1. Field of the Disclosure
Some embodiments of the present disclosure relate to articles (e.g., shoes, boots, braces, and other wearable articles) that use tightening systems (e.g., lacing systems), and more particularly to articles that include a tightening mechanism that is at least partially concealed or protected.
2. Description of the Related Art
Although various lacing systems are available for use in connection with various wearable articles, existing lacing systems suffer from various drawbacks. For example, some lacing systems include an exposed lace tightening mechanism, which can be visually unappealing. Also, during contact sports and some other uses, the exposed lace tightening mechanism can be damaged or unintentionally actuated (e.g., loosened). Accordingly, there persists a need for lacing systems that include a concealed or protected lace tightening mechanism.
Various embodiments disclosed herein relate to an article that includes a base material and a tightening mechanism coupled to the base material. The tightening mechanism can include a rotatable knob, and rotation of the knob in a tightening direction can tighten the article. The article can include a concealing portion that can extend upward from the base material and can at least partially radially surround the tightening mechanism. At least a portion of the rotatable knob can be rearward or inward of an outer surface of the concealing portion. In some embodiments, a majority of the rotatable knob can be rearward or inward of the outer surface of the concealing portion. In some embodiments, substantially the entire rotatable knob can be rearward or inward of the outer surface of the concealing portion. In some embodiments, a top surface of the rotatable knob can be substantially flush with the outer surface of the concealing portion.
The concealing portion can include a compressible area, and compression of the compressible area can displace the outer surface of the concealing portion from a first position to a second position, and the second position can have a lower height than the first position. The compressible area can include compressible foam. The concealing portion can include a second foam material that is less compressible than the compressible foam, and the second foam material can at least partially radially surround the compressible foam. The compressible foam can be resilient and can facilitate return of the outer surface from the second position to the first position when a compressing force is not applied. The compressible area can include one or more collapsible recesses.
The base material can include a hole, and at least a portion of the tightening mechanism can extend through the hole in the base material.
In some embodiments, the concealing portion can radially surround the tightening mechanism by a full 360 degrees.
The concealing portion can include first and second areas on substantially opposite sides of the tightening mechanism from each other, and third and fourth areas on substantially opposite sides from each other. The heights of the first and second areas of the concealing portion can be greater than the heights of the third and fourth areas of the concealing portion such that the rotatable knob can be more exposed at the third and fourth areas than at the first and second areas.
In one embodiment, an article (e.g., shoe, boot, apparel, and the like) may include a base material (e.g., heel, tongue, outsole, and the like) and a tightening mechanism coupled to the base material. The tightening mechanism may include a rotatable knob, wherein rotation of the knob in a tightening direction tightens the article. A compressible material may be coupled with a body (e.g., a housing) of the tightening mechanism. The compressible material may be positioned under a top layer of the base material so as to provide a transition between the body of the tightening mechanism and the base material to conceal edges of the body from view of a user. A concealing portion may extend upward from the base material and at least partially radially surround the tightening mechanism. At least a portion of the rotatable knob may be positioned rearward of an outer surface of the concealing portion so as to conceal the portion of the knob or the entire knob.
In one embodiment, the compressible material may include a foam material having a durometer of between about 10 and about 25 Shore A. In some embodiments, a relatively rigid mounting component (e.g., a bayonet) may be coupled with the compressible material and the base material. The body of the tightening mechanism may be coupled with the mounting component to limit distortion of the compressible material as the knob is rotated in a tightening direction to tighten the article. In some embodiments, the body of the tightening mechanism may be integrally formed with one or more components of the base material. In a specific embodiment, the base material may comprise a shoe or a portion or component thereof, and the tightening mechanism and compressible material may be coupled with a heel portion of the shoe.
Various embodiments are depicted in the accompanying drawings for illustrative purposes, and should in no way be interpreted as limiting the scope of the inventions.
The tightening mechanism 108 can be mounted onto the heel portion of the shoe 100, as shown in
The tightening mechanism 108 can be at least partially concealed or protected by a concealing portion 114 of the shoe 100 that at least partially surrounds the tightening mechanism 108. In come embodiments, the concealing portion 114 can include a compressible area that allows the concealing portion 114 to be transitioned between a first, uncompressed position, as shown in
Protecting or partially concealing the tightening mechanism 108 with a substantially resilient concealing portion 114 can allow aesthetically pleasing incorporation of the tightening mechanism 108 with the article. For example, as shoe sizes change, there can be a substantial dimensional reduction in the mounting area in the heel portion of the shoe (e.g., the shoe sizes get smaller). A substantially resilient concealing portion 114 can be formed around various surfaces to produce a visually appealing final structure that may not be possible with an entirely rigid shielding mechanism. As discussed elsewhere herein, the concealing portion 114 can incorporate some rigid components while still permitting adaptation to different sized areas.
In some embodiments, the concealing portion 114 can protect the tightening mechanism 108 from damage and/or unintentional actuation. For example, an exposed tightening mechanism 108 can be unintentionally actuated when, for example, the tightening mechanism 108 is struck during contact sports. In some embodiments, unintentional actuation of the tightening mechanism 108 can unintentionally loosen the lace 106 or can over-tighten the lace 106, which can cause discomfort and can degrade the performance of an athlete. By at least partially concealing the tightening mechanism 108, the concealing portion 114 of the shoe 100 can protect the tightening mechanism 108 from being unintentionally actuated or damaged.
When a compressing force (shown schematically by arrows in
In the compressed position, the concealing portion 114 of the shoe 100 can expose a sufficient portion of the knob 116 to allow a user to actuate the knob 116, such as by rotating the knob 116 in a tightening direction, or in a loosening direction, or by pulling the knob 116 axially outwardly. The compressible area can be configured to compress (e.g., axially in the direction of the axis 118) under pressure applied by the fingers of the user, and in some embodiments, the compressible area can have sufficient resistance to protect against unintentional actuation of the knob 116. The compressible area can be resilient such that the concealing portion 114 returns to the first or uncompressed position when the compressing force is removed.
The concealing portion 114 of the article (e.g., the shoe 100) can radially surround at least a portion of the knob 116. As shown schematically in
The concealing portion 114 can have a recess 126, and the tightening mechanism 108 can be disposed in the recess 126. In some embodiments, the recess 126 can extend only partially through the article. For example, a base layer 128 of the article can be located at the bottom of the recess 126, and the tightening mechanism 108 can be secured to the base layer 128. A housing 130 of the tightening mechanism 108 can be attached to the base layer 128, for example, by stitching, rivets, adhesive, or other suitable manner. The concealing portion 114 can be attached to the base layer 128. In some embodiments, the concealing portion 114 can be one or more additional layers applied to the outside of an otherwise completed article, while in other embodiments, the concealing portion 114 can be formed as an integral portion of the article. In some embodiments, the recess 126 can extend through the article (e.g., through the heel wall, or side wall, of the shoe 100.
