This application claims the benefit of International Application No. PCT/NL2006/050224 filed on Sep. 6, 2006 under 35 U.S.C. §371,entitled, “TIE-BACK SYSTEM FOR CRANES, IN PARTICULAR HEAVY LOAD OFFHORE CRANE” which itself claims the benefit of European Patent Application No. 05108173.5, filed on Sep. 6, 2005, both of which are incorporated herein by reference in their entirety.
The invention relates to a tie-back system for cranes, in particular offshore cranes for heavy loads such as between a 1000-10.000 tons. In offshore cranes, tie-back systems are used for increasing the outreach of the boom without overloading the main components of the crane. The tie-back system connects the top of the crane frame to a distant position on deck, such that only restricted slewing of the crane is possible. Such a tie-back system is known from U.S. Pat. No. 4,664,269 in the name of the applicant. In the above prior art reference, an offshore crane has a boom that is connected to the top of an A-frame via a detachable boom hoist block. Via a guide construction and a hoist wire, the block is detached from the A-frame and the boom hoist is attached to a pad eye on deck, at a distance from the heel point of the boom. In this way, the boom can be hinged to a more horizontal position while the load in the boom hoist cables attached to the tie-back rod or cable is equal to the load in the boom hoist ropes, such that the known crane is statically determined. Disconnecting the boom hoist blocks from the A-frame is a relatively difficult operation which requires a large number of actions on deck and which is relatively time consuming.
The invention also relates to a method of applying a tie-back member to a crane.
It is an object of the present invention to provide a tie-back system of the above mentioned type and a method of applying the same, which is relatively simple and which allows fast and safe deployment and demobilisation. It is also an object of the present invention to provide a tie-back system, which allows making the tie-back system an integral part of the crane without the need for additional storage of equipment. Furthermore, it is an object of the present invention to provide a tie-back system which provides a passive a fail safe force transfer mechanism for varying loads in the tie-back system.
Hereto the present invention provides a crane comprising a rotatable base with a generally vertical support frame and a lifting arm which is with a lower end hingedly connected to the base in a hinge point, an upper part of the frame carrying a displacement member movable relative to the frame, the displacement member carrying a first cable guide means, a first cable extending from a first connection point on the arm along the first cable guide means to a first pulling device,
the displacement member comprising a tie connection point for connection to a tie member,
a second cable guide means attached to an upper part of the frame and a second cable extending from a second connection point on the arm along the second cable guide means to a second pulling device,
the frame comprising a stop part situated near the displacement member,
wherein in a load transfer position the displacement member engages with the stop part for transferring a load on the first cable guide means to the frame, the displacement member in a tie position being disengaged from the stop part for transferring a load on the first cable guide means to a tie member which in the tie position is one side attached to a connection point at a distance from hinge point of the lifting arm, and on the other side to the tie connection point of the displacement member.
The crane according to the present invention provides a simple and fast tie-back system, in which detaching of the hoist blocks at the frame side is no longer required. The tie cables or rods of the tie-back system of the present invention can be rapidly deployed with minimal deck operations being required. The tie members are deployed by:
When the load is transferred from the boom hoist cable extending between the top of the A-frame and the boom, the displacement member is pivoted to come free from the A-frame, either by the weight of the tie members, and/or by means of a winch. The tie rods can be unfolded and attached to deck level, which is the only deck operation carried out. Instead of tie rods it is also possible to use cables without departing from the invention.
The movable displacement member forms a fail-safe passive compensator which effectively evens out load variations in the tie rods and hoist cables.
In one embodiment according to the present invention, the tie member comprises a first rod, hingedly connected to the tie connection point of the displacement member and a second rod, hingedly attached to the first rod and in a load transfer position substantially parallel to the first rod and in the tie position extending substantially in line with the first rod. The tie-back rods can remain connected to the displacement member and can be folded back against the crane frame when not in use so that no additional on board storage space is required.
An embodiment of a crane according to the present invention will, by way of non-limiting example, be described with reference to the accompanying drawings. In the drawings:
By slackening of the tackles 8,10 that are connected to the force transfer member 21, via the winch 25, the member 21 can pivot around the hinge point 40 such that the transfer member is disengaged from the stop surface 37 at the end part 35 of angled A-frame leg 18, as is shown in
As is shown in
Even though in the above examples, the force transfer member 21 is shown to be a triangular hinge arm, it is also possible to employ alternative force transfer members, such as sliding force transfer members or hydraulically actuated force transfer members without departing from the present invention.
Number | Date | Country | Kind |
---|---|---|---|
05108173 | Sep 2005 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/NL2006/050224 | 9/6/2006 | WO | 00 | 3/4/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/030015 | 3/15/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2186372 | Elgh | Jan 1940 | A |
2189212 | Ljungkull | Feb 1940 | A |
2443306 | De Cuir | Jun 1948 | A |
2515777 | King et al. | Jul 1950 | A |
2609939 | Davidson et al. | Sep 1952 | A |
3433368 | Durand | Mar 1969 | A |
3923163 | Brewer | Dec 1975 | A |
4557391 | Poock et al. | Dec 1985 | A |
4579234 | Delago et al. | Apr 1986 | A |
4664269 | van Ketel | May 1987 | A |
Number | Date | Country |
---|---|---|
12 46 969 | Aug 1967 | DE |
07 187576 | Jul 1965 | JP |
54-104156 | Aug 1979 | JP |
Number | Date | Country | |
---|---|---|---|
20080251484 A1 | Oct 2008 | US |