tray (e.g. anterior rail 40A of tray 14) may be absent as a locking mechanism. An alternative locking mechanism may be used to provide comparable securement, such as a distal tab projecting from a distal surface of a bearing component that is received into a proximal depression on a support surface of a tibial tray. An exemplary embodiment in accordance with this concept is shown within
Except where specified otherwise, bearing component 112 is similar to bearing component 12 described above. Reference numbers in
Referring to
Bearing component 112 is securable to tibial tray 114. As shown in
As shown in
In the illustrated embodiment, boss 148 includes boss rail 158 projecting from edge 160 of each elongated side 154 and 146 of boss 148 (
By contrast, projecting rail 166 has a thickness that increases in a second direction from posterior edge 142, around lateral edge 146 and towards anterior edge 140 of tibial tray 114, as shown by thickness dimensions 1T1 of laterally projecting rail 166 which is less than thickness dimension 1T2. For example,
Referring to
Similarly, lateral groove 126 has a thickness increasing in a second direction from posterior edge 120 towards anterior edge 121 of bearing component 112. The increasing thickness of lateral groove 126 corresponds to the increasing thickness of projecting rail 166 of tibial tray 114. Specifically, lateral groove 126 has thickness dimensions 1T33 and 1T44 as illustrated in
The ends of grooves 126, 128 having an increased thickness are sized to receive ends of projecting rails 166, 168 that have a decreased thickness with substantial clearance therebetween. Upon assembly, groove 126 and 128 are advanced over projecting rails 166 and 168, reducing the clearance therebetween until ultimately the thick ends of projecting rails 166 and 168 are respectively received within the correspondingly thick ends of groove 126 and 128, with no clearance therebetween. In an exemplary embodiment, rails 166, 168 define respective interference fits with grooves 126, 128.
Bearing component 112 further includes notch 178 shaped to receive boss 148 of tibial tray 114 (
As shown in
A method of inserting this embodiment is similar to the method described above for the first embodiment, but lacks the snap-fit locking mechanism provided by interaction between an anterior rail of the tibial tray and a corresponding anterior edge of a bearing component. Rather, the second embodiment of this disclosure uses a locking mechanism including distal tab 192 projecting from distal surface 180 of bearing component 112. When bearing component 112 is rotated to lock onto tibial tray 114, distal tab 192 is received into proximal depression 194 to prevent any further relative motion between bearing component 112 and tibial tray 114, thereby rendering prosthesis 110 a fixed-bearing prosthesis.
After the initial anterior-medial insertion of bearing component 112 (as described above with respect to bearing component 12), bearing component 112 undergoes rotation R about lateral axis A. During rotation R, the posterior end of distal tab 192, which extends a small distance from distal surface 180, comes into contact with support surface 141. Distal tab 192 is ramped from the posterior end to an anterior end such that the anterior end has the greatest distance, or height, from distal surface 180. As rotation R continues, support surface 141 rides along the ramp of distal tab 192 such that distal surface 180 of bearing component 112 is elevated from support surface 141 of tibial tray 114. As rotation continues about lateral axis A, distal tab 192 eventually “snaps” into proximal depression 194 such that an anterior wall positioned at the anterior end of distal tab 192 abuts a wall of proximal depression 194. When so engaged, tab 192 and depression 194 cooperate to prevent anterior movement of bearing component 112. Posterior movement is prevented via the interaction of projecting rails 166 and 168 with grooves 126 and 128, respectively.
In a final seated position of bearing component 112 atop tibial tray 114, projecting rails 166 and 168 and boss rail 158 substantially fill grooves 126, 128 and 172, respectively. Further, distal tab 192 is received into proximal depression 194 and distal surface 180 of bearing component 112 abuts support surface 141 of tibial tray 114. The interaction of projecting rails 166, 168 and boss rail 158 with grooves 126, 128 and internal groove 172, respectively, prevent lift-off of bearing component 112 from tibial tray 114, as well as sliding motion therebetween. Bearing component 112 is thus locked to tibial tray 114 in a final seated position in the manner of a fixed-bearing prosthesis.
Referring to
Bearing component 212 is securable to tibial tray 214. As shown in
Tibial tray 214 further has a pair of extended perimeter walls 262 and 264, each respectively positioned on lateral edge 246 and medial edge 244 of tibial tray 214. Medial perimeter wall 264 includes a plurality of surfaces defining the periphery of medially positioned aperture 298. Tibial tray 214 further includes a pair of projecting rails 266 and 268 that project inwardly from proximal edge 270 and 271 of each of extended perimeter walls 262 and 264, respectively.
Projecting rail 268 has a thickness that increases in a first direction towards posterior edge 242 of tibial tray 214, as shown by thickness dimensions 2T11 and 2T22 for medially projecting rail 268. Thickness dimension 2T11 is less than thickness dimension 2T22. For example,
Projecting rail 266 has a thickness that increases in a second direction towards anterior edge 240 of tibial tray 214, as shown by thickness dimensions 2T1 and 2T2 for laterally projecting rail 266. Thickness dimension 2T2 is less than thickness dimension 2T1. For example,
Referring to
Similarly, groove 226 has a thickness increasing in a second direction from posterior edge 220 towards anterior edge 221 of bearing component 212, such that the increasing thickness of groove 228 of bearing component 212 corresponds to the thickness of projecting rail 266 of tibial tray 214. Lateral groove 226 has thickness dimensions 2T44, which is less than thickness dimension 2T33 as illustrated in
As shown in
A method of inserting this third embodiment is similar to the method described for the first embodiment above absent inclusion of an anterior rail and boss of the tibial tray to provide an additional locking mechanism. Rather, the third embodiment of this disclosure includes distal tab 292 projecting from distal surface 280 of bearing component 212 and a ramped proximal groove 295 that initially receives a posterior end of distal tab 292 during insertion of bearing component 212 onto tibial tray 214. Ramped proximal groove 295 includes a base and a pair of walls that are curved about the center of rotation R, such that groove 295 receives distal tab 292 in an arcuate manner when bearing component 212 is rotated along rotation R atop tibial tray 214. Ramped proximal groove is adjoined with proximal depression 294 that receives distal tab 292 upon a final seating of bearing component 212 onto tibial tray 214 in a similar manner as described above for the second embodiment.
This exemplary third embodiment further includes medially positioned tab 296 projecting from medial edge 224 of bearing component 212 that, like tab 292, defines a ramped surface. Medial tab 296 has a smallest height from medial edge 224 at a posterior end, and a largest height from medial edge 224 at an anterior end.
Bearing component 212 is rotated to lock onto tibial tray 214 in a manner similar to that described above for both the first and second embodiments with regard to the locking of the peripheral rails of varying thickness of the tibial tray with corresponding grooves in the bearing component. Particularly, bearing component 212 is rotated while the pair of projecting rails 266 and 268 of tibial tray 214 are progressively further received in the pair of grooves 226 and 228 of bearing component 212. However, in the third embodiment, distal tab 292 is received into ramped proximal groove 295 at the beginning of rotation R. As ramped proximal groove 295 has a base that is positioned lower, i.e., distal of support surface 241 of tibial tray 214, the gap formed between distal surface 280 and support surface 241 (which gap is created by the sloping of distal tab 292) is smaller as compared to the gap formed in the second embodiment.
As rotation R progresses, after distal tab 292 is initially received into ramped proximal groove 295, distal tab 292 is further urged along ramped proximal groove 295 into locking receipt with proximal depression 294 of tibial tray 214 (
After bearing component 212 locks to tibial tray 214, a wall at a posterior end of distal tab 292 cooperates with a wall of proximal depression 294 while the posterior wall of medially positioned tab 296 cooperates with a wall of medially positioned aperture 298 to prevent anterior movement of bearing component 212 along a plane including support surface 241. Movement in an opposite direction along the plane is prevented via the receipt of projecting rails 266 and 268 into grooves 226 and 228, respectively. The cooperation of projecting rails 266 and 268 into grooves 226 and 228 further assists with preventing lift-off of bearing component 212 from tibial tray 214.
Another locking mechanism of prosthesis 210 may be actuated during rotation R. The anterior end of medially positioned tab 296, which projects from medial edge 224 of bearing component 212, initially passes onto perimeter wall 264 during rotation R. Wall 264 continues to slide up the ramped surface of medially positioned tab 296 until medially positioned tab 296 is snaps into engagement with medially positioned aperture 298 of tibial tray 214. After such engagement, the posterior wall of medially positioned tab 296 (i.e., the wall of tab 296 with the largest height differential) abuts an adjacent wall of medially positioned aperture 298 to prevent sliding or rotating movement of bearing component 212 along a plane including support surface 241, thereby contributing to the “fixed-bearing” configuration of prosthesis 210.
In yet another exemplary embodiment, a tibial tray may have a tibial boss defining an angled geometry, relative to a sagittal plane, which allows a bearing component to lockingly connected to the tibial tray along a single anterior-medial insertion trajectory (i.e., without separate rotation as described above).
As shown in a fourth embodiment illustrated in
Once Bearing component 312 may then be pressed into tibial tray 314 to lock bearing component 312 to tibial tray 314 (
Advantageously, boss 348 may be canted to accommodate the insertion angles disclosed herein, which allows tibial bearing component 312 to avoid the extensor mechanism of the knee (
Tibial prosthesis 310 includes bearing component 312 having at least one concave articulating surface configured for articulation against opposing condyles of a femur or femoral prosthesis (not shown). As shown in
Tibial tray 314 also includes boss 348 that has posterior end 350, anterior end 352, and a pair of elongated sides 354 and 356, each facing one of the medial and lateral edges 344 and 346, respectively, of tibial tray 314. Elongated sides 354 and 356 define laterally and medially angled surfaces which combine to define a central axis. The central axis is angularly offset from anteroposterior reference axis 381, which is positioned through anterior edge 321 of tibial tray 314 and parallel to the sagittal plane as noted above. This angular offset defines an offset axis angle α which ranges from about 8 to about 10 degrees with respect to axis 381.