With further reference to
With reference to
With reference now to
With reference now to
With reference to
With reference now to
A hole 426 can extend through the layer 470 and the foam 472 and can be configured to receive the tightening mechanism 408 therein when the layer 470 is applied to the shoe 400. If a spray adhesive is applied to the inside surface of the layer 470, the hole can be masked off during application of the adhesive. Also, the foam 472 and/or the layer 470 surrounding the hole 426 can be colored (e.g., painted or dyed) so that it resembles the color and/or style of the outer appearance of the shoe 400. The foam 472 and/or the layer 470 can come in the color that matches or resembles the color of the shoe 400, or can be color matched, e.g., using dye additives. Also, the knob 416 or other components of the tightening mechanism 408 can have a color that is the same as, or similar to, the color and/or style of the outward appearance of the shoe 400 (e.g., to deemphasize the visual appearance of the tightening mechanism 408). The layer 470 can also be stitched to the shoe 400, or attached to the shoe 400 by other suitable manners.
The outer layer 470 and the foam 472 can have different shapes for different sizes and styles of shoes and for different types of articles. The foam 472 can have a shape and thickness configured to raise the outer layer 470 away from the underlying layer 446 by a height that is sufficient to cover part of, a majority of, substantially all of, or all of the sides of the knob 416, as discussed herein. In some embodiments, the layer 470 can be made from a polyurethane-backed nylon fabric, such as polyurethane-backed Cordura® fabric, which can have a low friction nylon interface that allows the user's fingers to slide easily across the surface of the layer 470 when turning the knob 416. Other low friction materials can also be used. In some embodiments, materials can be modified to add a low friction interface around the perimeter of the tightening mechanism. For example, direct injection molding, radio frequency welding, or debossing can be used to create the low friction interface. In some embodiments, a cover piece can be disposed around at least a portion of the tightening mechanism and can secure the fabric of the cover layer 470 (e.g., to the tightening mechanism). For example, a ring made of plastic (or other suitable material) can surround at least a portion of the tightening mechanism, and, in some embodiments, can form a low friction interface to allow a user's fingers to slide smoothly when operating the tightening mechanism.
In some embodiments, padding 574 can be positioned rearward of the tightening mechanism 508 to provide comfort to the wearer and to prevent the tightening mechanism 508 from pressing against the portion of the wearer's body that contacts the article. For example, the tightening mechanism 508 can be incorporated into the tongue of a shoe or into a padded strap of a backpack or into other padded portions of wearable articles. In some embodiments, liners and other layers can be disposed rearward of the tightening mechanism 508, but are not shown in
A concealing portion 514 can at least partially surround the tightening mechanism 508. The concealing portion 514 can include a compressible area 576, which can be a foam material, as discussed herein.
In
In some embodiments, the compressible area 576 can include a recess 578a configured to facilitate compression of the compressible area 676. In some embodiments, the recess 578a can be disposed directly behind a layer of the compressible material (e.g., foam), so that when a compressing force is applied, the layer of the compressible material can collapse down into the recess 578a to expose the tightening mechanism 508. In some embodiments, the recess 578b can be tapered (e.g., as shown in the lower portion of
The various recess types 578a-578g shown in
In some embodiments, the tightening mechanism 508 can include one or more shield elements 558. The shield element 558 can be, for example, integrally formed with the housing 532, or the shield element 558 can be a separate component from the housing 532. The shield element 558 can be a rigid extension that covers at least part of the side of the knob 516. The shield element 558 can be configured to protect to the knob 516, as discussed elsewhere herein. Various embodiments disclosed herein (e.g., the embodiments of
In some embodiments, the compressible material 576 can be enclosed. For example, as shown in the upper portion of
In some embodiments, the compressible material 576 can be uncovered, as shown in
Many variations can be made to the embodiments disclosed herein. For example, in some embodiments, substantially incompressible guarding members (e.g., rigid plastic strips) can be insert molded into a compressible material to add rigidity and additional guarding to certain areas of the concealing portion 514 (e.g., the area below and/or above the tightening mechanism). For example, with reference to
The securing member can have side walls 650 that surround a recess 652. The side walls 650 can have a first indented portion 651a and a second indented portion 651b, which can be position on generally opposite sides of the securing member 634 (e.g., on the right and left sides thereof). One or more holes or notches 641a and 641b can allow a lace to pass from outside the securing member 634 into the recess 652. For example, notches 641a and 641b can be formed in the indented portions 651a and 651b of the side walls 650. The securing member 634 can include engagement features (e.g., slots 643) which can be configured to engage with engagement features (e.g., teeth 645) on the housing 632 to allow the housing 632 to be secured to the securing member 634 (e.g., by a snap-fit engagement). The securing member 634 can include a securing flange 654, which can extend radially outwardly from the base of the side walls 650. In some embodiments, lace holes 638a and 638b are formed on the securing member 634 (e.g., on the bottom thereof), and lace channels can lead from the lace holes 638a and 638b to the notches 641a and 641b or holes that allow the lace to enter the recess 652.
The housing 632 can include side walls 655 and indented portions 657a and 657b which can align generally with the indented portions 651a and 651b of the securing member 634. In some embodiments, internal side walls 647 surround a recess 659. A gap can be formed between the side walls 655 and the internal side walls 647. One or more notches 649a and 649b or holes can be formed in the side walls 655 (e.g., at the base of the indented portions 657a and 657b), and one or more notches 661a and 661b or holes can be formed in the internal side walls 647. The notches or holes can allow the lace to pass into the recess 659, and for example, can align with the holes or notches 641a and 641b formed in the securing member 634.
With reference to
A foxing or outer layer 670 can be positioned over the securing member 634. A spacer 676 can attach to the underside of the layer 670 (e.g., using an adhesive). The spacer 676 can be a compressible material, a rigid material, or a semi-rigid material. The spacer 676 can have a first or upper portion 676a and a second or lower portion 676b separated by gaps 653a and 653b or thinner portions of the spacer 676. A hole can extend through the outer layer 670 and through the spacer 676. The spacer 676 can be configured to fit around the outside of the side walls 650 of the securing member 634 when the layer 670 is mounted onto the article, and the gaps 653a and 653b in the spacer 676 can align with the indented portions 651a and 651b of the side walls 650 on the securing member 634. In some embodiments, the gaps 653a and 653b can provide paths for the lace to pass through. In some embodiments, the spacer 676 can extend a full 360 degrees around the opening 626, and the gaps 653a and 653b can be omitted. The hole 626 through the layer 670 and spacer 676 can align over the recess 652 when the layer 670 is mounted onto the article. In some embodiments, the assembly can be back part molded, as shown, for example, in
As can be seen in
As discussed above, the housing 632 and the securing member 634 can include corresponding engagement features that are configured to secure the housing 632 to the securing member 634, such as, for example, by a snap fit, a friction fit, etc. In some embodiments, the housing 632 can be removably attachable to the securing member 634, so that the housing 632 can be removed (e.g., for repair, replacement, or cleaning). Because the housing 632 is inserted over the foxing layer 670, the housing 632 can be removed from the securing member 634 without removing or cutting the foxing layer 670.
