1. Field of the Invention
Example embodiments generally relate to fuel structures and materials used in nuclear power plants.
2. Description of Related Art
Generally, nuclear power plants include a reactor core having fuel arranged therein to produce power by nuclear fission. A common design in U.S. nuclear power plants is to arrange fuel in a plurality of fuel rods bound together as a fuel assembly, or fuel bundle, placed within the reactor core. These fuel rods typically include several elements joining the fuel rods to assembly components at various axial locations throughout the assembly.
As shown in
As shown in
Example embodiments are directed to tiered tie plates and fuel bundles that use tiered tie plates. Example embodiment tie plates may include upper and lower tiered tie plates. Example embodiment tiered tie plates may have a plurality of bosses divided into groups, or tiers, having differing vertical (axial) displacement. In this way, bosses may receive fuel rods at varying vertical displacements depending on how the bosses are grouped and displaced. Example embodiment tiered tie plates may reduce fluid flow pressure drop by increasing the minimum cross sectional flow area available through a fuel bundle.
Example embodiment fuel bundles may use tiered tie plates such that fuel rods in example bundles may originate and terminate at different vertical displacements, based upon the vertical displacement of the bosses receiving the fuel rods into the tiered tie plates. Alternatively, shanks may be used to further vary fuel rod axial displacement and diameter, allowing, for example, same-length fuel rods to originate at different axial displacements from a lower tiered tie plate and terminate at a shared axial displacement at an upper flat tie plate. In this way thermo-hydraulic characteristics of example embodiment fuel bundles may be modified based on the vertical displacement of rods and/or shanks placed therein.
Example embodiments will become more apparent by describing, in detail, the attached drawings, wherein like elements are represented by like reference numerals, which are given by way of illustration only and thus do not limit the example embodiments herein.
Detailed illustrative embodiments of example embodiments are disclosed herein. However, specific structural and functional details disclosed herein are merely representative for purposes of describing example embodiments. The example embodiments may, however, be embodied in many alternate forms and should not be construed as limited to only example embodiments set forth herein.
It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of example embodiments. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It will be understood that when an element is referred to as being “connected,” “coupled,” “mated,” “attached,” or “fixed” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between”, “adjacent” versus “directly adjacent”, etc.).
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the language explicitly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes,” and/or “including,” when used herein, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
It should also be noted that in some alternative implementations, the functions/acts noted may occur out of the order noted in the figures. For example, two figures shown in succession may in fact be executed substantially concurrently or may sometimes be executed in the reverse order, depending upon the functionality/acts involved.
Example embodiment tiered tie plate 100 further includes bosses 120 defining holes shaped to receive ends or end plugs of nuclear fuel useable with example embodiment tiered tie plates. In this embodiment, the bosses 120 are annular. Axial support members 130 may connect the bosses 120 to each other and to the body 115 of the example embodiment tiered tie plate 100. Some bosses 120 may be integrated into the body 115 midsection 113. Lateral support members 135 may connect the bosses 120 to each other in a transverse direction perpendicular to the axial (vertical) direction. The bosses 120 may be spaced at a desired interval. For example, bosses 120 may be spaced in a square lattice formation with axial and lateral support members 130 and 135 extending at least transversely from each boss 120 at 90-degree intervals, as shown in
Axial and lateral support members 130 and 135 are shown with thin transverse profiles so as to form several flow areas through example embodiment tiered tie plate 100. In this way fluid may pass through the inlet 110 and out around the bosses 120. While support members 130 and 135 are shown as thin extending members, any connection between bosses 120 and body 115 that permits flow through the example embodiment tiered tie plate may be used. As shown in
Although three different tiers are shown in
By locating bosses 120 at different tiers of vertical displacement, example embodiment tiered tie plates may receive and hold nuclear fuel at several different axial displacements relative to each other. Several different three-dimensional configurations of bosses 120 and fuel rods may be possible with example embodiment tiered tie plates, due to the ability of the bosses 120 to be placed at any combination of different transverse and axial positions.
However, example embodiment tiered tie plate 200 may lack any body or lower inlet, and fluid may flow through and around bosses 220 and support members 230 and 235. Example embodiment tiered tie plate 200 may include a handle 240 to facilitate handling and moving example embodiment fuel bundles including example embodiment tiered tie plate 200.