However, it is contemplated that offset axis angle α may range from about 0 degrees to about 90 degrees, and may an angle as small as 0, 1, 2, 3, 4, 5, 6, 7, or 8 degrees, or as great as 9, 10, 20, 30, 40, 50, 60, 70, 80, or 90 degrees, or may be any angle within any range defined by the foregoing angle values.
The angled surface of lateral elongated side 356 faces lateral edge 346 of tibial tray 314, and the angled surface of medial elongated side 354 faces medial edge 344 of tibial tray 314. The angled surface of lateral elongated side 356 has a lateral side angle that is angled relative to offset axis α, and the angled surface of medial elongated side 354 has a medial side angle that is angled relative to offset axis α. In an exemplary embodiment, the lateral side angle and the medial side angle may each range from about 0 degrees to about 15 degrees, or from about 5 degrees to 10 degrees. It is further contemplated that the medial and lateral side angles may be an angle as small as 0, 1, 2, 3, 4, 5, 6, or 7 degrees or as great as 8, 9, 10, 11, 12, 13, 14, or 15 degrees, or may be any angle within any range defined by the foregoing angle values.
Boss 348 has boss rail 358 that transversely projects from an edge 360 of each of elongated sides 354 and 356 and has a substantially constant thickness (
As illustrated in
Notch 378 in bearing component 312 is shaped to receive boss 348 of tibial tray 314 and includes internal groove 372 for receipt of boss rail 358, which is shown in a final seated position in
After tibial tray 314 is positioned within a knee through an incision made to provide access to the knee during surgery, bearing component 312 is inserted atop tibial tray 314 in a manner that avoids the extensor mechanism of the knee (
When internal groove 372 “bottoms out” against boss rail 358, such that no further anterior-medial movement of bearing component 312 relative to tibial tray 314 is possible, bearing component 312 is in a final, fully-installed position. In this final position, projecting rails 366 and 368 are received by and substantially fill grooves 326 and 328, respectively.
During the anterior-medial insertion process (described above), bearing component 312 is urged atop tibial tray 314 as projecting rails 366 and 368 substantially fill grooves 326 and 328. At the same time, internal groove 372 is advanced over boss rail 358 until any gaps between surfaces of the rails 366, 368, and 358, and surface creating grooves 326, 328, and 372, respectively are filled.
In order to secure bearing component 312 in the fully installed position on tibial tray 314, anterior rail 340A is provided on tibial tray 314 to engage in a final snap-fit connection with bearing component 312. During the advancement of grooves 326 and 328 and internal groove 372 receive respective rails 366, 368, and boss rail 358, walls forming grooves 326 and 328 and internal groove 372 may experience elastic deformation as anterior rail 340A urges the distal surface of bearing component 312 upwardly. Such deformation, coupled with frictional forces experienced by the interaction of these portions of bearing component 312 and tibial tray 314, increases resistance to movement of bearing component 312 along angle α.
When anterior edge 321 of bearing component 312 passes anterior rail 340A of tibial tray 314, bearing component 312 snaps into position in a firm connection created by the operation of anterior edge 321 with an interior side of anterior rail 340A. In a final seated position of bearing component 312 atop tibial tray 314, projecting rails 366 and 368 and boss rail 358 substantially fill grooves 326 and 328 and internal groove 372, respectively, and resist lift-off and translation of bearing component 312 relative to tibial tray 314. The cooperation of the above-described locking mechanisms lock bearing component 312 to tibial tray 314 in the final seated position, such that prosthesis 310 is a fixed-bearing prosthesis.
The above-described exemplary embodiments are generally directed to a “primary” prosthesis, i.e., a prosthesis which is designed to be implanted in a natural knee which retained natural articular surfaces prior to the implantation. However, it is also contemplated that prosthetic knee components made in accordance with the present disclosure may also be used in a revision procedure, in which one or more previously-implanted knee prosthesis components are removed and replaced. For example, the exemplary tibial trays described above are amenable to reuse in a revision procedure, such that the tibial tray is left in its originally-implanted position on the tibia and only the tibial bearing component is replaced. Advantageously, leaving the tibial tray in place allows the tibial bearing component to be replaced without further resection of the tibia, which might otherwise be required where the tibial tray is removed.
Additional features of tibial trays and tibial bearing components, which may be combined with prostheses in accordance with the present disclosure, are disclosed in U.S. Provisional Patent Application Ser. No. 61/381,800, filed on Sep. 10, 2010 and entitled TIBIAL PROSTHESIS FACILITATING ROTATIONAL ALIGNMENT, in U.S. patent application Ser. No. 13/189,336, now issued as U.S. Pat. No. 8,613,775, U.S. patent application Ser. No. 13/189,338, now issued as U.S. Pat. No. 8,568,486, and U.S. patent application Ser. No. 13/189,339, now issued as U.S. Pat. No. 8,574,304, each entitled ASYMMETRIC TIBIAL COMPONENTS FOR A KNEE PROSTHESIS and filed on Jul. 22, 2011, the entire disclosures of which are hereby expressly incorporated herein by reference.
While this invention has been described as having exemplary designs, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
This application is a continuation of U.S. patent application Ser. No. 14/284,144, filed on May 21, 2014, now issued as U.S. Pat. No. 9,283,082, and entitled METHODS RELATED TO SEATING OF BEARING COMPONENT ON TIBIAL TRAY, which is a continuation of U.S. patent application Ser. No. 13/189,324, filed on Jul. 22, 2011, now issued as U.S. Pat. No. 8,764,840 and entitled TIBIAL PROSTHESIS, which claims the benefit under Title 35, U.S.C. § 119(e) of U.S. Provisional Patent Application Ser. No. 61/367,374, filed on Jul. 24, 2010 and entitled TIBIAL PROSTHESIS, and U.S. Provisional Patent Application Ser. No. 61/367,375, filed on Jul. 24, 2010 and entitled TIBIAL PROSTHESIS, the entire disclosures of which are hereby expressly incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3774244 | Walker | Nov 1973 | A |
4016606 | Murray et al. | Apr 1977 | A |
4340978 | Buechel et al. | Jul 1982 | A |
4568348 | Johnson et al. | Feb 1986 | A |
4714474 | Brooks, Jr. et al. | Dec 1987 | A |
4759767 | Lacey | Jul 1988 | A |
4769040 | Wevers | Sep 1988 | A |
4770661 | Oh | Sep 1988 | A |
4795468 | Hodorek et al. | Jan 1989 | A |
4822365 | Walker et al. | Apr 1989 | A |
4936853 | Fabian et al. | Jun 1990 | A |
4950298 | Gustilo et al. | Aug 1990 | A |
4959071 | Brown et al. | Sep 1990 | A |
4963152 | Hofmann et al. | Oct 1990 | A |
5047058 | Roberts et al. | Sep 1991 | A |
5061271 | Van Zile | Oct 1991 | A |
5071438 | Jones et al. | Dec 1991 | A |
5116375 | Hofmann | May 1992 | A |
5133758 | Hollister | Jul 1992 | A |
5137536 | Koshino | Aug 1992 | A |
5192328 | Winters | Mar 1993 | A |
5219362 | Tuke et al. | Jun 1993 | A |
5236461 | Forte | Aug 1993 | A |
5246459 | Elias | Sep 1993 | A |