As shown in
Many variations are possible. For example, with reference to
Although many embodiments are discussed in connection with a tightening mechanism mounted onto the heel of a shoe or other footwear, many other configurations are possible.
As mentioned above, the embodiments described herein can be applied to various articles. For example,
In some embodiments, the foam backing 1230 may be molded onto or otherwise coupled with the housing 1210 (e.g. adhered with adhesive or insert molded) so that the foam backing 1230 and housing 1210 appear to be a single or integral piece or component. The foam backing 1230 may be used as a transition component between the tightening mechanism and the shoe to hide any visual defects that may result from attaching the tightening mechanism with the shoe. The foam backing 1230 is relatively compliant material that facilitates in masking or hiding the appearance of marks in the shoe from any underlying components of the tightening mechanism. The foam baking 1230 is able to mask the components by conforming to the specific shape and size of the shoe. For example, when relatively rigid backing materials are used and positioned under the surface of the material of the shoe, the edges of the backing material may be visible or the rigid material may cause the shoe's material to buckle or otherwise deform, which can be visually unappealing. The appearance of underlying components within the shoe is commonly known as ghosting. Ghosting is greatly reduced since foam backing 1230 is compliant and able to adapt and conform to the shape and size the shoe. Specifically, the foam backing 1230 may be able to adapt to the shape and size of the heel counter.
The compliant foam backing 1230 is also capable of adapting to various different shapes and sizes of shoes. This adaptability of the foam backing results in a reduction in the number of backing components that must be manufactured, thereby reducing part count. Foam backing 1230 is adaptable to the various shaped and sized shoes by being insertable and compressible between layers of the shoe. Further, the compliance of foam backing 1230 allows the foam backing 1230 to be easily wrapped around the heel counter or another component of the shoe regardless of the shoes contour, size, or shape. The foam backing 1230 may be matched to an existing profile of a shoe. For example, the foam piece may be formed to match surrounding surfaces of the article of application (e.g., shoe) so as to provide a seamless visually appealing look.
In some embodiments, the foam backing 1230 may have trimmable parts that allow the shape and/or size of the foam backing 1230 to be adjusted to fit the shape and size of the shoe, such as for example, to particularly adapt to smaller shoe sizes with associated shorter distances from sole to shoe collar. In one embodiment, foam backing 1230 may include a plurality of material layers coupled together in a stacked arrangement, similar to the layers of an onion. Each of the layers may be stripped or peeled away so as to reduce the overall thickness of the foam backing 1230 as desired. In another embodiment, the foam backing 1230 may have perforated portions or regions that allow sections of the foam backing 1230 to be cut or torn away as desired to reduce the size of the foam backing. Similarly, the durometer of the foam may be varied to provide a desired compressibility of the foam material. In some embodiments, the durometer of foam backing 1230 may vary between about 10 and 25 Shore A. By adjusting the durometer of the foam, removing sections, and/or stripping or peeling away various layers of the foam backing 1230, the foam backing 1230 may be adjusted to conform to a specifically designed shoe. In some embodiments, the foam backing 1230 may include a thermoset material to resist permanent deformation when heated and pressured during back part molding.
In another embodiment, a shim may be positioned under the foam backing 1230 to help the foam backing 1230 conform to and/or adapt to different sized and shaped shoes. For example, when a relatively large thickness of foam backing 1230 is needed or otherwise desired, such as when foam backing 1230 is coupled with a large shoe, a shim may be placed under foam backing 1230 to increase the overall thickness of foam backing 1230. The shim may comprise any shape or size as desired and may be made of a variety of materials, such as urethane, rubber, an elastomer, and the like. In another embodiment, the foam backing 1230 may include multiple pieces of foam or another material and/or may be unattached to bayonet 1220.
Bayonet 1220 includes a flange positioned partially or fully around the perimeter of bayonet 1220. The flange allows the bayonet 1220 to be sewn, adhered, or otherwise coupled with the shoe or other apparel. Housing 1210 couples with bayonet 1220 in a relatively rigid manner. In some embodiment, housing 1210 may be removably coupled with bayonet 1220 so that housing 1210 may be removed for replacement, repair, and the like. In one embodiment, housing 1210 and bayonet 1220 may be coupled together by snapping together mating portions of the housing 1210 and bayonet 1220. In another embodiment, bayonet 1220 may include bosses that snap or otherwise couple with apertures of the housing 1210, or vice versa. Cleats may also be used to couple housing 1210 with bayonet 1220; or the bayonet 1220 may be welded (e.g. heat, RF, ultrasonic, and the like), adhered, or coupled with housing 1210 using any method known in the art. Coupling or interlocking of the housing 1210 with bayonet 1220 using any fastening means described herein (e.g., bosses, cleats, mating components, welding, adhesive bonding, and the like), may facilitate in transferring rotational force from the housing 1210 to the bayonet 1220 as the tightening mechanism is operated. Bayonet 1220 may likewise transfer such force to the shoe or apparel. In this manner, the rotational force is not transferred to foam backing 1230, which rotational force may cause foam backing 1230 to deform (e.g. become oblong and the like) and/or become visible through a top layer of the shoe or apparel.
Referring now to
Heel counter 1240 may include bosses 1242 that allow cover plate 1310 to be coupled with heel counter 1240, such as by inserting screws through apertures 1312 of cover plate 1310 that correspond with bosses 1242. In other embodiments, cover plate 1310 may be sewn, adhesively bonded, welded (e.g. heat, ultrasonic, and the like), and the like to heel counter 1240.
The dial cover 1320 may be a relatively resilient or compliant component that allows the cover plate 1320 to be laterally adjusted relative to cover plate 1310. Stated differently, the dial cover 1320 may be laterally repositioned relative to cover plate 1310 by stretching dial cover 1320 laterally outward. The adjustability of dial cover 1320 with respect to cover plate 1310 may act on the tightening knob of the reel to allow the tightening mechanism (e.g. knob 1220) to be pulled axially outward relative to the shoe so as to release a tension on the lace and unwind the lace from a spool of the tightening mechanism as described herein. In this manner, the knob 1220 may be rotated to wind the lace about a spool of the tightening mechanism and subsequently pulled axially outward to unwind the lace from the lace as described herein. In some embodiments, the dial cover 1320 may apply an axial pressure to knob 1220 when the knob 1220 is pulled axially outward so that when a user releases knob 1220, the knob is biased or forced axially inward and able to be rotated to wind the lace about the spool of the tightening mechanism. In another embodiment, knob 1220 may be rotated in a first direction (e.g., clockwise) to wind lace about the spool and may be rotated in a second direction (e.g., counterclockwise) to unwind lace therefrom. In a specific embodiment, rotation of the spool in a second direction by a defined amount (e.g., between 15 and 90 degrees), may release the tension on the lace and allow the lace to be quickly unwound from the spool.
