The field of invention relates generally to managing work performed by computing services, and, more specifically, to a ticketing system for managing performance of services in a cloud computing environment.
Cloud computing services provide shared resources, software, and information to computers and other devices upon request or on demand. Cloud computing typically involves the over-the-Internet provision of dynamically scalable and often virtualized resources. Technological details can be abstracted from end-users (e.g., client computing systems), who no longer have need for expertise in, or control over, the technology infrastructure “in the cloud” that supports them. In cloud computing environments, software applications can be accessible over the Internet rather than installed locally on personal or in-house computer systems. Some of the applications or on-demand services provided to clients can include the ability for a user to create, view, modify, store and share documents and other files.
In some cloud computing environments, a cloud services provider (CSP) manages large numbers of computing resources such as databases (e.g., thousands or even tens of thousands of databases worldwide) and/or Software as a Service (SaaS) applications. Databases may need to be backed up and/or restored periodically and/or on-demand to provide a required level of service to customers of the CSP. Efficiently managing performance of large numbers of administrative and operational tasks (e.g., backups, restores, resets, shutdowns, other actions, and so on) relating to these computing resources in a large-scale computing environment can be a difficult challenge.
Scheduler 104 communicates with one or more applications 102 in a computing environment to determine when a job needs to be performed. The concept of a “ticket” is used to record all the relevant information needed to maintain the lifecycle of a job. A ticket is created as part of the job's initial scheduling, passed to a worker 114 so the worker knows what processing task needs to be performed, and returned to the master 108 so that the master can update the ticket as completed. Each ticket represents an idempotent piece of work such that the ticket can be retried, if necessary, without fear of causing harm to system 100 or the larger computing environment. Tickets can be requested in batches and can be run serially or in parallel depending on how the tickets are scheduled. Once scheduler 104 determines that a job needs to be performed, scheduler calls a create ticket function 106 in master 108. In one embodiment, the scheduler determines whether a job needs to be performed based at least in part on a set of conditions obtained from one or more applications being executed by a computing system. Master 108 creates the ticket and stores the ticket in ticket database 112 using read/write ticket function 110.
In an embodiment, master 108 controls all access to tickets. The scheduler 104 operates as a client of master 108 to request creation of a ticket. In some embodiments, a worker 114 can also be a scheduler 104, as these are just logical mappings in ticketing system 100.
In some embodiments, scheduling is done via a convergence-based scheduler 104 (e.g., one that defines transformations from a current state to a goal state), although the present design allows for a pluggable/swappable scheduler based on the needs of system 100. A scheduler 104 operates as an independent service and can employ redundancy by scaling horizontally (e.g., using multiple schedulers), if necessary. This decoupling allows ticketing system 100 to continue making progress on requested work if the scheduler goes down, and to continue creating work tickets if any of the workers 114 are down. If master 108 is down, no ticket updates can be made, so in embodiments the master is deployed as a stateless application (or process) that scales horizontally. The state of master 108 can be stored in ticket database 112.
In an embodiment, one or more workers 114 poll the master 108 for tickets that workers can perform. In an embodiment, a worker 114 calls a get ticket function 116 of master 108. In response, master 108 determines if there is a ticket in ticket database 112 that the worker can process. If so, master 108 sends the ticket to the requesting worker. There may be any number of workers 114 in system 100. This allows for the workers to take just the right amount of work that the workers can perform efficiently and to simplify the design of master 108, as master 108 does not need to know about the current capabilities of any worker before the worker requests work. In order to prevent workers from stealing work from other workers, in one embodiment an entity identifier (ID) is included in the ticket to restrict the ticket's performance to a particular one or more workers (or class of workers). This can be useful if a selected work action must be performed by a particular one or more workers (or class of workers).