Example embodiment tiered tie plates may be fabricated from a material that provides sufficient material strength to support fuel rods in different axial positions with bosses 120/220 and support members 130/135/230/235 and that substantially retains its physical characteristics in an operating nuclear reactor environment. For example, zirconium-aluminum alloys, stainless steel alloys, etc., may be used to fabricate example embodiment tiered tie plates.
As shown in
Because example embodiment tie plates 100 and 200 may have complementary tiers and bosses, fuel rods 310, while rigidly attached to fuel assembly 300, may be at different axial displacements corresponding to the different tiers of example embodiment tiered tie plates 100 and 200 as described above. Further, fuel rods 310 may all have a same length due to the mirrored axial displacement configuration between example embodiment tie plates 100 and 200. In this way, example embodiment fuel assembly 300 may have various three-dimensional configurations for fuel rod 310 starting and terminating points at either end of the assembly.
Although example embodiment fuel bundles are shown with the same three-tiered configuration described with respect to example embodiment tiered tie plates, different tier and different corresponding rod configurations may be used in example embodiment bundle designs, depending on the thermo-hydraulic and nuclear properties of the bundle to be affected.
Example embodiment fuel bundles may use less than two example embodiment tiered tie plates. Conventional flat tie plates may be used in example bundles through the use of rod shanks or multiple length fuel rods that account for the difference between a conventional flat tie plate and an example embodiment tiered tie plate.
An example shank 500 is shown in
Example shank 500 may have a length 504 equal to a displacement between tiers and a body of example embodiment tiered tie plates. In this way, example shanks may attach to some of the fuel rods seated at an opposite end in example embodiment tiered tie plates and account for the differences in axial displacement and rod termination caused by the tiers. Conventional flat tie plates may then be equally seated against each example shank and fuel rod despite the different axial displacements of the rods.
Example shank 500 may have a diameter 503 that presents a continuous outer boundary with any fuel rod it may be attached to. Alternatively, diameter 503 may be decreased to less than that of any fuel rod attached to example shank 500. In this way, example embodiment fuel bundles using example shanks 500 with smaller diameters may have decreased fluid coolant pressure drop and require less pumping head. Diameter 503 may be varied and shaped in other ways depending on the desired thermo-hydraulic characteristics of example embodiment fuel bundles.
Example embodiment fuel bundles may thus possess fuel rods that originate and/or terminate at differing axial (or vertical) displacements. As such, fluid flow through example embodiment fuel bundles may not be subject to a dramatic pressure drop at example embodiment upper and lower tiered tie plates, because example embodiment tiered tie plates essentially present a larger flow cross-section. Further, example shanks of smaller diameters may decrease pressure drop by similarly increasing flow cross-section and hydraulic diameter. In this way, example embodiments may improve hydrodynamic flow properties through an operating nuclear core and reduce pumping energy consumed.
Example embodiments thus being described, it will be appreciated by one skilled in the art that example embodiments may be varied through routine experimentation and without further inventive activity. For example, other fuel types, shapes, and configurations may be used in conjunction with example embodiment fuel bundles and tiered tie plates. Variations are not to be regarded as departure from the spirit and scope of the exemplary embodiments, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