In some embodiments, the dial cover 1320 may have axial clearance for knob 1212 such that the knob may be grasped through side openings in 1312 such that the knob may stay in the axial outward and released position. Then the compliant and overlaid dial cover 1320 may function as a button so that pressing a top surface of the dial cover 1320 axially inward causes the dial cover 1322 to displace axially between a first position, in which the dial cover 1320 is adjacent the outer surface of the shoe, and a second position, in which dial cover 1320 is positioned axially offset from the shoe. Pressing the dial cover 1320 in this manner may also cause the knob 1212 to axially displace between the first and second position in which the lace may either be wound around the tightening mechanisms spool or unwound therefrom as described herein.
In some embodiments, the cover plate 1310 may include one or more channels (not shown) positioned on an interior surface thereof that define lace paths for the lace of the tightening system. The channels on the interior surface of cover plate 1310 may replace tubing (not shown) which is commonly used to channel and run lace between various regions or areas of the shoe, such as from the heel to the tongue of the shoe. In another embodiment, tubing (not shown) may be integrated with cover plate 1310 such as being coupled (e.g. adhesively bonded, snapped and the like) with an interior or exterior surface of cover plate 1310. Cover plate 1310 may be made of a durometer in the range of 20 to 50 Shore A to allow it to conform to various shoe shapes and may also include one or more relief cuts or slots that allow the cover plate 1310 to be flexed so as to accommodate and conform to various shaped and sized shoes. Cover plate 1310 may be a relatively hard plastic material, or a relatively soft, resilient, and flexible material.
Referring now to
Referring to
Referring now to
Although the disclosure is discussed in terms of certain embodiments, it should be understood that the disclosure is not limited to the embodiments specifically shown and discussed. The embodiments are explained herein by way of example, and there are numerous modifications, variations, and other embodiments that may be employed within the scope of the present inventions. Components can be added, removed, and/or rearranged both with the individual embodiments discussed herein and between the various embodiments. For purposes of this disclosure, certain aspects, advantages, and novel features are described herein. It should be understood that not necessarily all such advantages may be achieved in accordance with any particular embodiment. Thus, for example, those of skill in the art will recognize that the inventions may be embodied or carried out in a manner that achieves one advantage or a group of advantages at taught or suggested herein without necessarily achieving other advantages as may be taught or suggested herein.
This application claims priority to Provisional U.S. Patent Application No. 61/611,418 filed Mar. 15, 2012, entitled “Tightening Mechanisms and Applications Including the Same,” the entire disclosure of which is hereby incorporated by reference, for all purposes, as if fully set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
59332 | White et al. | Oct 1866 | A |
80834 | Prussia | Aug 1868 | A |
117530 | Foote | Aug 1871 | A |
228946 | Schulz | Jun 1880 | A |
230759 | Drummond | Aug 1880 | A |
379113 | Hibberd | Mar 1888 | A |
746563 | McMahon | Dec 1903 | A |
819993 | Haws et al. | May 1906 | A |
908704 | Sprinkle | Jan 1909 | A |
1170472 | Barber | Feb 1916 | A |
1288859 | Feller et al. | Dec 1918 | A |
1390991 | Fotchuk | Sep 1921 | A |
1393188 | Whiteman | Oct 1921 | A |
1469661 | Migita | Feb 1922 | A |
1412486 | Paine | Apr 1922 | A |
1416203 | Hobson | May 1922 | A |
1429657 | Trawinski | Sep 1922 | A |
1481903 | Hart | Apr 1923 | A |
1466673 | Solomon et al. | Sep 1923 | A |
1530713 | Clark | Feb 1924 | A |
1502919 | Seib | Jul 1924 | A |
1862047 | Boulet et al. | Jun 1932 | A |
1995243 | Clarke | Jun 1934 | A |
2088851 | Gantenbein | Aug 1937 | A |
2109751 | Matthias et al. | Mar 1938 | A |
2124310 | Murr, Jr. | Sep 1938 | A |
2316102 | Preston | Apr 1943 | A |
2539026 | Mangold | Jan 1951 | A |
2611940 | Cairns | Sep 1952 | A |
2673381 | Dueker | Mar 1954 | A |
2907086 | Ord | Oct 1959 | A |
2991523 | Del Conte | Jul 1961 | A |
3028602 | Miller | Apr 1962 | A |
3035319 | Wolff | May 1962 | A |
3106003 | Herdman | Oct 1963 | A |
3112545 | Williams | Dec 1963 | A |
3122810 | Lawrence et al. | Mar 1964 | A |
3163900 | Martin | Jan 1965 | A |
D200394 | Hakim | Feb 1965 | S |