With the one or more schedulers 104 scheduling work (via tickets) independently and at their own pace and workers 114 polling master 108 independently and at their own pace, ticketing system 100 is eventually consistent. There are no hard guarantees on when or if work will be completed as the ticketing system must be resilient to network partitions and other fault domains, but the ticketing system can assure that work will be dispatched to a worker 114 as soon as a worker asks for the work. Once received, worker 114 performs the work specified by the ticket and may choose to be polled for the worker's status by the supervisor 120 or the worker can push updates to the master. In one embodiment, the polling model is more reliable as worker 114 does not need to “remember” to push status of the work at the end (especially in the face of a system crash or other failure) but push models are more latency sensitive. In some embodiments, care must be taken in the case of a push approach by the worker to record what tickets are being worked on so that if the ticketing system crashes the worker can resume work on a ticket once the ticketing system restarts. Once the job (as described by a ticket) is completed, the ticket can be updated to either completed or failed. If the ticket has been successfully completed, processing is done for the ticket, but if performance of the ticket has failed supervisor 120 can reset the ticket to a “new” state so the ticket can be retried.
When worker 114 has completed processing of the ticket received from master 108, worker 114 calls an update ticket function 118 to update the ticket with the current status. Master 108 updates the ticket information and/or status in ticket database 112.
In an embodiment, supervisor 120 calls a find stale ticket function 122 to determine if any one or more tickets are not being processed by a worker in a timely manner. In an embodiment, staleness may be determined by a time threshold for the type of work to be performed according to the ticket. If there are one or more stale tickets, supervisor 120 resets the stale ticket at least in part by calling a view ticket function 126 and an update ticket function 128.
In an embodiment, one or more of applications 102, scheduler 104, master 108, supervisor 120, and workers 114 may be executed independently and concurrently by different processing cores of a multi-core computing system, different processing threads of a multi-threaded computing system, or different tasks in a computing system. In various embodiments, there may be one or more schedulers 104, one or more masters 108, one or more supervisors 120, and one or more workers 114, in any combination, that may be scaled to meet the processing needs of ticketing system 100 and a particular computing environment. In an embodiment, there is one scheduler 104, one master 108, one supervisor 120, and many workers 114 (e.g., tens, hundreds, thousands, even tens of thousands of workers) in ticketing system 100.
In an embodiment, there is one scheduler 104 for each type of job (e.g., operation or op type) possible to be performed for a ticket. For example, in one embodiment there are six op types as shown below.
Thus, in one embodiment there are a plurality of schedulers, each scheduler adapted for a selected one of a plurality of types of jobs to be performed for the ticket; and a plurality of workers, each worker adapted for a selected one of a plurality of types of jobs to be performed for the ticket. A worker of a selected one of the plurality of types of jobs is restricted to only perform jobs of that type. In an embodiment, the is enforced by the master using the entity ID field in the ticket.
An example of a ticket 300 definition according to one embodiment is shown below.
An example of pseudo-code for master 108 is shown below.
An example of pseudo-code for scheduler 104 is shown below.
An example of pseudo-code for worker 114 is shown below.
At block 718, supervisor 120 checks the status of the tickets being worked on by the workers 114. In an embodiment, the check is performed periodically. In an embodiment, the check may be implemented as a remote procedure call (rpc) from the supervisor to each worker. In an embodiment, the rpc requests the ticket status for each ticket being worked on by a worker. In response, the worker sends a list of ticket IDs and status for each ticket. Supervisor 120 can then update each ticket with master 108 at block 720 based on the received ticket ID list and statuses. If the worker is not aware of a ticket, supervisor 120 sets the ticket state to “failed” (using update ticket function 118 and “failed” state 210 of
An example of pseudo-code for supervisor 120 is shown below.
According to some examples, computing platform 801, as shown in
In an embodiment, ticketing system 100 is part of OS 850. In another embodiment, ticketing system 100 is implemented in circuitry 120.
In at least one embodiment, storage devices 865 may be one or more of hard disk drives (HDDs) and/or solid-state drives (SSDs). In an embodiment, storage devices 865 may be non-volatile memories (NVMs). In some examples, as shown in
In some examples, operating system 850, NW I/O device driver 840, ticketing system 100, VM 861, and application 102 are implemented, at least in part, via cooperation between one or more memory devices included in primary memory 830 (e.g., volatile or non-volatile memory devices), storage devices 865, and elements of circuitry 820 such as processing cores 822-1 to 822-m, where “m” is any positive whole integer greater than 2. In an embodiment, OS 850, VMM 851, NW I/O device driver 840, ticketing system 100, VM 861 and application 102 are executed by one or more processing cores 822-1 to 822-m.