5271737 | Baldwin et al. | Dec 1993 | A |
5282861 | Kaplan | Feb 1994 | A |
5282868 | Bahler | Feb 1994 | A |
5282870 | Moser et al. | Feb 1994 | A |
5290313 | Heldreth | Mar 1994 | A |
5310480 | Vidueira | May 1994 | A |
5326361 | Hollister | Jul 1994 | A |
5344460 | Turanyi et al. | Sep 1994 | A |
5370699 | Hood et al. | Dec 1994 | A |
5405396 | Heldreth et al. | Apr 1995 | A |
5413604 | Hodge | May 1995 | A |
5413605 | Ashby et al. | May 1995 | A |
5489311 | Cipolletti | Feb 1996 | A |
5507820 | Pappas | Apr 1996 | A |
5549688 | Ries et al. | Aug 1996 | A |
5556433 | Gabriel et al. | Sep 1996 | A |
5609639 | Walker | Mar 1997 | A |
5609641 | Johnson et al. | Mar 1997 | A |
5609645 | Vinciuerra | Mar 1997 | A |
5613970 | Houston et al. | Mar 1997 | A |
5658344 | Hurlburt | Aug 1997 | A |
5683470 | Johnson et al. | Nov 1997 | A |
5702463 | Pothier et al. | Dec 1997 | A |
5755801 | Walker et al. | May 1998 | A |
5755802 | Gerber | May 1998 | A |
5824100 | Kester et al. | Oct 1998 | A |
5824102 | Buscayret | Oct 1998 | A |
5871539 | Pappas | Feb 1999 | A |
5871543 | Hofmann | Feb 1999 | A |
5871545 | Goodfellow et al. | Feb 1999 | A |
5879394 | Ashby et al. | Mar 1999 | A |
5928286 | Ashby et al. | Jul 1999 | A |
5964808 | Blaha et al. | Oct 1999 | A |
6004351 | Tomita et al. | Dec 1999 | A |
6010534 | O'neil et al. | Jan 2000 | A |
6013103 | Kaufman et al. | Jan 2000 | A |
6039764 | Pottenger et al. | Mar 2000 | A |
6068658 | Insall et al. | May 2000 | A |
6074425 | Pappas | Jun 2000 | A |
6090144 | Letot et al. | Jul 2000 | A |
6102954 | Albrektsson et al. | Aug 2000 | A |
6102955 | Mendes et al. | Aug 2000 | A |
6143034 | Burrows | Nov 2000 | A |
6197064 | Haines et al. | Mar 2001 | B1 |
6203576 | Afriat et al. | Mar 2001 | B1 |
6206927 | Fell et al. | Mar 2001 | B1 |
RE37277 | Baldwin et al. | Jul 2001 | E |
6258127 | Schmotzer | Jul 2001 | B1 |
6306172 | O'Neil et al. | Oct 2001 | B1 |
6379388 | Ensign et al. | Apr 2002 | B1 |
6413279 | Metzger et al. | Jul 2002 | B1 |
6436145 | Miller | Aug 2002 | B1 |
6491726 | Pappas | Dec 2002 | B2 |
6506215 | Letot et al. | Jan 2003 | B1 |
6506216 | McCue et al. | Jan 2003 | B1 |
6623526 | Lloyd | Sep 2003 | B1 |
6709461 | O'neil et al. | Mar 2004 | B2 |
6755864 | Brack et al. | Jun 2004 | B1 |
6770078 | Bonutti | Aug 2004 | B2 |
6869448 | Tuke et al. | Mar 2005 | B2 |
6923832 | Sharkey et al. | Aug 2005 | B1 |
6942670 | Heldreth et al. | Sep 2005 | B2 |
6953479 | Carson et al. | Oct 2005 | B2 |
6986791 | Metzger | Jan 2006 | B1 |
7025788 | Metzger et al. | Apr 2006 | B2 |
7060074 | Rosa et al. | Jun 2006 | B2 |
7083652 | McCUe et al. | Aug 2006 | B2 |
7153326 | Metzger | Dec 2006 | B1 |
7189262 | Hayes, Jr. et al. | Mar 2007 | B2 |
7264635 | Suguro | Sep 2007 | B2 |
7294149 | Hozack et al. | Nov 2007 | B2 |
7309362 | Yasuda et al. | Dec 2007 | B2 |
7445639 | Metzger et al. | Nov 2008 | B2 |
7497874 | Metzger et al. | Mar 2009 | B1 |
7513912 | Hayes, Jr. et al. | Apr 2009 | B2 |
7544211 | Rochetin | Jun 2009 | B2 |
7585328 | Haas | Sep 2009 | B2 |
7625407 | Akizuki | Dec 2009 | B2 |
7628818 | Hazebrouck et al. | Dec 2009 | B2 |
7635390 | Bonutti | Dec 2009 | B1 |
7695519 | Collazo | Apr 2010 | B2 |
7850698 | Straszheim-Morley et al. | Dec 2010 | B2 |
8012216 | Metzger | Sep 2011 | B2 |
8568486 | Wentorf et al. | Oct 2013 | B2 |
8574304 | Wentorf et al. | Nov 2013 | B2 |
8591594 | Parisi et al. | Nov 2013 | B2 |
8613775 | Wentorf et al. | Dec 2013 | B2 |
8628580 | Sanford et al. | Jan 2014 | B2 |
8758444 | Wentorf et al. | Jun 2014 | B2 |
8764840 | Sanford et al. | Jul 2014 | B2 |
9192480 | Wentorf et al. | Nov 2015 | B2 |
9295557 | Wentorf et al. | Mar 2016 | B2 |
9308096 | Wentorf et al. | Apr 2016 | B2 |
9314343 | Parisi et al. | Apr 2016 | B2 |
9381090 | Wentorf et al. | Jul 2016 | B2 |
9707089 | Grey et al. | Jul 2017 | B2 |
9763794 | Sanford et al. | Sep 2017 | B2 |
9763795 | Parisi et al. | Sep 2017 | B2 |
9763796 | Wentorf et al. | Sep 2017 | B2 |
20010047210 | Wolf | Nov 2001 | A1 |
20020072802 | O'Neil et al. | Jun 2002 | A1 |
20020120340 | Metzger et al. | Aug 2002 | A1 |
20020161448 | Hayes, Jr. et al. | Oct 2002 | A1 |
20030055509 | McCue et al. | Mar 2003 | A1 |
20040034432 | Hughes et al. | Feb 2004 | A1 |
20040153066 | Coon et al. | Aug 2004 | A1 |
20040162620 | Wyss | Aug 2004 | A1 |
20040186582 | Yasuda et al. | Sep 2004 | A1 |
20040204765 | Fenning et al. | Oct 2004 | A1 |
20040267371 | Hayes, Jr. et al. | Dec 2004 | A1 |
20050096747 | Tuttle et al. | May 2005 | A1 |
20050143831 | Justin et al. | Jun 2005 | A1 |
20050143832 | Carson | Jun 2005 | A1 |
20050209702 | Todd et al. | Sep 2005 | A1 |
20050246030 | Yao | Nov 2005 | A1 |
20050267584 | Burdulis, Jr. et al. | Dec 2005 | A1 |
20060030945 | Wright | Feb 2006 | A1 |
20060142869 | Gross | Jun 2006 | A1 |
20060161259 | Cheng et al. | Jul 2006 | A1 |
20060195195 | Burstein et al. | Aug 2006 | A1 |
20060224244 | Thomas et al. | Oct 2006 | A1 |
20070010890 | Collazo | Jan 2007 | A1 |
20070129808 | Justin et al. | Jun 2007 | A1 |
20070135926 | Walker | Jun 2007 | A1 |
20070198022 | Lang et al. | Aug 2007 | A1 |
20070233269 | Steines et al. | Oct 2007 | A1 |
20080021566 | Peters et al. | Jan 2008 | A1 |
20080051908 | Angibaud et al. | Feb 2008 | A1 |
20080091271 | Bonitati et al. | Apr 2008 | A1 |
20080091272 | Aram et al. | Apr 2008 | A1 |
20080091273 | Hazebrouck | Apr 2008 | A1 |
20080114462 | Guidera et al. | May 2008 | A1 |
20080119938 | Oh | May 2008 | A1 |
20080167722 | Metzger et al. | Jul 2008 | A1 |
20080215156 | Duggal et al. | Sep 2008 | A1 |
20080243258 | Sancheti | Oct 2008 | A1 |
20080281426 | Fitz et al. | Nov 2008 | A1 |
20080288080 | Sancheti | Nov 2008 | A1 |
20090036992 | Tsakonas | Feb 2009 | A1 |
20090082873 | Hazebrouck et al. | Mar 2009 | A1 |
20090088862 | Thomas et al. | Apr 2009 | A1 |
20090125114 | May et al. | May 2009 | A1 |
20090149963 | Sekel | Jun 2009 | A1 |
20090149964 | May et al. | Jun 2009 | A1 |
20090204222 | Burstein et al. | Aug 2009 | A1 |
20090222103 | Fitz et al. | Sep 2009 | A1 |
20090265011 | Mandell | Oct 2009 | A1 |
20090306786 | Samuelson | Dec 2009 | A1 |
20090319047 | Walker | Dec 2009 | A1 |
20100016978 | Williams et al. | Jan 2010 | A1 |
20100016979 | Wyss et al. | Jan 2010 | A1 |
20100063594 | Hazebrouck et al. | Mar 2010 | A1 |
20100100189 | Metzger | Apr 2010 | A1 |
20100100191 | May et al. | Apr 2010 | A1 |
20100125339 | Earl et al. | May 2010 | A1 |
20100152858 | Lu et al. | Jun 2010 | A1 |
20100191341 | Byrd | Jul 2010 | A1 |
20100222890 | Barnett et al. | Sep 2010 | A1 |
20100305708 | Lang | Dec 2010 | A1 |
20100329530 | Lang et al. | Dec 2010 | A1 |
20110040387 | Ries et al. | Feb 2011 | A1 |
20110082559 | Hartdegen et al. | Apr 2011 | A1 |
20110087332 | Bojarski et al. | Apr 2011 | A1 |
20110144760 | Wong et al. | Jun 2011 | A1 |
20120022658 | Wentorf | Jan 2012 | A1 |
20120022659 | Wentorf | Jan 2012 | A1 |
20120022660 | Wentorf | Jan 2012 | A1 |
20120035735 | Sanford et al. | Feb 2012 | A1 |
20120035737 | Sanford | Feb 2012 | A1 |
20120101585 | Parisi et al. | Apr 2012 | A1 |
20130024001 | Wentorf et al. | Jan 2013 | A1 |
20130131820 | Wentorf et al. | May 2013 | A1 |
20140025175 | Wentorf et al. | Jan 2014 | A1 |
20140025176 | Wentorf et al. | Jan 2014 | A1 |
20140025177 | Wentorf et al. | Jan 2014 | A1 |
20140052268 | Sanford et al. | Feb 2014 | A1 |
20140156015 | Parisi et al. | Jun 2014 | A1 |
20140249641 | Wentorf et al. | Sep 2014 | A1 |
20140257506 | Sanford et al. | Sep 2014 | A1 |