3169325 | Fesl | Feb 1965 | A |
3193950 | Shu-Lien Liou | Jul 1965 | A |
3197155 | Chow | Jul 1965 | A |
3221384 | Aufenacker | Dec 1965 | A |
3276090 | Nigon | Oct 1966 | A |
D206146 | Hendershot | Nov 1966 | S |
3345707 | Rita | Oct 1967 | A |
D210649 | Getgay | Apr 1968 | S |
3401437 | Christpohersen | Sep 1968 | A |
3430303 | Perrin et al. | Mar 1969 | A |
3491465 | Martin | Jan 1970 | A |
3545106 | Martin | Dec 1970 | A |
3618232 | Shnuriwsky | Nov 1971 | A |
3668791 | Salzman et al. | Jun 1972 | A |
3678539 | Graup | Jul 1972 | A |
3703775 | Gatti | Nov 1972 | A |
3729779 | Porth | May 1973 | A |
3738027 | Schoch | Jun 1973 | A |
3793749 | Gertsch et al. | Feb 1974 | A |
3808644 | Schoch | May 1974 | A |
3934346 | Sasaki et al. | Jan 1976 | A |
3975838 | Martin | Aug 1976 | A |
4084267 | Zadina | Apr 1978 | A |
4130949 | Seidel | Dec 1978 | A |
4142307 | Martin | Mar 1979 | A |
4227322 | Annovi | Oct 1980 | A |
4261081 | Lott | Apr 1981 | A |
4267622 | Burnett-Johnston | May 1981 | A |
4408403 | Martin | Oct 1983 | A |
4417703 | Weinhold | Nov 1983 | A |
4433456 | Baggio | Feb 1984 | A |
4463761 | Pols et al. | Aug 1984 | A |
4480395 | Schoch | Nov 1984 | A |
4507878 | Semouha | Apr 1985 | A |
4516576 | Kirchner | May 1985 | A |
4551932 | Schoch | Nov 1985 | A |
4555830 | Petrini et al. | Dec 1985 | A |
4574500 | Aldinio et al. | Mar 1986 | A |
4616432 | Bunch et al. | Oct 1986 | A |
4616524 | Biodia | Oct 1986 | A |
4619057 | Sartor et al. | Oct 1986 | A |
4620378 | Sartor | Nov 1986 | A |
4631839 | Bonetti et al. | Dec 1986 | A |
4631840 | Gamm | Dec 1986 | A |
4633599 | Morell et al. | Jan 1987 | A |
4644938 | Yates et al. | Feb 1987 | A |
4654985 | Chalmers | Apr 1987 | A |
4660300 | Morell et al. | Apr 1987 | A |
4660302 | Arieh et al. | Apr 1987 | A |
4680878 | Pozzobon et al. | Jul 1987 | A |
4719670 | Kurt | Jan 1988 | A |
4719709 | Vaccari | Jan 1988 | A |
4719710 | Pozzobon | Jan 1988 | A |
4722477 | Floyd | Feb 1988 | A |
4741115 | Pozzobon | May 1988 | A |
4748726 | Schoch | Jun 1988 | A |
4760653 | Baggio | Aug 1988 | A |
4780969 | White, Jr. | Nov 1988 | A |
4787124 | Pozzobon et al. | Nov 1988 | A |
4790081 | Benoit et al. | Dec 1988 | A |
4796829 | Pozzobon et al. | Jan 1989 | A |
4799297 | Baggio et al. | Jan 1989 | A |
4802291 | Sartor | Feb 1989 | A |
4811503 | Iwama | Mar 1989 | A |
4826098 | Pozzobon et al. | May 1989 | A |
4841649 | Baggio et al. | Jun 1989 | A |
4856207 | Datson | Aug 1989 | A |
4862878 | Davison | Sep 1989 | A |
4870723 | Pozzobon et al. | Oct 1989 | A |
4870761 | Tracy | Oct 1989 | A |
4884760 | Baggio et al. | Dec 1989 | A |
4901938 | Cantley et al. | Feb 1990 | A |
4924605 | Spademan | May 1990 | A |
D308282 | Bergman et al. | Jun 1990 | S |
4937953 | Walkhoff | Jul 1990 | A |
4961544 | Biodia | Oct 1990 | A |
4979953 | Spence | Dec 1990 | A |
4989805 | Burke | Feb 1991 | A |
5001817 | De Bortoli et al. | Mar 1991 | A |
5016327 | Klausner | May 1991 | A |
5042177 | Schoch | Aug 1991 | A |
5062225 | Gorza | Nov 1991 | A |
5065480 | DeBortoli | Nov 1991 | A |
5065481 | Walkhoff | Nov 1991 | A |
5108216 | Geyer et al. | Apr 1992 | A |
5117567 | Berger | Jun 1992 | A |
5152038 | Schoch | Oct 1992 | A |
5157813 | Carroll | Oct 1992 | A |
5158428 | Gessner et al. | Oct 1992 | A |
5177882 | Berger | Jan 1993 | A |
5181331 | Berger | Jan 1993 | A |
5184378 | Batra | Feb 1993 | A |
D333552 | Berger et al. | Mar 1993 | S |
5205055 | Harrell | Apr 1993 | A |
5233767 | Kramer | Aug 1993 | A |
5249377 | Walkhoff | Oct 1993 | A |
5259094 | Zepeda | Nov 1993 | A |
5315741 | Debberke | May 1994 | A |
5319868 | Hallenbeck | Jun 1994 | A |
5319869 | McDonald et al. | Jun 1994 | A |
5325613 | Sussmann | Jul 1994 | A |
5327662 | Hallenbeck | Jul 1994 | A |
5335401 | Hanson | Aug 1994 | A |
5341583 | Hallenbeck | Aug 1994 | A |
5345697 | Quellais | Sep 1994 | A |
5355596 | Sussmann | Oct 1994 | A |
5357654 | Hsing-Chi | Oct 1994 | A |
5371957 | Gaudio | Dec 1994 | A |
5381609 | Hieblinger | Jan 1995 | A |
5392535 | Van Noy et al. | Feb 1995 | A |
D357576 | Steinweis | Apr 1995 | S |
5425161 | Schoch | Jun 1995 | A |
5425185 | Gansler | Jun 1995 | A |
5430960 | Richardson | Jul 1995 | A |
5433648 | Frydman | Jul 1995 | A |
5463822 | Miller | Nov 1995 | A |
5477593 | Leick | Dec 1995 | A |
D367755 | Jones | Mar 1996 | S |
D367954 | Dion | Mar 1996 | S |
5502902 | Sussmann | Apr 1996 | A |
5511325 | Hieblinger | Apr 1996 | A |
5526585 | Brown et al. | Jun 1996 | A |
5535531 | Karabed et al. | Jul 1996 | A |
5537763 | Donnadieu et al. | Jul 1996 | A |
5557864 | Marks | Sep 1996 | A |
5566474 | Leick et al. | Oct 1996 | A |
D375831 | Perry | Nov 1996 | S |
5596820 | Edauw et al. | Jan 1997 | A |