In some examples, computing platform 801, includes but is not limited to a server, a server array or server farm, a web server, a network server, an Internet server, a work station, a mini-computer, a main frame computer, a supercomputer, a network appliance, a web appliance, a distributed computing system, multiprocessor systems, processor-based systems, a laptop computer, a tablet computer, a smartphone, a system-on-a-chip (SoC), or a combination thereof. In one example, computing platform 801 is a disaggregated server. A disaggregated server is a server that breaks up components and resources into subsystems (e.g., network sleds). Disaggregated servers can be adapted to changing storage or compute loads as needed without replacing or disrupting an entire server for an extended period of time. A server could, for example, be broken into modular compute, I/O, power and storage modules that can be shared among other nearby servers.
Circuitry 820 having processing cores 822-1 to 822-m may include various commercially available processors, including without limitation Intel® Atom®, Celeron®, Core (2) Duo®, Core i3, Core i5, Core i7, Itanium®, Pentium®, Xeon® or Xeon Phi® processors, ARM processors, and similar processors. Circuitry 820 may include at least one cache 835 to store data.
According to some examples, primary memory 830 may be composed of one or more memory devices or dies which may include various types of volatile and/or non-volatile memory. Volatile types of memory may include, but are not limited to, dynamic random-access memory (DRAM), static random-access memory (SRAM), thyristor RAM (TRAM) or zero-capacitor RAM (ZRAM). Non-volatile types of memory may include byte or block addressable types of non-volatile memory having a 3-dimensional (3-D) cross-point memory structure that includes chalcogenide phase change material (e.g., chalcogenide glass) hereinafter referred to as “3-D cross-point memory”. Non-volatile types of memory may also include other types of byte or block addressable non-volatile memory such as, but not limited to, multi-threshold level NAND flash memory, NOR flash memory, single or multi-level phase change memory (PCM), resistive memory, nanowire memory, ferroelectric transistor random access memory (FeTRAM), magneto-resistive random-access memory (MRAM) that incorporates memristor technology, spin transfer torque MRAM (STT-MRAM), or a combination of any of the above. In another embodiment, primary memory 830 may include one or more hard disk drives within and/or accessible by computing platform 801.
According to some examples, processing component 1002 may execute processing operations or logic for instructions stored on storage medium 900 (and described above with reference to
In some examples, other platform components 1004 may include common computing elements, such as one or more processors, multi-core processors, co-processors, memory units, chipsets, controllers, peripherals, interfaces, oscillators, timing devices, video cards, audio cards, multimedia input/output (I/O) components (e.g., digital displays), power supplies, and so forth. Examples of memory units may include without limitation various types of computer readable and machine readable storage media in the form of one or more higher speed memory units, such as read-only memory (ROM), random-access memory (RAM), dynamic RAM (DRAM), Double-Data-Rate DRAM (DDRAM), synchronous DRAM (SDRAM), static RAM (SRAM), programmable ROM (PROM), erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), types of non-volatile memory such as 3-D cross-point memory that may be byte or block addressable. Non-volatile types of memory may also include other types of byte or block addressable non-volatile memory such as, but not limited to, multi-threshold level NAND flash memory, NOR flash memory, single or multi-level PCM, resistive memory, nanowire memory, FeTRAM, MRAM that incorporates memristor technology, STT-MRAM, or a combination of any of the above. Other types of computer readable and machine-readable storage media may also include magnetic or optical cards, an array of devices such as Redundant Array of Independent Disks (RAID) drives, solid state memory devices (e.g., USB memory), solid state drives (SSD) and any other type of storage media suitable for storing information.
In some examples, communications interface 1006 may include logic and/or features to support a communication interface. For these examples, communications interface 1006 may include one or more communication interfaces that operate according to various communication protocols or standards to communicate over direct or network communication links or channels. Direct communications may occur via use of communication protocols or standards described in one or more industry standards (including progenies and variants) such as those associated with the peripheral component interconnect express (PCIe) specification. Network communications may occur via use of communication protocols or standards such those described in one or more Ethernet standards promulgated by the Institute of Electrical and Electronics Engineers (IEEE). For example, one such Ethernet standard may include IEEE 802.3. Network communication may also occur according to one or more OpenFlow specifications such as the OpenFlow Switch Specification.