20150320564 | Parisi et al. | Nov 2015 | A1 |
20160158019 | Grey et al. | Jun 2016 | A1 |
20160287397 | Wentorf et al. | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
2011286306 | Oct 2014 | AU |
2190029 | Nov 1995 | CA |
687584 | Jan 1997 | CH |
1087506 | Jun 1994 | CN |
1179709 | Apr 1998 | CN |
1549695 | Nov 2004 | CN |
2768715 | Apr 2006 | CN |
1780594 | May 2006 | CN |
1874738 | Dec 2006 | CN |
101222886 | Jul 2008 | CN |
101288597 | Oct 2008 | CN |
101347359 | Jan 2009 | CN |
201175391 | Jan 2009 | CN |
101361684 | Feb 2009 | CN |
101401750 | Apr 2009 | CN |
101426453 | May 2009 | CN |
101658446 | Mar 2010 | CN |
101683289 | Mar 2010 | CN |
101795643 | Aug 2010 | CN |
102048594 | May 2011 | CN |
102058448 | May 2011 | CN |
103118634 | May 2013 | CN |
103118635 | May 2013 | CN |
103118636 | May 2013 | CN |
104093380 | Oct 2014 | CN |
104203160 | Dec 2014 | CN |
105167889 | Dec 2015 | CN |
103118634 | Aug 2016 | CN |
103118636 | Aug 2016 | CN |
104093380 | Aug 2016 | CN |
106073949 | Nov 2016 | CN |
106214292 | Dec 2016 | CN |
0021421 | Jan 1981 | EP |
0327495 | Aug 1989 | EP |
340919 | Nov 1989 | EP |
0340919 | Nov 1989 | EP |
0372811 | Jun 1990 | EP |
0306744 | Apr 1992 | EP |
0495340 | Jul 1992 | EP |
0672397 | Sep 1995 | EP |
0552950 | Sep 1996 | EP |
0536457 | Jan 1997 | EP |
0642328 | Dec 1998 | EP |
0956836 | Nov 1999 | EP |
0956836 | Nov 1999 | EP |
1025818 | Aug 2000 | EP |
1097679 | May 2001 | EP |
0709074 | Dec 2002 | EP |
0927009 | Dec 2002 | EP |
1327424 | Jul 2003 | EP |
1396240 | Apr 2008 | EP |
1996122 | Dec 2008 | EP |
2011455 | Jan 2009 | EP |
1555962 | Feb 2011 | EP |
2319460 | May 2011 | EP |
2324799 | May 2011 | EP |
2335654 | Jun 2011 | EP |
2347733 | Jul 2011 | EP |
0689808 | Sep 2012 | EP |
2595573 | May 2013 | EP |
2782525 | Oct 2014 | EP |
2595574 | May 2017 | EP |
2736819 | Jan 1997 | FR |
2747914 | Oct 1997 | FR |
2778332 | Nov 1999 | FR |
2788964 | Aug 2000 | FR |
2926719 | Jul 2009 | FR |
225347 | Dec 1924 | GB |
2253147 | Sep 1992 | GB |
2345446 | Jul 2000 | GB |
7145DELNP2014 | Apr 2015 | IN |
62270153 | Nov 1987 | JP |
09511668 | Nov 1997 | JP |
2000000255 | Jan 2000 | JP |
2000245758 | Sep 2000 | JP |
2003516183 | May 2003 | JP |
2004254811 | Sep 2004 | JP |
3734270 | Jan 2006 | JP |
2009082713 | Apr 2009 | JP |
2011092738 | May 2011 | JP |
2013535276 | Sep 2013 | JP |
2013536005 | Sep 2013 | JP |
2013536006 | Sep 2013 | JP |
2013536007 | Sep 2013 | JP |
2015504333 | Feb 2015 | JP |
2015504759 | Feb 2015 | JP |
2015231566 | Dec 2015 | JP |
2016028729 | Mar 2016 | JP |
WO-9305729 | Apr 1993 | WO |
WO-9409725 | May 1994 | WO |
WO-9514444 | Jun 1995 | WO |
WO-9530389 | Nov 1995 | WO |
WO-9535074 | Dec 1995 | WO |
WO-9934755 | Jul 1999 | WO |
WO-0141680 | Jun 2001 | WO |
WO-200141680 | Jun 2001 | WO |
WO-03099106 | Dec 2003 | WO |
WO-2005037147 | Apr 2005 | WO |
WO-2005051240 | Jun 2005 | WO |
WO-2006058057 | Jun 2006 | WO |
WO-2007108804 | Sep 2007 | WO |
WO-2007109641 | Sep 2007 | WO |
WO-2009029631 | Mar 2009 | WO |
WO-2009088238 | Jul 2009 | WO |
WO-2010008803 | Jan 2010 | WO |
WO-2010011590 | Jan 2010 | WO |
WO-2010045537 | Apr 2010 | WO |
WO-2011043955 | Apr 2011 | WO |
WO-2011072235 | Jun 2011 | WO |
WO-2011110865 | Sep 2011 | WO |
WO-2012018563 | Feb 2012 | WO |
WO-2012018564 | Feb 2012 | WO |
WO-2012018565 | Feb 2012 | WO |
WO-2012018566 | Feb 2012 | WO |
WO-2012018567 | Feb 2012 | WO |
WO-2012112698 | Aug 2012 | WO |
WO-2013077919 | May 2013 | WO |
WO-2013115849 | Aug 2013 | WO |
Entry |
---|
“U.S. Appl. No. 13/189,324, Examiner Interview Summary dated Jan. 13, 2014”, 4 pgs. |
“U.S. Appl. No. 13/189,324, Final Office Action dated Jul. 16, 2013”, 19 pgs. |
“U.S. Appl. No. 13/189,324, Non Final Office Action dated Dec. 11, 2012”, 19 pgs. |
“U.S. Appl. No. 13/189,324, Notice of Allowance dated Feb. 20, 2014”, 8 pgs. |
“U.S. Appl. No. 13/189,324, PTO Response to 312 Amendment dated May 29, 2014”, 2 pgs. |
“U.S. Appl. No. 13/189,324, Response filed Jan. 15, 2014 to Final Office Action dated Jul. 16, 2013”, 23 pgs. |
“U.S. Appl. No. 13/189,324, Response filed Jun. 10, 2013 to Non Final Office Action dated Dec. 11, 2012”, 24 pgs. |
“U.S. Appl. No. 13/189,328, Non Final Office Action dated Mar. 19, 2013”, 10 pgs. |
“U.S. Appl. No. 13/189,328, Notice of Allowance dated Oct. 8, 2013”, 12 pgs. |
“U.S. Appl. No. 13/189,328, PTO Response to 312 Amendment dated Dec. 13, 2013”, 2 pgs. |
“U.S. Appl. No. 13/189,328, Response filed Jan. 10, 2013 to Restriction Requirement dated Dec. 10, 2012”, 9 pgs. |
“U.S. Appl. No. 13/189,328, Response filed Jul. 18, 2013 to Non Final Office Action dated Mar. 19, 2013”, 16 pgs. |
“U.S. Appl. No. 13/189,328, Restriction Requirement dated Dec. 10, 2012”, 6 pgs. |
“U.S. Appl. No. 13/189,336, Notice of Allowance dated Sep. 13, 2013”, 30 pgs. |
“U.S. Appl. No. 13/189,336, PTO Response to 312 Amendment dated Nov. 25, 2013”, 2 pgs. |
“U.S. Appl. No. 13/189,336, Response filed Apr. 15, 2013 to Restriction Requirement dated Jan. 30, 2013”, 21 pgs. |
“U.S. Appl. No. 13/189,336, Response filed Jul. 17, 2013 to Restriction Requirement dated Jun. 17, 2013”, 20 pgs. |
“U.S. Appl. No. 13/189,336, Restriction Requirement dated Jan. 30, 2013”, 5 pgs. |
“U.S. Appl. No. 13/189,336, Restriction Requirement dated Jun. 17, 2013”, 6 pgs. |
“U.S. Appl. No. 13/189,338, Notice of Allowance dated Sep. 23, 2013”, 23 pgs. |
“U.S. Appl. No. 13/189,338, Response filed Apr. 15, 2013 to Restriction Requirement dated Feb. 14, 2013”, 18 pgs. |
“U.S. Appl. No. 13/189,338, Response filed Jul. 17, 2013 to Restriction Requirement dated Jun. 17, 2013”, 16 pgs. |
“U.S. Appl. No. 13/189,338, Restriction Requirement dated Feb. 14, 2013”, 5 pgs. |
“U.S. Appl. No. 13/189,338, Restriction Requirement dated Jun. 17, 2013”, 6 pgs. |
“U.S. Appl. No. 13/189,339, Notice of Allowance dated Sep. 20, 2013”, 16 pgs. |
“U.S. Appl. No. 13/189,339, Response filed Apr. 15, 2013 to Restriction Requirement dated Mar. 6, 2013”, 11 pgs. |
“U.S. Appl. No. 13/189,339, Response filed Jul. 17, 2013 to Restriction Requirement dated Jun. 17, 2013”, 10 pgs. |
“U.S. Appl. No. 13/189,339, Restriction Requirement dated Mar. 6, 2013”, 6 pgs. |
“U.S. Appl. No. 13/189,339, Restriction Requirement dated Jun. 17, 2013”, 7 pgs. |
“U.S. Appl. No. 13/229,103, Applicant Interview Summary dated Sep. 23, 2013”, 2 pgs. |
“U.S. Appl. No. 13/229,103, Examiner Interview Summary dated Sep. 13, 2013”, 3 pgs. |
“U.S. Appl. No. 13/229,103, Non Final Office Action dated Apr. 1, 2013”, 18 pgs. |
“U.S. Appl. No. 13/229,103, Notice of Allowance dated Sep. 18, 2013”, 9 pqs. |
“U.S. Appl. No. 13/229,103, Response filed Jul. 1, 2013 to Non Final Office Action dated Apr. 1, 2013”, 19 pgs. |
“U.S. Appl. No. 13/229,103, Supplemental Notice of Allowability dated Oct. 18, 2013”, 2 pgs. |
“U.S. Appl. No. 13/593,339, Non Final Office Action dated Oct. 4, 2013”, 7 pgs. |
“U.S. Appl. No. 13/593,339, Notice of Allowance dated Feb. 14, 2014”, 9 pgs. |
“U.S. Appl. No. 13/593,339, Preliminary Amendment filed Aug. 23, 2012”, 6 pgs. |
“U.S. Appl. No. 13/593,339, Response filed Jan. 31, 2014 to Non-Final Office Action dated Oct. 4, 2013”, 19 pgs. |
“U.S. Appl. No. 13/593,339, Response filed Aug. 30, 2013 to Restriction Requirement dated Aug. 1, 2013”, 14 pgs. |
“U.S. Appl. No. 13/593,339, Restriction Requirement dated Aug. 1, 2013”, 5 pgs. |
“U.S. Appl. No. 13/593,339, Supplemental Notice of Allowability dated Mar. 31, 2014”, 2 pgs. |
“U.S. Appl. No. 13/594,543, Final Office Action dated Jul. 17, 2014”, 12 pgs. |