5599000 | Bennett | Feb 1997 | A |
5599288 | Shirley et al. | Feb 1997 | A |
5600874 | Jungkind | Feb 1997 | A |
5606778 | Jungkind | Mar 1997 | A |
D379113 | McDonald et al. | May 1997 | S |
5638588 | Jungkind | Jun 1997 | A |
5640785 | Egelja | Jun 1997 | A |
5647104 | James | Jul 1997 | A |
5651198 | Sussmann | Jul 1997 | A |
5669116 | Jungkind | Sep 1997 | A |
5692319 | Parker et al. | Dec 1997 | A |
5718021 | Tatum | Feb 1998 | A |
5718065 | Locker | Feb 1998 | A |
5720084 | Chen | Feb 1998 | A |
5732483 | Cagliari | Mar 1998 | A |
5732648 | Aragon | Mar 1998 | A |
5736696 | Del Rosso | Apr 1998 | A |
5737854 | Sussmann | Apr 1998 | A |
5755044 | Veylupek | May 1998 | A |
5756298 | Burczak | May 1998 | A |
5761777 | Leick | Jun 1998 | A |
5772146 | Kawamoto et al. | Jun 1998 | A |
5784809 | McDonald | Jul 1998 | A |
5791068 | Bernier et al. | Aug 1998 | A |
5819378 | Doyle | Oct 1998 | A |
5833640 | Vazquez, Jr. et al. | Nov 1998 | A |
5839210 | Bernier et al. | Nov 1998 | A |
5845371 | Chen | Dec 1998 | A |
5909946 | Okajima | Jun 1999 | A |
D413197 | Faye | Aug 1999 | S |
5934599 | Hammerslag | Aug 1999 | A |
5937542 | Bourdeau | Aug 1999 | A |
5956823 | Borel | Sep 1999 | A |
5971946 | Quinn et al. | Oct 1999 | A |
6015110 | Lai | Jan 2000 | A |
6038791 | Cornelius et al. | Mar 2000 | A |
6052921 | Oreck | Apr 2000 | A |
6070886 | Cornelius et al. | Jun 2000 | A |
6070887 | Cornelius et al. | Jun 2000 | A |
6083857 | Bottger | Jul 2000 | A |
6088936 | Bahl | Jul 2000 | A |
6102412 | Staffaroni | Aug 2000 | A |
D430724 | Matis et al. | Sep 2000 | S |
6119318 | Maurer | Sep 2000 | A |
6119372 | Okajima | Sep 2000 | A |
6128835 | Ritter et al. | Oct 2000 | A |
6128836 | Barret | Oct 2000 | A |
6148489 | Dickie et al. | Nov 2000 | A |
6202953 | Hammerslag | Mar 2001 | B1 |
6219891 | Maurer et al. | Apr 2001 | B1 |
6240657 | Weber et al. | Jun 2001 | B1 |
6256798 | Egolf et al. | Jul 2001 | B1 |
6267390 | Maravetz et al. | Jul 2001 | B1 |
6286233 | Gaither | Sep 2001 | B1 |
6289558 | Hammerslag | Sep 2001 | B1 |
6311633 | Keire | Nov 2001 | B1 |
D456130 | Towns | Apr 2002 | S |
6370743 | Choe | Apr 2002 | B2 |
6401364 | Burt | Jun 2002 | B1 |
6416074 | Maravetz et al. | Jul 2002 | B1 |
6467195 | Pierre et al. | Oct 2002 | B2 |
6477793 | Pruitt et al. | Nov 2002 | B1 |
6502286 | Dubberke | Jan 2003 | B1 |
6543159 | Carpenter et al. | Apr 2003 | B1 |
6568103 | Durocher | May 2003 | B2 |
6606804 | Kaneko et al. | Aug 2003 | B2 |
6694643 | Hsu | Feb 2004 | B1 |
6708376 | Landry | Mar 2004 | B1 |
6711787 | Jungkind et al. | Mar 2004 | B2 |
6735829 | Hsu | May 2004 | B2 |
6757991 | Sussmann | Jul 2004 | B2 |
6775928 | Grande et al. | Aug 2004 | B2 |
6792702 | Borsoi et al. | Sep 2004 | B2 |
6802439 | Azam et al. | Oct 2004 | B2 |
6823610 | Ashley | Nov 2004 | B1 |
6871812 | Chang | Mar 2005 | B1 |
6877256 | Martin et al. | Apr 2005 | B2 |
6899720 | McMillan | May 2005 | B1 |
6922917 | Kerns et al. | Aug 2005 | B2 |
6938913 | Elkington | Sep 2005 | B2 |
6945543 | De Bortoli et al. | Sep 2005 | B2 |
D510183 | Tresser | Oct 2005 | S |
6976972 | Bradshaw | Dec 2005 | B2 |
6993859 | Martin et al. | Feb 2006 | B2 |
D521226 | Douglas et al. | May 2006 | S |
7073279 | Min | Jul 2006 | B2 |
7076843 | Sakabayashi | Jul 2006 | B2 |
7082701 | Dalgaard et al. | Aug 2006 | B2 |
7096559 | Johnson et al. | Aug 2006 | B2 |
7134224 | Elkington et al. | Nov 2006 | B2 |
7266911 | Holzer et al. | Sep 2007 | B2 |
7281341 | Reagan et al. | Oct 2007 | B2 |
7293373 | Reagan et al. | Nov 2007 | B2 |
7331126 | Johnson | Feb 2008 | B2 |
7343701 | Pare et al. | Mar 2008 | B2 |
7367522 | Chen | May 2008 | B2 |
7386947 | Martin | Jun 2008 | B2 |
7392602 | Reagan et al. | Jul 2008 | B2 |
7401423 | Reagan et al. | Jul 2008 | B2 |
7490458 | Ford | Feb 2009 | B2 |
7568298 | Kerns | Aug 2009 | B2 |
7582102 | Heinz et al. | Sep 2009 | B2 |
7584528 | Hu | Sep 2009 | B2 |
7591050 | Hammerslag | Sep 2009 | B2 |
7597675 | Ingimundarson et al. | Oct 2009 | B2 |
7600660 | Kasper et al. | Oct 2009 | B2 |
7617573 | Chen | Nov 2009 | B2 |
7624517 | Smith | Dec 2009 | B2 |
7648404 | Martin | Jan 2010 | B1 |
7650705 | Donnadieu et al. | Jan 2010 | B2 |
7694354 | Philpott et al. | Apr 2010 | B2 |
7752774 | Ussher | Jul 2010 | B2 |
7757412 | Farys | Jul 2010 | B2 |
7774956 | Dua et al. | Aug 2010 | B2 |
D626322 | Servettaz | Nov 2010 | S |
7841106 | Farys | Nov 2010 | B2 |
7871334 | Young et al. | Jan 2011 | B2 |
7877845 | Signori | Feb 2011 | B2 |
7900378 | Busse | Mar 2011 | B1 |
7908769 | Pellegrini | Mar 2011 | B2 |
7947061 | Reis | May 2011 | B1 |
7950112 | Hammerslag et al. | May 2011 | B2 |
7954204 | Hammerslag et al. | Jun 2011 | B2 |
7963049 | Messmer | Jun 2011 | B2 |