The components and features of computing platform 1000, including logic represented by the instructions stored on storage medium 900 may be implemented using any combination of discrete circuitry, ASICs, logic gates and/or single chip architectures. Further, the features of computing platform 1000 may be implemented using microcontrollers, programmable logic arrays and/or microprocessors or any combination of the foregoing where suitably appropriate. It is noted that hardware, firmware and/or software elements may be collectively or individually referred to herein as “logic” or “circuit.”
It should be appreciated that the exemplary computing platform 1000 shown in the block diagram of
Various examples may be implemented using hardware elements, software elements, or a combination of both. In some examples, hardware elements may include devices, components, processors, microprocessors, circuits, circuit elements (e.g., transistors, resistors, capacitors, inductors, and so forth), integrated circuits, ASIC, programmable logic devices (PLD), digital signal processors (DSP), FPGA, memory units, logic gates, registers, semiconductor device, chips, microchips, chip sets, and so forth. In some examples, software elements may include software components, programs, applications, computer programs, application programs, system programs, machine programs, operating system software, middleware, firmware, software modules, routines, subroutines, functions, methods, procedures, software interfaces, application program interfaces (API), instruction sets, computing code, computer code, code segments, computer code segments, words, values, symbols, or any combination thereof. Determining whether an example is implemented using hardware elements and/or software elements may vary in accordance with any number of factors, such as desired computational rate, power levels, heat tolerances, processing cycle budget, input data rates, output data rates, memory resources, data bus speeds and other design or performance constraints, as desired for a given implementation.
Some examples include an article of manufacture or at least one computer-readable medium. A computer-readable medium includes a non-transitory storage medium to store logic. In some examples, the non-transitory storage medium includes one or more types of computer-readable storage media capable of storing electronic data, including volatile memory or non-volatile memory, removable or non-removable memory, erasable or non-erasable memory, writeable or re-writeable memory, and so forth. In some examples, the logic may include various software elements, such as software components, programs, applications, computer programs, application programs, system programs, machine programs, operating system software, middleware, firmware, software modules, routines, subroutines, functions, methods, procedures, software interfaces, API, instruction sets, computing code, computer code, code segments, computer code segments, words, values, symbols, or any combination thereof.
Some examples may be described using the expression “in one example” or “an example” along with their derivatives. These terms mean that a particular feature, structure, or characteristic described in connection with the example is included in at least one example. The appearances of the phrase “in one example” in various places in the specification are not necessarily all referring to the same example.
Included herein are logic flows or schemes representative of example methodologies for performing novel aspects of the disclosed architecture. While, for purposes of simplicity of explanation, the one or more methodologies shown herein are shown and described as a series of acts, those skilled in the art will understand and appreciate that the methodologies are not limited by the order of acts. Some acts may, in accordance therewith, occur in a different order and/or concurrently with other acts from that shown and described herein. For example, those skilled in the art will understand and appreciate that a methodology could alternatively be represented as a series of interrelated states or events, such as in a state diagram. Moreover, not all acts illustrated in a methodology may be required for a novel implementation.
A logic flow or scheme may be implemented in software, firmware, and/or hardware. In software and firmware embodiments, a logic flow or scheme may be implemented by computer executable instructions stored on at least one non-transitory computer readable medium or machine readable medium, such as an optical, magnetic or semiconductor storage. The embodiments are not limited in this context.
Some examples are described using the expression “coupled” and “connected” along with their derivatives. These terms are not necessarily intended as synonyms for each other. For example, descriptions using the terms “connected” and/or “coupled” may indicate that two or more elements are in direct physical or electrical contact with each other. The term “coupled,” however, may also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.
It is emphasized that the Abstract of the Disclosure is provided to comply with 37 C.F.R. Section 1.72(b), requiring an abstract that will allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in a single example for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed examples require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed example. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate example. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein,” respectively. Moreover, the terms “first,” “second,” “third,” and so forth, are used merely as labels, and are not intended to impose numerical requirements on their objects.
Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
Number | Name | Date | Kind |
---|---|---|---|
5577188 | Zhu | Nov 1996 | A |
5608872 | Schwartz et al. | Mar 1997 | A |
5649104 | Carleton et al. | Jul 1997 | A |
5715450 | Ambrose et al. | Feb 1998 | A |
5761419 | Schwartz et al. | Jun 1998 | A |
5819038 | Carleton et al. | Oct 1998 | A |
5821937 | Tonelli et al. | Oct 1998 | A |
5831610 | Tonelli et al. | Nov 1998 | A |
5873096 | Lim et al. | Feb 1999 | A |
5918159 | Fomukong et al. | Jun 1999 | A |
5963953 | Cram et al. | Oct 1999 | A |
6092083 | Brodersen et al. | Jul 2000 | A |
6169534 | Raffel et al. | Jan 2001 | B1 |
6178425 | Brodersen et al. | Jan 2001 | B1 |
6189011 | Lim et al. | Feb 2001 | B1 |
6216135 | Brodersen et al. | Apr 2001 | B1 |
6233617 | Rothwein et al. | May 2001 | B1 |
6266669 | Brodersen et al. | Jul 2001 | B1 |
6295530 | Ritchie et al. | Sep 2001 | B1 |
6324568 | Diec | Nov 2001 | B1 |
6324693 | Brodersen et al. | Nov 2001 | B1 |
6336137 | Lee et al. | Jan 2002 | B1 |
D454139 | Feldcamp | Mar 2002 | S |
6367077 | Brodersen et al. | Apr 2002 | B1 |
6393605 | Loomans | May 2002 | B1 |
6405220 | Brodersen et al. | Jun 2002 | B1 |
6434550 | Warner et al. | Aug 2002 | B1 |
6446089 | Brodersen et al. | Sep 2002 | B1 |
6535909 | Rust | Mar 2003 | B1 |
6549908 | Loomans | Apr 2003 | B1 |
6553563 | Ambrose et al. | Apr 2003 | B2 |
6560461 | Fomukong et al. | May 2003 | B1 |
6574635 | Stauber et al. | Jun 2003 | B2 |
6577726 | Huang et al. | Jun 2003 | B1 |
6601087 | Zhu et al. | Jul 2003 | B1 |
6604117 | Lim et al. | Aug 2003 | B2 |
6604128 | Diec | Aug 2003 | B2 |
6609150 | Lee et al. | Aug 2003 | B2 |
6621834 | Scherpbier et al. | Sep 2003 | B1 |
6654032 | Zhu et al. | Nov 2003 | B1 |
6665648 | Brodersen et al. | Dec 2003 | B2 |
6665655 | Warner et al. | Dec 2003 | B1 |
6684438 | Brodersen et al. | Feb 2004 | B2 |
6711565 | Subramaniam et al. | Mar 2004 | B1 |
6724399 | Katchour et al. | Apr 2004 | B1 |
6728702 | Subramaniam et al. | Apr 2004 | B1 |
6728960 | Loomans | Apr 2004 | B1 |
6732095 | Warshavsky et al. | May 2004 | B1 |
6732100 | Brodersen et al. | May 2004 | B1 |
6732111 | Brodersen et al. | May 2004 | B2 |
6754681 | Brodersen et al. | Jun 2004 | B2 |
6763351 | Subramaniam et al. | Jul 2004 | B1 |
6763501 | Zhu et al. | Jul 2004 | B1 |
6768904 | Kim | Jul 2004 | B2 |
6782383 | Subramaniam et al. | Aug 2004 | B2 |
6804330 | Jones et al. | Oct 2004 | B1 |
6826565 | Ritchie et al. | Nov 2004 | B2 |
6826582 | Chatterjee et al. | Nov 2004 | B1 |
6826745 | Coker et al. | Nov 2004 | B2 |
6829655 | Huang et al. | Dec 2004 | B1 |
6842748 | Warner et al. | Jan 2005 | B1 |
6850895 | Brodersen et al. | Feb 2005 | B2 |
6850949 | Warner et al. | Feb 2005 | B2 |
7289976 | Kihneman et al. | Oct 2007 | B2 |
7340411 | Cook | Mar 2008 | B2 |
7620655 | Larsson et al. | Nov 2009 | B2 |
9063946 | Barber | Jun 2015 | B1 |
20010044791 | Richter et al. | Nov 2001 | A1 |
20020022986 | Coker et al. | Feb 2002 | A1 |