“U.S. Appl. No. 13/594,543, Non Final Office Action dated Jun. 19, 2015”, 30 pgs. |
“U.S. Appl. No. 13/594,543, Non Final Office Action dated Dec. 26, 2013”, 15 pgs. |
“U.S. Appl. No. 13/594,543, Non-Final Office Action dated Jan. 9, 2015”, 23 pgs. |
“U.S. Appl. No. 13/594,543, Preliminary Amendment filed Aug. 24, 2012”, 4 pgs. |
“U.S. Appl. No. 13/594,543, Response filed Apr. 7, 2015 to Non-Final Office Action dated Jan. 9, 2015”, 27 pgs. |
“U.S. Appl. No. 13/594,543, Response filed May 7, 2014 to Non-Final office Action dated Dec. 26, 2013”, 17 pgs. |
“U.S. Appl. No. 13/594,543, Response filed Oct. 11, 2013 to Restriction Requirement dated Sep. 12, 2013”, 8 pgs. |
“U.S. Appl. No. 13/594,543, Response filed Dec. 17, 2014 to Final Office Action dated Jul. 17, 2014”, 15 pgs. |
“U.S. Appl. No. 13/594,543, Restriction Requirement dated Sep. 12, 2013”, 5 pgs. |
“U.S. Appl. No. 14/034,937, Final Office Action dated Jun. 5, 2015” 22 pgs. |
“U.S. Appl. No. 14/034,937, Non Final Office Action dated Jan. 2, 2015”, 21 pgs. |
“U.S. Appl. No. 14/034,937, Preliminary Amendment filed Sep. 24, 2013”, 3 pgs. |
“U.S. Appl. No. 14/034,937, Response filed Mar. 30, 2015 to Non-Final Office Action”, 24 pgs. |
“U.S. Appl. No. 14/034,937, Response filed Oct. 27, 2014 to Restriction Requirement dated Sep. 11, 2014”, 12 pgs. |
“U.S. Appl. No. 14/034,937, Restriction Requirement dated Sep. 11, 2014”, 6 pgs. |
“U.S. Appl. No. 14/034,937, Supplemental Preliminary Amendment filed Oct. 24, 2013”, 11 pgs. |
“U.S. Appl. No. 14/034,944, Non Final Office Action dated Mar. 3, 2015”, 16 pgs. |
“U.S. Appl. No. 14/034,944, Preliminary Amendment filed Sep. 24, 2013”, 3 pgs. |
“U.S. Appl. No. 14/034,944, Response filed Dec. 15, 2014 to Restriction Requirement dated Oct. 14, 2014”, 12 pgs. |
“U.S. Appl. No. 14/034,944, Restriction Requirement dated Oct. 14, 2014”, 6 pgs. |
“U.S. Appl. No. 14/034,944, Supplemental Preliminary Amendment filed Oct. 24, 2013”, 11 pgs. |
“U.S. Appl. No. 14/034,944, Final Office Action dated Jun. 1, 2015”, 26 pgs. |
“U.S. Appl. No. 14/034,954, Non Final Office Action dated Dec. 19, 2014”, 25 pgs. |
“U.S. Appl. No. 14/034,954, Preliminary Amendment filed Sep. 24, 2013”, 3 pgs. |
“U.S. Appl. No. 14/034,954, Response filed Mar. 17, 2015 to Non Final Office Action dated Dec. 19, 2014”, 21 pgs. |
“U.S. Appl. No. 14/034,954, Response filed Oct. 27, 2014 to Restriction Requirement dated Aug. 25, 2014”, 11 pgs. |
“U.S. Appl. No. 14/034,954, Restriction Requirement dated Aug. 25, 2014”, 7 pgs. |
“U.S. Appl. No. 14/034,954, Supplemental Preliminary Amendment filed Oct. 25, 2013”, 8 pgs. |
“U.S. Appl. No. 14/034,963, Final Office Action dated Apr. 13, 2015”, 22 pgs. |
“U.S. Appl. No. 14/034,963, Non Final Office Action dated Nov. 21, 2014”, 19 pgs |
“U.S. Appl. No. 14/034,963, Preliminary Amendment filed Sep. 24, 2013”, 3 pgs. |
“U.S. Appl. No. 14/034,963, Response filed Mar. 20, 2015 to Non-Final Office Action dated Nov. 21, 2014”, 20 pgs. |
“U.S. Appl. No. 14/034,963, Response filed Jun. 19, 2015 to Final Office Action dated Apr. 13, 2015”, 17 pgs. |
“U.S. Appl. No. 14/063,593, Preliminary Amendment filed Oct. 25, 2013”, 3 pgs. |
“U.S. Appl. No. 14/284,144, Final Office Action dated Aug. 7, 2015”, 13 pgs. |
“U.S. Appl. No. 14/284,144, Non Final Office Action dated Mar. 25, 2015”, 26 pgs. |
“U.S. Appl. No. 14/284,144, Notice of Allowance dated Oct. 29, 2015”, 8 pgs. |
“U.S. Appl. No. 14/284,144, Preliminary Amendment filed May 21, 2014”, 3 pgs. |
“U.S. Appl. No. 14/284,144, Response filed Oct. 9, 2015 to Final Office Action dated Aug. 7, 2015”, 13 pgs. |
“U.S. Appl. No. 14/284,144, Response filed Jun. 23, 2015 to Non Final Office Action dated Mar. 25, 2015”, 22 pgs. |
“U.S. Appl. No. 14/284,144, Supplemental Preliminary Amendment filed Jul. 3, 2014”, 10 pgs. |
“Australian Application Serial No. 2011286306, First Examiner Report dated Jun. 19, 2013”, 4 pgs. |
“Australian Application Serial No. 2011286306, Response filed Jun. 3, 2014 to First Examiner Report dated Jun. 19, 2013”, 16 pgs. |
“Australian Application Serial No. 2011286307, First Examiner Report dated Oct. 17, 2013”, 2 pgs. |
“Australian Application Serial No. 2011286307, Response filed May 21, 2014 to First Examiner Report dated Oct. 17, 2013”, 16 pgs. |
“Australian Application Serial No. 2011286308, First Examiner Report dated Jun. 21, 2013”, 4 pgs. |
“Australian Application Serial No. 2011286309, First Examiner Report dated Jun. 21, 2013”, 3 pgs. |
“Australian Application Serial No. 2012341026, First Examiner Report dated Jul. 14, 2014”, 2 pgs. |
“Australian Application Serial No. 2012341026, Response filed Nov. 21, 2014 to First Examiner Report dated Jul. 14, 2014”, 1 pg. |
“Australian Application Serial No. 2012341026, Statement of Proposed Amendment filed Jun. 18, 2014”, 25 pgs. |
“Bi-Cruciate Stabilized Knee System”, Design Rationale, Smith & Nephew Journal, (2006), 20 pgs. |
“Canadian Application Serial No. 2,856,571 Response filed Jan. 22, 2015 to Office Action dated Jul. 22, 2014”, 24 pgs. |
“Canadian Application Serial No. 2,856,571, Office Action dated Jul. 22, 2014”, 2 pgs. |
“Chinese Application Serial No. 201180045673.3, Office Action dated Mar. 29, 2015”, (W/ English Translation), 6 pgs. |
“Chinese Application Serial No. 201180045681.8, Office Action dated Jan. 22, 2015”, (W/ English Translation), 11 pgs. |
“Chinese Application Serial No. 201180045681.8, Response filed May 14, 2015 to Office Action dated Jan. 22, 2015”, W/ English Claims, 17 pgs. |
“Chinese Application Serial No. 201180045683.7, Office Action dated Mar. 9, 2015” (W/ English Translation), 6 pgs. |
“Chinese Application Serial No. 201180045689.4, Office Action dated Jan. 5, 2015”, (W/ English Translation), 4 pgs. |
“Chinese Application Serial No. 201180045689.4, Response filed May 1, 2015 to Office Action dated Jan. 5, 2015”, W/ English Claims, 13 pgs. |
“Chinese Application Serial No. 201280071940.9, Preliminary Amendment filed Mar. 23, 2015”, W/ English Claims, 11 pgs. |
“European Application Serial No. 11738918.9, Examination Notification Art. 94(3) dated Oct. 23, 2014”, 5 pgs. |
“European Application Serial No. 11738918.9, Preliminary Amendment dated Sep. 24, 2013”, 11 pgs. |
“European Application Serial No. 11738918.9, Response filed Mar. 2, 2015 to Examination Notification Art. 94(3) dated Oct. 23, 2014”, 14 pgs. |
“European Application Serial No. 11738919.7, Examination Notification Art. 94(3) dated Jul. 7, 2014”, 4 pgs. |
“European Application Serial No. 11738919.7, Preliminary Amendment filed Nov. 4, 2013”, 25 pgs. |
“European Application Serial No. 11738919.7, Response filed Nov. 13, 2014 to Examination Notification Art. 94(3) dated Jul. 7, 2014”, 14 pgs. |
“European Application Serial No. 11738920.5, Preliminary Amendment dated Sep. 24, 2013”, 9 pgs. |
“European Application Serial No. 11758060.5, Preliminary Amendment filed Nov. 4, 2013”, 15 pgs. |
“European Application Serial No. 11815029.1, Extended European Search Report dated Dec. 10, 2013”, 8 pgs. |
“European Application Serial No. 11815029.1, Response filed Jul. 21, 2014 Extended European Search Report dated Dec. 10, 2013”, 15 pgs. |
“European Application Serial No. 12756058.9, Preliminary Amendment filed Apr. 20, 2015”, 12 pgs. |
“European Application Serial No. 12756869.9 Response filed Feb. 10, 2015 to Communication Pursuant to Rule 161(1) and 162 Serial dated Jul. 31, 2014”, 14 pgs. |