7992261 | Hammerslag et al. | Aug 2011 | B2 |
D646790 | Castillo et al. | Oct 2011 | S |
8056150 | Stokes et al. | Nov 2011 | B2 |
8074379 | Robinson, Jr. et al. | Dec 2011 | B2 |
8091182 | Hammerslag et al. | Jan 2012 | B2 |
8109015 | Signori | Feb 2012 | B2 |
D663850 | Joseph | Jul 2012 | S |
D663851 | Joseph | Jul 2012 | S |
8215033 | Carboy et al. | Jul 2012 | B2 |
8231074 | Hu et al. | Jul 2012 | B2 |
D665088 | Joseph | Aug 2012 | S |
8235321 | Chen | Aug 2012 | B2 |
8245371 | Chen | Aug 2012 | B2 |
8257293 | Ingimundarson et al. | Sep 2012 | B2 |
8266827 | Dojan et al. | Sep 2012 | B2 |
8277401 | Hammerslag et al. | Oct 2012 | B2 |
8302329 | Hurd et al. | Nov 2012 | B2 |
8303527 | Joseph | Nov 2012 | B2 |
8308098 | Chen | Nov 2012 | B2 |
8353087 | Chen | Jan 2013 | B2 |
8353088 | Ha | Jan 2013 | B2 |
D677045 | Voskuil | Mar 2013 | S |
D679019 | Siddle et al. | Mar 2013 | S |
1060422 | Bowdish | Apr 2013 | A1 |
1062511 | Short | May 2013 | A1 |
8434200 | Chen | May 2013 | B2 |
8490299 | Dua et al. | Jul 2013 | B2 |
8516662 | Goodman et al. | Aug 2013 | B2 |
8578632 | Bell et al. | Nov 2013 | B2 |
1083775 | Thomas | Jan 2014 | A1 |
8652164 | Aston | Feb 2014 | B1 |
1090438 | Worth et al. | Mar 2014 | A1 |
8713820 | Kerns et al. | May 2014 | B2 |
8984719 | Soderberg et al. | Mar 2015 | B2 |
9072341 | Jungkind | Jul 2015 | B2 |
D735987 | Hsu | Aug 2015 | S |
9101181 | Soderberg et al. | Aug 2015 | B2 |
9125455 | Kerns et al. | Sep 2015 | B2 |
9138030 | Soderberg et al. | Sep 2015 | B2 |
20020050076 | Borsoi et al. | May 2002 | A1 |
20020062579 | Caeran | May 2002 | A1 |
20020095750 | Hammerslag | Jul 2002 | A1 |
20020129518 | Borsoi et al. | Sep 2002 | A1 |
20020148142 | Oorei et al. | Oct 2002 | A1 |
20020166260 | Borsoi | Nov 2002 | A1 |
20020178548 | Freed | Dec 2002 | A1 |
20030079376 | Oorei et al. | May 2003 | A1 |
20030144620 | Sieller | Jul 2003 | A1 |
20030150135 | Liu | Aug 2003 | A1 |
20030177662 | Elkington et al. | Sep 2003 | A1 |
20030204938 | Hammerslag | Nov 2003 | A1 |
20040041452 | Williams | Mar 2004 | A1 |
20040211039 | Livingston | Oct 2004 | A1 |
20050054962 | Bradshaw | Mar 2005 | A1 |
20050060912 | Holzer et al. | Mar 2005 | A1 |
20050081339 | Sakabayashi | Apr 2005 | A1 |
20050081403 | Mathieu | Apr 2005 | A1 |
20050087115 | Martin | Apr 2005 | A1 |
20050098673 | Huang | May 2005 | A1 |
20050102861 | Martin | May 2005 | A1 |
20050126043 | Reagan et al. | Jun 2005 | A1 |
20050172463 | Rolla | Aug 2005 | A1 |
20050184186 | Tsoi et al. | Aug 2005 | A1 |
20050198866 | Wiper et al. | Sep 2005 | A1 |
20060135901 | Ingimundarson et al. | Jun 2006 | A1 |
20060156517 | Hammerslag et al. | Jul 2006 | A1 |
20060179685 | Borel et al. | Aug 2006 | A1 |
20060185193 | Pellegrini | Aug 2006 | A1 |
20060287627 | Johnson | Dec 2006 | A1 |
20070006489 | Case, Jr. et al. | Jan 2007 | A1 |
20070063459 | Kavarsky | Mar 2007 | A1 |
20070068040 | Farys | Mar 2007 | A1 |
20070084956 | Chen | Apr 2007 | A1 |
20070113524 | Lander | May 2007 | A1 |
20070128959 | Cooke | Jun 2007 | A1 |
20070169378 | Sodeberg et al. | Jul 2007 | A1 |
20080016717 | Ruban | Jan 2008 | A1 |
20080060167 | Hammerslag et al. | Mar 2008 | A1 |
20080060168 | Hammerslag et al. | Mar 2008 | A1 |
20080066272 | Hammerslag et al. | Mar 2008 | A1 |
20080066345 | Hammerslag et al. | Mar 2008 | A1 |
20080066346 | Hammerslag et al. | Mar 2008 | A1 |
20080068204 | Carmen et al. | Mar 2008 | A1 |
20080083135 | Hammerslag et al. | Apr 2008 | A1 |
20080092279 | Chiang | Apr 2008 | A1 |
20080172848 | Chen | Jul 2008 | A1 |
20080196224 | Hu | Aug 2008 | A1 |
20090019734 | Reagan et al. | Jan 2009 | A1 |
20090071041 | Hooper | Mar 2009 | A1 |
20090090029 | Kishino | Apr 2009 | A1 |
20090172928 | Messmer et al. | Jul 2009 | A1 |
20090184189 | Soderberg et al. | Jul 2009 | A1 |
20090272007 | Beers et al. | Nov 2009 | A1 |
20090277043 | Graser et al. | Nov 2009 | A1 |
20100064547 | Kaplan | Mar 2010 | A1 |
20100101061 | Ha | Apr 2010 | A1 |
20100139057 | Soderberg et al. | Jun 2010 | A1 |
20100154254 | Fletcher | Jun 2010 | A1 |
20100175163 | Litke | Jul 2010 | A1 |
20100251524 | Chen | Oct 2010 | A1 |
20100299959 | Hammerslag | Dec 2010 | A1 |
20100319216 | Grenzke et al. | Dec 2010 | A1 |
20110000173 | Lander | Jan 2011 | A1 |
20110071647 | Mahon | Mar 2011 | A1 |
20110162236 | Voskuil et al. | Jul 2011 | A1 |
20110167543 | Kovacevich et al. | Jul 2011 | A1 |
20110191992 | Chen | Aug 2011 | A1 |
20110197362 | Chella et al. | Aug 2011 | A1 |
20110225843 | Kerns et al. | Sep 2011 | A1 |
20110258876 | Baker et al. | Oct 2011 | A1 |
20110266384 | Goodman et al. | Nov 2011 | A1 |
20120000091 | Cotterman et al. | Jan 2012 | A1 |