This application is a continuation of U.S. patent application Ser. No. 12/003,145, filed Dec. 20, 2007, the contents of which are incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3425908 | Roze et al. | Feb 1969 | A |
3741868 | Qurnell et al. | Jun 1973 | A |
3864211 | King et al. | Feb 1975 | A |
3940318 | Arino et al. | Feb 1976 | A |
3998691 | Shikata et al. | Dec 1976 | A |
4038137 | Pugh | Jul 1977 | A |
4196047 | Mitchem et al. | Apr 1980 | A |
4284472 | Pomares et al. | Aug 1981 | A |
4462956 | Boiron et al. | Jul 1984 | A |
4474727 | Kmonk et al. | Oct 1984 | A |
4475948 | Cawley et al. | Oct 1984 | A |
4493813 | Loriot et al. | Jan 1985 | A |
4532102 | Cawley | Jul 1985 | A |
4597936 | Kaae | Jul 1986 | A |
4617985 | Triggs et al. | Oct 1986 | A |
4632804 | Wallander et al. | Dec 1986 | A |
4655995 | Freeman et al. | Apr 1987 | A |
4663111 | Kim et al. | May 1987 | A |
4663118 | Nelson | May 1987 | A |
4729903 | McGovern et al. | Mar 1988 | A |
4765949 | Denizou et al. | Aug 1988 | A |
4782231 | Svoboda et al. | Nov 1988 | A |
4818473 | Lui | Apr 1989 | A |
4844861 | Leclercq | Jul 1989 | A |
4859431 | Ehrhardt | Aug 1989 | A |
5053186 | Vanderheyden et al. | Oct 1991 | A |
5145636 | Vanderhevden et al. | Sep 1992 | A |
5282233 | Bryan | Jan 1994 | A |
5355394 | van Geel et al. | Oct 1994 | A |
5400375 | Suzuki et al. | Mar 1995 | A |
5513226 | Baxter et al. | Apr 1996 | A |
5596611 | Ball | Jan 1997 | A |
5615238 | Wiencek et al. | Mar 1997 | A |
5633900 | Hassal | May 1997 | A |
5682409 | Caine | Oct 1997 | A |
5758254 | Kawamura et al. | May 1998 | A |
5867546 | Hassal | Feb 1999 | A |
5871708 | Park et al. | Feb 1999 | A |
5910971 | Ponomarev-Stepnoy et al. | Jun 1999 | A |
5949839 | Nylund | Sep 1999 | A |
6056929 | Hassal | May 2000 | A |
6160862 | Wiencek et al. | Dec 2000 | A |
6192095 | Sekine et al. | Feb 2001 | B1 |
6233299 | Wakabayashi | May 2001 | B1 |
6456680 | Abalin et al. | Sep 2002 | B1 |
6678344 | O'Leary et al. | Jan 2004 | B2 |
6751280 | Mirzadeh et al. | Jun 2004 | B2 |
6804319 | Mirzadeh et al. | Oct 2004 | B1 |
6895064 | Ritter | May 2005 | B2 |
6896716 | Jones, Jr. | May 2005 | B1 |
6934351 | Reparaz | Aug 2005 | B2 |
7157061 | Meikrantz et al. | Jan 2007 | B2 |
7235216 | Kiselev et al. | Jun 2007 | B2 |
20020034275 | Abalin et al. | Mar 2002 | A1 |
20030012325 | Kernert et al. | Jan 2003 | A1 |
20030016775 | Jamriska, Sr. et al. | Jan 2003 | A1 |
20030103896 | Smith | Jun 2003 | A1 |
20030179844 | Filippone | Sep 2003 | A1 |
20040091421 | Aston et al. | May 2004 | A1 |
20040105520 | Carter | Jun 2004 | A1 |
20040196942 | Mirzadeh et al. | Oct 2004 | A1 |
20040196943 | Di Caprio | Oct 2004 | A1 |
20050105666 | Mirzadeh et al. | May 2005 | A1 |
20050118098 | Vincent et al. | Jun 2005 | A1 |
20060062342 | Lepera et al. | Mar 2006 | A1 |
20060126774 | Kim et al. | Jun 2006 | A1 |
20070031811 | Schultze et al. | Feb 2007 | A1 |
20070133731 | Fawcett et al. | Jun 2007 | A1 |
20070133734 | Fawcett et al. | Jun 2007 | A1 |
20070297554 | Lavie et al. | Dec 2007 | A1 |
20080031811 | Ryu et al. | Feb 2008 | A1 |
20080076957 | Adelman | Mar 2008 | A1 |
Entry |
---|
US Office Action dated Mar. 10, 2010 for U.S. Appl. No. 12/003,145. |
US Office Action dated May 20, 2010 for U.S. Appl. No. 12/003,145. |
US Office Action dated Feb. 9, 2011 for U.S. Appl. No. 12/003,145. |
US Office Action dated Jun. 3, 2011 for U.S. Appl. No. 12/003,145. |
Number | Date | Country | |
---|---|---|---|
20120189090 A1 | Jul 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12003145 | Dec 2007 | US |
Child | 13311215 | US |