“Extramedullary/Intramedullary Tibial Resector: Surgical Technique”, Nexgen Complete Knee Solution, Zimmer, Inc. 97-5997-02 Rev 1, (2000, 2002), 25 pgs. |
“Extramedullary/Intramedullary Tibial Resector: Surgical Technique”, Nexgen Complete Knee Solution, Zimmer, Inc. 97-5997-002-00 Rev. 2, (2000, 2008, 2009), 28 pgs. |
“Gender Solutions Natural-Knee Flex System”, Zimmer, Inc., (2007, 2009), 6 pgs. |
“International Application Serial No. PCT/US2011/045077, International Preliminary Report on Patentability dated Jul. 5, 2012”, 23 pgs. |
“International Application Serial No. PCT/US2011/045077, International Search Report and Written Opinion dated Jan. 9, 2012”, 15 pgs. |
“International Application Serial No. PCT/US2011/045078, International Preliminary Report on Patentability dated Feb. 7, 2013”, 11 pgs. |
“International Application Serial No. PCT/US2011/045078, International Search Report and Written Opinion dated Jan. 9, 2012”, 14 pgs. |
“International Application Serial No. PCT/US2011/045080, International Preliminary Report on Patentability dated Feb. 7, 2013”, 13 pgs. |
“International Application Serial No. PCT/US2011/045080, International Search Report dated Jan. 9, 2012”, 7 pgs. |
“International Application Serial No. PCT/US2011/045080, Written Opinion dated Jan. 9, 2012”, 11 pgs. |
“International Application Serial No. PCT/US2011/045082, International Preliminary Report on Patentability dated Feb. 7, 2013”, 11 pgs. |
“International Application Serial No. PCT/US2011/045082, International Search Report dated Jan. 9, 2012”, 5 pgs. |
“International Application Serial No. PCT/US2011/045082, Written Opinion dated Jan. 9, 2012”, 10 pgs. |
“International Application Serial No. PCT/US2011/045083, International Preliminary Report on Patentability dated Feb. 7, 2013”, 8 pgs. |
“International Application Serial No. PCT/US2011/045083, International Search Report dated Dec. 7, 2011”, 2 pgs. |
“International Application Serial No. PCT/US2011/045083, Written Opinion dated Dec. 7, 2011”, 6 pgs. |
“International Application Serial No. PCT/US2011/051021, International Preliminary Report on Patentability dated Mar. 21, 2013”, 8 pgs. |
“International Application Serial No. PCT/US2011/051021, International Search Report dated Nov. 23, 2011”, 12 pgs. |
“International Application Serial No. PCT/US2011/051021, Written Opinion dated Nov. 23, 2011”, 7 pgs. |
“International Application Serial No. PCT/US2012/052132, International Preliminary Report on Patentability dated Jun. 5, 2014”, 12 pgs. |
“International Application Serial No. PCT/US2012/052132, International Search Report dated Jan. 10, 2013”, 5 pgs. |
“International Application Serial No. PCT/US2012/052132, Invitation to Pay Additional Fees and Partial Search Report dated Nov. 15, 2012”, 7 pgs. |
“International Application Serial No. PCT/US2012/052132, Written Opinion dated Jan. 10, 2013”, 10 pgs. |
“International Application Serial No. PCT/US2012/052340, International Preliminary Report on Patentability dated Aug. 14, 2014”, 8 pgs. |
“International Application Serial No. PCT/US2012/052340, Search Report dated Oct. 12, 2012”, 4 pgs. |
“International Application Serial No. PCT/US2012/052340, Written Opinion dated Oct. 12, 2012”, 6 pgs. |
“Japanese Application Serial No. 2013-521854, Notice of Reason for Rejection dated Sep. 16, 2014”, (W/ English Translation), 6 pgs. |
“Japanese Application Serial No. 2013-521854, Response filed Dec. 16, 2014 to Notice of Reason for Rejection dated Sep. 16, 2014”, W/ English Claims, 11 pgs. |
“Japanese Application Serial No. 2013-521855, Amendment filed Jul. 22, 2014”, (W/ English Translation), 20 pgs. |
“Japanese Application Serial No. 2013-521855, Office Action dated Mar. 24, 2015”, W/ English Translation, 8 pgs. |
“Japanese Application Serial No. 2014-542301, Office Action dated May 12, 2015”, (W/ English Translation), 6 pgs. |
“LPS-Flex Fixed Bearing Knee: Surgical Technique”, Zimmer, Inc., (2004, 2007, 2008), 16 pgs. |
“Mexican Application Serial No. MX/A/2013/000990, Office Action dated Feb. 19, 2015”, (W/ English Translation), 4 pgs. |
“Mexican Application Serial No. MX/A/2013/000990, Response filed Apr. 29, 2015 to Office Action dated Feb. 19, 2015”, W/ English Claims, 18 pgs. |
“NexGen Trabecular Metal Modular Plates”, Zimmer Inc., (2007), 19 pgs. |
“PFC Sigma Knee System with Rotating Platform Technical/ Monograph”, Depuy PFC Sigma RP, 0611-29-050 (Rev. 3), (1999), 70 pgs. |
“Russian Application Serial No. 2013106942, Office Action dated Apr. 16, 2015”, W/ English Translation, 5 pgs. |
“South African Application Serial No. 2013/01327, Amendment filed Apr. 24, 2014”, W/ English Translation, 4 pgs. |
“South African Application Serial No. 2013/01328, Amendment filed Apr. 24, 2014”, W/ English Translation, 4 pgs. |
“Surgical Technique for the CR-Flex Fixed Bearing Knee”, NexGen Complete Knee Solution, Zimmer, Inc., (2003), 22 pgs. |
“Tibial Baseplate: Pocket Guide (United States Version)”, Zimmer, Inc. (2009), 17 pgs. |
“Trabecular Metal Monoblock Tibial Components”, Zimmer, Inc., (2007), 4 pgs. |
“Trabecular Metal Monoblock Tibial Components Surgical Technique Addendum”, Nexgen Zimmer, Inc., (2005, 2007), 12 pgs. |
“Trabecular Metal Tibial Tray: Surgical Technique”, NexGen Zimmer, Inc., (2007, 2009), 16 pgs. |
Annayappa, Ramesh, et al., “Tibial Prosthesis”, U.S. Appl. No. 13/189,324, filed Jul. 22, 2011, 50 pgs. |
Annayappa, Ramesh, “Tibial Prosthesis”, U.S. Appl. No. 13/189,328, filed Jul. 22, 2011, 82 pgs. |
Ding, M., et al., “Age-related variations in the microstructure of human tibial cancellous bone”, Journal of Orthopaedic Research, 20(3), (2002), 615-621. |
Ding, M., et al., “Changes in the three-dimensional microstructure of human tibial cancellous bone in early osteoarthritis”, Journal of Bone & Joint Surgery (British), 85-B(6), (Aug. 2003), 906-912. |
Doyle, et al., “Comparative Analysis of Human Trabecular Bone and Polyurethane Foam”, Purdue University., 1 pg. |
Dunbar, M. J., et al., “Fixation of a Trabecular Metal Knee Arthroplasty Component: A Prospective Randomized Study”, The Journal of Bone & Joint Surgery (American), vol. 91-A(7), (Jul. 2009), 1578-1586. |
Edwards, Andrew, et al., “The Attachments of the Fiber Bundles of the Posterior Cruciate ligament: An Anatomic Study”, Arthroscopy: The Journal of Arthroscopic and Related Surgery, vol. 23, No. 3, (Mar. 2008), 284-290. |
Hvid, Ivan, et al., “Trabecular bone Strength Patterns at the Proximal Tibial Epiphysis”, Journal of Orthopaedic Research, vol. 3, No. 4, (1985), 464-472. |
Klostermann, et al., “Distribution of bone mineral density with age and gender in the proximal tibia”, Clinical Biomechanics 19, 376-376. |
Lorenz, Stephan, et al., “Radiological evaluation of the anterolateral and posteromedial bundle insertion sites of the posterior cruciate ligament”, Knee Surg Sports Traumatol Arthosc, vol. 17, (2009), 683-690. |
Moorman, Claude, et al., “Tibial Insertion of the Posterior Cruciate Ligament: A Sagittal Plane Analysis Using Gross, Histologic, and Radiographic Methods”, Arthroscopy: The Journal of Arthroscopic and Related Surgery, vol. 24, No. 3, (Mar. 2008), 269-275. |
Parisi, Raymond C, “Motion Facilitating Tibial Components for a Knee Prosthesis”, U.S. Appl. No. 13/229,103, filed Sep. 9, 2011, 46 pgs. |
Stilling, et al., “Superior fixation of pegged trabecular metal over screw-fixed pegged porous titanium fiber mesh”, Acta Orthopaedica., (2011), 177-186. |
Wentorf, Mary S. S, “Asymmetric Tibial Components for a Knee Prosthesis”, U.S. Appl. No. 13/189,338, filed Jul. 22, 2011, 58 pgs. |