20020029161 | Brodersen et al. | Mar 2002 | A1 |
20020029376 | Ambrose et al. | Mar 2002 | A1 |
20020035577 | Brodersen et al. | Mar 2002 | A1 |
20020042264 | Kim | Apr 2002 | A1 |
20020042843 | Diec | Apr 2002 | A1 |
20020072951 | Lee et al. | Jun 2002 | A1 |
20020082892 | Raffel et al. | Jun 2002 | A1 |
20020129352 | Brodersen et al. | Sep 2002 | A1 |
20020140731 | Subramaniam et al. | Oct 2002 | A1 |
20020143997 | Huang et al. | Oct 2002 | A1 |
20020152102 | Brodersen et al. | Oct 2002 | A1 |
20020161734 | Stauber et al. | Oct 2002 | A1 |
20020162090 | Parnell et al. | Oct 2002 | A1 |
20020165742 | Robins | Nov 2002 | A1 |
20030004971 | Gong et al. | Jan 2003 | A1 |
20030018705 | Chen et al. | Jan 2003 | A1 |
20030018830 | Chen et al. | Jan 2003 | A1 |
20030066031 | Laane | Apr 2003 | A1 |
20030066032 | Ramachadran et al. | Apr 2003 | A1 |
20030069936 | Warner et al. | Apr 2003 | A1 |
20030070000 | Coker et al. | Apr 2003 | A1 |
20030070004 | Mukundan et al. | Apr 2003 | A1 |
20030070005 | Mukundan et al. | Apr 2003 | A1 |
20030074418 | Coker | Apr 2003 | A1 |
20030088545 | Subramaniam et al. | May 2003 | A1 |
20030120675 | Stauber et al. | Jun 2003 | A1 |
20030151633 | George et al. | Aug 2003 | A1 |
20030159136 | Huang et al. | Aug 2003 | A1 |
20030187921 | Diec | Oct 2003 | A1 |
20030189600 | Gune et al. | Oct 2003 | A1 |
20030191743 | Brodersen et al. | Oct 2003 | A1 |
20030200266 | Henry | Oct 2003 | A1 |
20030204427 | Gune et al. | Oct 2003 | A1 |
20030206192 | Chen et al. | Nov 2003 | A1 |
20030225730 | Warner et al. | Dec 2003 | A1 |
20040001092 | Rothwein et al. | Jan 2004 | A1 |
20040010489 | Rio | Jan 2004 | A1 |
20040015981 | Coker et al. | Jan 2004 | A1 |
20040027388 | Berg et al. | Feb 2004 | A1 |
20040128001 | Levin et al. | Jul 2004 | A1 |
20040186860 | Lee et al. | Sep 2004 | A1 |
20040193510 | Catahan, Jr. et al. | Sep 2004 | A1 |
20040199489 | Barnes-Leon et al. | Oct 2004 | A1 |
20040199536 | Barnes-Leon et al. | Oct 2004 | A1 |
20040199543 | Braud et al. | Oct 2004 | A1 |
20040249854 | Barnes-Leon et al. | Dec 2004 | A1 |
20040260534 | Pak et al. | Dec 2004 | A1 |
20040260659 | Chan et al. | Dec 2004 | A1 |
20040268299 | Lei et al. | Dec 2004 | A1 |
20050050555 | Exley et al. | Mar 2005 | A1 |
20050091098 | Brodersen et al. | Apr 2005 | A1 |
20060075408 | Powers | Apr 2006 | A1 |
20090049443 | Powers | Feb 2009 | A1 |
20090177744 | Marlow et al. | Jul 2009 | A1 |
20110228924 | Tai | Sep 2011 | A1 |
20130346425 | Bruestle | Dec 2013 | A1 |
20140337850 | Iniguez | Nov 2014 | A1 |
20160072918 | Gabrelyanov | Mar 2016 | A1 |
20190102228 | Fuller | Apr 2019 | A1 |
20190243547 | Duggal | Aug 2019 | A1 |
20190243702 | Shilane | Aug 2019 | A1 |
20200174691 | Peterson | Jun 2020 | A1 |
20210133075 | Agrawal | May 2021 | A1 |
Number | Date | Country |
---|---|---|
104536809 | Jan 2018 | CN |
111258989 | Jun 2020 | CN |
Number | Date | Country | |
---|---|---|---|
20210173745 A1 | Jun 2021 | US |