Wentorf, Mary S. S, “Asymmetric Tibial Components for a Knee Prosthesis”, U.S. Appl. No. 13/189,339, filed Jul. 22, 2011, 52 pgs. |
Wentorf, Mary S. S, “Asymmetric Tibial Components for a Knee Prosthesis”, U.S. Appl. No. 13/189,336, filed Jul. 22, 2011, 60 pgs. |
“U.S. Appl. No. 13/594,543, Final Office Action dated Nov. 20, 2015”, 28 pgs. |
“U.S. Appl. No. 13/594,543, Response filed Sep. 21, 2015 to Non-Final Office Action dated Jun. 19, 2015”, 25 pgs. |
“U.S. Appl. No. 14/034,937, Appeal Brief Filed Sep. 9, 2015”, 41 pgs. |
“U.S. Appl. No. 14/034,944, Notice of Allowance dated Aug. 28, 2015”, 7 pgs. |
“U.S. Appl. No. 14/034,944, Response filed Jun. 23, 2015 to Non Final Office Action dated Mar. 3, 2015”, 15 pgs. |
“U.S. Appl. No. 14/034,954, Advisory Action dated Aug. 25, 2015”, 3 pgs. |
“U.S. Appl. No. 14/034,954, Notice of Allowance dated Nov. 20, 2015”, 11 pgs. |
“U.S. Appl. No. 14/034,954, Response filed Aug. 3, 2015 to Final Office Action dated Jun. 1, 2015”, 19 pgs. |
“U.S. Appl. No. 14/034,954, Response filed Aug. 31, 2015 to Advisory Action dated Aug. 25, 2015”, 21 pgs. |
“U.S. Appl. No. 14/034,963, Final Office Action dated Oct. 13, 2015”, 11 pgs. |
“U.S. Appl. No. 14/034,963, Non Final Office Action dated Jul. 1, 2015”, 15 pgs. |
“U.S. Appl. No. 14/034,963, Notice of Allowance dated Dec. 18, 2015”, 5 pgs. |
“U.S. Appl. No. 14/034,963, Response filed Sep. 30, 2015 to Non Final Office Action dated Jul. 1, 2015”, 14 pgs. |
“U.S. Appl. No. 14/034,963, Response filed Nov. 20, 2015 to Final Office Action dated Oct. 13, 2015”, 12 pgs. |
“U.S. Appl. No. 14/063,593, Response filed Jan. 4, 2016 to Restriction Requirement dated Nov. 6, 2015”, 6 pgs. |
“U.S. Appl. No. 14/063,593, Restriction Requirement dated Nov. 6, 2015”, 6 pgs. |
“U.S. Appl. No. 14/278,805, Notice of Allowance dated Dec. 1, 2015”, 8 pgs. |
“U.S. Appl. No. 14/791,952, Preliminary Amendment filed Jul. 7, 2015”, 7 pgs. |
“Australian Application Serial No. 2011286308, Response filed Jun. 6, 2014 First Examiner Report dated Jun. 21, 2013”, 19 pgs. |
“Australian Application Serial No. 2011286309, Response filed Jun. 10, 2014 to First Examiner Report dated Jun. 21, 2013”, 4 pgs. |
“Chinese Application Serial No. 201180045673.3, Office Action dated Aug. 12, 2015”, W/ English Translation, 7 pgs. |
“Chinese Application Serial No. 201180045673.3, Response filed Jun. 19, 2015 to Office Action dated Mar. 29, 2015”, W/ English Claims, 11 pgs. |
“Chinese Application Serial No. 201180045673.3, Response filed Oct. 27, 2015 to Office Action dated Aug. 12, 2015”, W/ English Claims, 9 pgs. |
“Chinese Application Serial No. 201180045683.7, Response filed Jul. 14, 2015 to Office Action dated Mar. 9, 2015”, W/ English Claims, 30 pgs. |
“Chinese Application Serial No. 201180045689.4, Office Action dated Aug. 5, 2015” (W/ English Translation), 11 pgs. |
“Chinese Application Serial No. 201280067473.2, Office Action dated May 20, 2015”, (W/ English Translation), 15 pgs. |
“Chinese Application Serial No. 201280067473.2, Office Action dated Nov. 20, 2015”, W/ English Claims, 7 pgs. |
“Chinese Application Serial No. 201280067473.2, Response filed Sep. 7, 2015 to Office Action dated May 20, 2015”, W/ English Claims, 12 pgs. |
“Chinese Application Serial No. 201280071940.9, Office Action dated Jul. 22, 2015”, (W/ English Translation), 13 pgs. |
“European Application Serial No. 12756869.9, Examination Notification Art. 94(3) dated Jul. 2, 2015”, 4 pgs. |
“European Application Serial No. 12756869.9, Response filed Nov. 12, 2015 to Examination Notification Art. 94(3) dated Jul. 2, 2015”, 28 pgs. |
“Japanese Application Serial No. 2013-521856, Office Action dated Sep. 1, 2015”, W/ English Translation, 5 pgs. |
“Japanese Application Serial No. 2013-521857, Notice of Reasons for Rejection dated Aug. 18, 2015”, W/ English Translation, 6 pgs. |
“Japanese Application Serial No. 2013-521857, Preliminary Amendment filed May 18, 2014”, W/ English Claims, 9 pgs. |
“Japanese Application Serial No. 2014-542301, Response filed Aug. 10, 2015 to Office Action dated May 12, 2015”, W/ English Claims, 21 pgs. |
“Japanese Application Serial No. 2014-554709, Preliminary Amendment filed Jul. 29, 2015”, W/ English Claims, 8 pgs. |
“Mexican Application Serial No. MX/a/2013/000988, Response filed Jun. 1, 2015 to Office Action dated Mar. 18, 2015”, W/ English Translation, 12 pgs. |
“Russian Application Serial No. 2013106942, Response filed Jul. 15, 2015 Office Action dated Apr. 16, 2015”, W/ English Claims, 146 pgs. |
“Russian Application Serial No. 2013106943, Office Action dated Jan. 7, 2015”, (W/ English Translation), 6 pgs. |
“Russian Application Serial No. 2013106943, Response filed Oct. 30, 2015 to Office Action dated Jan. 7, 2015”, W/ English Claims, 21 pgs. |
“U.S. Appl. No. 13/594,543, Corrected Notice of Allowance dated Mar. 16, 2016”, 2 pgs. |
“U.S. Appl. No. 13/594,543, Examiner Interview Summary dated Jan. 22, 2016”, 3 pgs. |
“U.S. Appl. No. 13/594,543, Notice of Allowance dated Mar. 1, 2016”, 9 pgs. |
“U.S. Appl. No. 13/594,543, Response filed Feb. 8, 2016 to Final Office Action dated Nov. 20, 2015”, 17 pgs. |
“U.S. Appl. No. 14/034,937, Appeal Decision dated May 30, 2017”, 34 pgs. |
“U.S. Appl. No. 14/034,937, Notice of Allowance dated Aug. 30, 2017”, 14 pgs. |
“U.S. Appl. No. 14/063,593, Advisory Action dated Aug. 19, 2016”, 3 pgs. |
“U.S. Appl. No. 14/063,593, Final Office Action dated Jun. 9, 2016”, 10 pgs. |
“U.S. Appl. No. 14/063,593, Non Final Office Action dated Jan. 25, 2016”, 9 pgs. |
“U.S. Appl. No. 14/063,593, Non Final Office Action dated Nov. 30, 2016”, 12 pgs. |
“U.S. Appl. No. 14/063,593, Notice of Allowance dated May 2, 2017”, 5 pgs. |
“U.S. Appl. No. 14/063,593, Notice of Allowance dated May 25, 2017”, 5 pgs. |
“U.S. Appl. No. 14/063,593, Response filed Feb. 24, 2017 to Non Final Office Action dated Nov. 30, 2016”, 17 pgs. |
“U.S. Appl. No. 14/063,593, Response filed Apr. 20, 2016 to Non Final Office Action dated Jan. 25, 2016”, 17 pgs. |
“U.S. Appl. No. 14/063,593, Response filed Aug. 11, 2016 to Final Office Action dated Jun. 9, 2016”, 10 pgs. |
“U.S. Appl. No. 14/278,805, Supplemental Notice of Allowability dated Jan. 21, 2016”, 2 pgs. |
“U.S. Appl. No. 14/791,952, Corrected Notice of Allowance dated Jul. 21, 2017”, 2 pgs. |
“U.S. Appl. No. 14/791,952, Final Office Action dated Mar. 31, 2017”, 8 pgs. |
“U.S. Appl. No. 14/791,952, Final Office Action dated Sep. 1, 2016”, 17 pgs. |
“U.S. Appl. No. 14/791,952, Non Final Office Action dated Apr. 21, 2016”, 12 pgs. |
“U.S. Appl. No. 14/791,952, Non Final Office Action dated Dec. 29, 2016”, 12 pgs. |
“U.S. Appl. No. 14/791,952, Notice of Allowance dated May 30, 2017”, 7 pgs. |
“U.S. Appl. No. 14/791,952, Response filed Mar. 20, 2017 to Non Final Office Action dated Dec. 29, 2016”, 12 pgs. |
“U.S. Appl. No. 14/791,952, Response filed May 17, 2017—to Final Office Action dated Mar. 31, 2017”, 10 pgs. |
“U.S. Appl. No. 14/791,952, Response filed Jul. 15, 2016 to Non Final Office Action dated Apr. 21, 2016”, 18 pgs. |
“U.S. Appl. No. 14/791,952, Response filed Nov. 21, 2016 to Final Office Action dated Sep. 1, 2016”, 15 pgs. |
“U.S. Appl. No. 15/045,799, Non Final Office Action dated Nov. 1, 2016”, 8 pgs. |
“U.S. Appl. No. 15/045,799, Notice of Allowance dated Mar. 10, 2017”, 10 pgs. |
“U.S. Appl. No. 15/045,799, Preliminary Amendment filed Feb. 18, 2016”, 9 pgs. |
“U.S. Appl. No. 15/045,799, PTO Response to Rule 312 Communication dated Apr. 18, 2017”, 2 pgs. |
“U.S. Appl. No. 15/045,799, Response filed Feb. 1, 2017 to Non Final Office Action dated Nov. 1, 2016”, 15 pgs. |
“U.S. Appl. No. 15/177,734, Non Final Office Action dated Feb. 10, 2017”, 21 pgs. |
“U.S. Appl. No. 15/177,734, Notice of Allowance dated May 17, 2017”, 7 pgs. |
“U.S. Appl. No. 15/177,734, Preliminary Amendment filed Jun. 22, 2016”, 8 pgs. |
“U.S. Appl. No. 15/177,734, Response filed Apr. 19, 2017 to Non Final Office Action dated Feb. 10, 2017”, 22 pgs. |
“U.S. Appl. No. 15/616,561, Preliminary Amendment filed Jun. 8, 2017”, 7 pgs. |
“Australian Application Serial No. 2012368262, First Examiner Report dated Nov. 2, 2016”, 4 pgs. |
“Australian Application Serial No. 2012368262, Response filed Jan. 17, 2017 to Office Action dated Nov. 2, 2016”, 21 pgs. |
“Australian Application Serial No. 2012368262, Response filed May 15, 2017 to Subsequent Examiners Report dated Mar. 16, 2017”, 2 pgs. |
“Australian Application Serial No. 2012368262, Subsequent Examiners Report dated Mar. 16, 2017”, 3 pgs. |
“Australian Application Serial No. 2014250709, First Examiner Report dated Dec. 21, 2015”, 3 pgs. |
“Australian Application Serial No. 2014250709, Response filed May 4, 2016 to First Examiner Report dated Dec. 21, 2015”, 12 pgs. |
“Australian Application Serial No. 2014250709, Subsequent Examiners Report dated May 31, 2016”, 6 pgs. |
“Australian Application Serial No. 2014250710, First Examiner Report dated Dec. 11, 2015”, 7 pgs. |
“Australian Application Serial No. 2014250710, Response filed Mar. 22, 2016 to First Examiner Report dated Dec. 11, 2015”, 18 pgs. |
“Australian Application Serial No. 2014250710, Response filed May 4, 2016 to Subsequent Examiners Report dated Mar. 23, 2016”, 15 pgs. |
“Australian Application Serial No. 2014250710, Subsequent Examiners Report dated Mar. 23, 2016”, 3 pgs. |
“Australian Application Serial No. 2014250711, First Examiner Report dated Feb. 12, 2016”, 7 pgs. |
“Australian Application Serial No. 2014250711, Response filed Apr. 27, 2016 to First Examiner Report dated Feb. 12, 2016”, 32 pgs. |
“Australian Application Serial No. 2015201511, First Examination Report dated Apr. 18, 2016”, 2 pgs. |
“Australian Application Serial No. 2015201511, Response filed Jun. 30, 2016 to First Examiner Report dated Apr. 18, 2016”, 12 pgs. |
“Australian Application Serial No. 2016225911, First Examiners Report dated Jun. 2, 2017”, 3 pgs. |
“Australian Application Serial No. 2016225911, Response filed Aug. 22, 2017 to First Examiners Report dated Jun. 2, 2017”, 18pgs. |
“Canadian Application Serial No. 2,806,325, Office Action dated Mar. 14, 2016”, 4 pgs. |
“Canadian Application Serial No. 2,806,325, Response filed Sep. 14, 2016 to Office Action dated Mar. 14, 2016”, 17 pgs. |
“Canadian Application Serial No. 2,806,326, Office Action dated Jun. 19, 2017”, 3 pgs. |
“Canadian Application Serial No. 2,806,321, Office Action dated Jun. 15, 2017”, 3 pgs. |
“Chinese Application Serial No. 201180045673.3, Office Action dated Feb. 14, 2016”, (W/ English Translation), 17 pgs. |
“Chinese Application Serial No. 201280067473.2, Office Action dated Feb. 1, 2016”, (W/ English Translation), 4 pgs. |
“Chinese Application Serial No. 201280067473.2, Response filed Apr. 7, 2016 to Office Action dated Feb. 1, 2016”, (W/ English translation of claims), 11 pgs. |
“Chinese Application Serial No. 201510640436.1, Office Action dated Sep. 28, 2016”, (W/ English Translation), 13 pgs. |
“Chinese Application Serial No. 201510640436.1, Response filed Feb. 16, 2017 to Office Action dated Sep. 28, 2016”, (W/ English Translation), 18 pgs. |
“Chinese Application Serial No. 201610634595.5, Office Action dated Jun. 21, 2017”, (English Translation), 9 pgs. |
“Chinese Application Serial No. 201610685172.6, Office Action dated Apr. 10, 2017”, (W/ English Translation), 11 pgs. |
“European Application Serial No. 11738920.5, Communication Pursuant to Article 94(3) EPC dated Mar. 15, 2016”, 4 pgs. |
“European Application Serial No. 11738920.5, Response filed Jul. 25, 2016 to Communication Pursuant to Article 94(3) EPC dated Mar. 15, 2016”, 6 pgs. |
“European Application Serial No. 11738920.5, Response filed Sep. 24, 2013 to Communication pursuant to Rules 161(2) and 162 EPC dated Mar. 15, 2013”, 22 pgs. |
“European Application Serial No. 11758060.5, Communication Pursuant to Article 94(3) EPC dated Jul. 12, 2016”, 3 pgs. |
“European Application Serial No. 11758060.5, Communication Pursuant to Article 94(3) EPC dated Dec. 11, 2015”, 4 pgs. |
“European Application Serial No. 11758060.5, Response filed Apr. 21, 2016 to Communication Pursuant to Article 94(3) EPC dated Dec. 11, 2015”, 16 pgs. |
“European Application Serial No. 11758060.5, Response filed Nov. 15, 2016 to Communication Pursuant to Article 94(3) EPC dated Jul. 12, 2016”, 23 pgs. |
“European Application Serial No. 11815029.1, Communication Pursuant to Article 94(3) EPC dated Sep. 29, 2016”, 4 pgs. |
“European Application Serial No. 11815029.1, Response filed Apr. 10, 2017 to Communication Pursuant to Article 94(3) EPC dated Sep. 29, 2016”, 22 pgs. |
“European Application Serial No. 12756058.9, Office Action dated Jan. 17, 2017”, 5 Pgs. |
“European Application Serial No. 12756058.9, Response filed May 26, 2017 to Office Action dated Jan. 17, 2017”, 16 pgs. |
“European Application Serial No. 15160934.4, Extended European Search Report dated Jun. 1, 2016”, 8 pgs. |
“European Application Serial No. 15160934.4, Response filed Dec. 21, 2016 to Extended European Search Report dated Jun. 1, 2016”, 5 pgs. |
“European Application Serial No. 15174394.5, Extended European Search Report dated Mar. 21, 2016”, 8 pgs. |
“European Application Serial No. 15174394.5, Response filed Nov. 18, 2016 to Extended European Search Report dated Mar. 21, 2016”, 12 pgs. |
“European Application Serial No. 15191781.2, Extended European Search Report dated Mar. 1, 2017”, 8 pgs. |
“Japanese Application Serial No. 2015-162707, Office Action dated Jun. 28, 2016”, (W/ English Translation), 8 pgs. |
“Japanese Application Serial No. 2013-521857, Response filed Mar. 25, 2016 to Notice of Reasons for Rejection dated Aug. 18, 2015”, (W/ English Translation), 17 pgs. |
“Japanese Application Serial No. 2014-554709, Office Action dated Jul. 5, 2016”, (W/ English Translation), 6 pgs. |
“Japanese Application Serial No. 2014-554709, Response filed Dec. 19, 2016 to Office Action dated Jul. 5, 2016”, (W/ English Translation of Claims), 11 pgs. |
“Japanese Application Serial No. 2015-162707, Office Action dated Nov. 29, 2016”, (W/ English Translation), 3 pgs. |
“Japanese Application Serial No. 2015-162707, Response filed Jan. 26, 2017 to Office Action dated Nov. 27, 2016”, (W/ English Translation), 16 pgs. |
“Japanese Application Serial No. 2015-199496, Office Action dated Sep. 6, 2016”, (W/ English Translation), 5 pgs. |
“Japanese Application Serial No. 2015-199496, Response filed Dec. 5, 2016 to Office Action dated Sep. 6, 2016”, (W/ English Translation of Claims), 9 pgs. |
“Russian Application Serial No. 2013106943, Response filed Apr. 28, 2016 to Office Action dated Dec. 28, 2015”, (W/ English translation of claims), 19 pgs. |
Number | Date | Country | |
---|---|---|---|
20160135959 A1 | May 2016 | US |
Number | Date | Country | |
---|---|---|---|
61367374 | Jul 2010 | US | |
61367375 | Jul 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14284144 | May 2014 | US |
Child | 15003091 | US | |
Parent | 13189324 | Jul 2011 | US |
Child | 14284144 | US |