20120004587 | Nickel et al. | Jan 2012 | A1 |
20120005995 | Emery | Jan 2012 | A1 |
20120023717 | Chen | Feb 2012 | A1 |
20120101417 | Joseph | Apr 2012 | A1 |
20120102783 | Swigart et al. | May 2012 | A1 |
20120138882 | Moore et al. | Jun 2012 | A1 |
20120157902 | Castillo et al. | Jun 2012 | A1 |
20120167290 | Kovacevich et al. | Jul 2012 | A1 |
20120174437 | Heard | Jul 2012 | A1 |
20120228419 | Chen | Sep 2012 | A1 |
20120246974 | Hammerslag et al. | Oct 2012 | A1 |
20120310273 | Thorpe | Dec 2012 | A1 |
20130012856 | Hammerslag et al. | Jan 2013 | A1 |
20130014359 | Chen | Jan 2013 | A1 |
20130019501 | Gerber | Jan 2013 | A1 |
20130025100 | Ha | Jan 2013 | A1 |
20130091667 | Zerfas et al. | Apr 2013 | A1 |
20130092780 | Soderberg et al. | Apr 2013 | A1 |
20130277485 | Soderberg et al. | Oct 2013 | A1 |
20130312293 | Gerber | Nov 2013 | A1 |
20130340283 | Bell et al. | Dec 2013 | A1 |
20130345612 | Bannister et al. | Dec 2013 | A1 |
20140082963 | Beers | Mar 2014 | A1 |
20140094728 | Soderberg et al. | Apr 2014 | A1 |
20140117140 | Goodman et al. | May 2014 | A1 |
20140123440 | Capra et al. | May 2014 | A1 |
20140123449 | Soderberg et al. | May 2014 | A1 |
20140208550 | Neiley | Jul 2014 | A1 |
20140221889 | Burns et al. | Aug 2014 | A1 |
20140290016 | Lovett et al. | Oct 2014 | A1 |
20140359981 | Cotterman et al. | Dec 2014 | A1 |
20150007422 | Cavanagh et al. | Jan 2015 | A1 |
20150014463 | Converse et al. | Jan 2015 | A1 |
20150026936 | Kerns et al. | Jan 2015 | A1 |
20150033519 | Hammerslag et al. | Feb 2015 | A1 |
20150059206 | Lovett et al. | Mar 2015 | A1 |
20150076272 | Trudel et al. | Mar 2015 | A1 |
20150089779 | Lawrence et al. | Apr 2015 | A1 |
20150089835 | Hammerslag et al. | Apr 2015 | A1 |
20150101160 | Soderberg et al. | Apr 2015 | A1 |
20150150705 | Capra et al. | Jun 2015 | A1 |
20150151070 | Capra et al. | Jun 2015 | A1 |
20150190262 | Capra et al. | Jul 2015 | A1 |
20150223608 | Capra et al. | Aug 2015 | A1 |
20150237962 | Soderberg et al. | Aug 2015 | A1 |
20150335458 | Romo | Nov 2015 | A1 |
Number | Date | Country |
---|---|---|
127075 | Feb 1932 | AT |
244804 | Jan 1966 | AT |
361808 | Apr 1981 | AT |
2114387 | Jan 1994 | CA |
2112789 | Aug 1994 | CA |
41765 | Sep 1907 | CH |
111341 | Nov 1925 | CH |
199766 | Nov 1938 | CH |
204 834 | Aug 1939 | CH |
523 669 | Jul 1972 | CH |
562 015 | May 1975 | CH |
577 282 | Jul 1976 | CH |
612 076 | Jul 1979 | CH |
537 164 | Jul 1981 | CH |
624 001 | Jul 1981 | CH |
471 553 | Dec 1984 | CH |
2613167 | Apr 2004 | CN |
201015448 | Feb 2008 | CN |
555211 | Jul 1932 | DE |
641976 | Feb 1937 | DE |
1 661 668 | Aug 1953 | DE |
7043154.8 | Nov 1970 | DE |
1 785 220 | May 1971 | DE |
2 062 795 | Jun 1972 | DE |
23 41 658 | Mar 1974 | DE |
24 14 439 | Oct 1975 | DE |
29 00 077 | Jul 1980 | DE |
2914280 | Oct 1980 | DE |
31 01 952 | Sep 1982 | DE |
36 26 837 | Feb 1988 | DE |
38 13 470 | Nov 1989 | DE |
3822113 | Jan 1990 | DE |
9413147 | Jun 1994 | DE |
43 02 401 | Aug 1994 | DE |
43 05 671 | Sep 1994 | DE |
43 05 671 | Sep 1994 | DE |
93 08 037 | Oct 1994 | DE |
9308037 | Nov 1994 | DE |
43 06 049 | Feb 1995 | DE |
43 26 049 | Feb 1995 | DE |
9315776 | Feb 1995 | DE |
196 24 553 | Jan 1998 | DE |
19945045 | Mar 2001 | DE |
201 16 755 | Jan 2002 | DE |
20 2010 000 354 | Jul 2010 | DE |
11 2013 005 273 | Sep 2015 | DE |
0 056 953 81 | Jun 1969 | EP |
0 081 042 81 | Jul 1972 | EP |
0 123 050 | Feb 1984 | EP |
0 201 051 | Nov 1986 | EP |
0 099 504 | Jan 1987 | EP |
0 255 869 | Jul 1987 | EP |
0 155 596 | Jan 1988 | EP |
0 393 380 | Mar 1990 | EP |
0 474 708 | Sep 1993 | EP |
0 589 232 | Mar 1994 | EP |
0 589 233 | Mar 1994 | EP |
0 614 625 | Sep 1994 | EP |
0 651 954 | May 1995 | EP |
0 679 346 | Nov 1995 | EP |
0 693 260 | Jan 1996 | EP |
0 734 662 | Feb 1996 | EP |
0 717 942 | Jun 1996 | EP |
0 858 619 | Aug 1996 | EP |
0 858 621 | Aug 1998 | EP |
0 923 965 | Jun 1999 | EP |
0 937 467 | Aug 1999 | EP |
0 848 917 81 | Apr 2000 | EP |
1 219 195 | Feb 2001 | EP |
1163860 | May 2001 | EP |
1 236 412 | Sep 2002 | EP |
2298107 | Mar 2011 | EP |
2359708 | Aug 2011 | EP |
1 349 832 | Mar 1963 | FR |
1 404 799 | Jul 1964 | FR |
2 019 991 | Oct 1969 | FR |
2 108 428 | Sep 1971 | FR |
2 175 684 | Mar 1972 | FR |
2.108.429 | May 1972 | FR |
2 565 795 | Jun 1984 | FR |
2 598 292 | Nov 1987 | FR |
2 726 440 | May 1996 | FR |
2 770 379 | May 1997 | FR |
2 814 919 | Apr 2002 | FR |
189911673 | Jan 1899 | GB |
216400 | Aug 1923 | GB |
2 449 722 | Mar 2006 | GB |
1220811 | Jun 1990 | IT |
PD 2003 A 000197 | Apr 2003 | IT |
PD 2003 A 000198 | Mar 2005 | IT |
49-28618 | Mar 1974 | JP |
51-2776 | Jan 1976 | JP |
51-121375 | Oct 1976 | JP |
51-131978 | Oct 1976 | JP |
53-124987 | Mar 1977 | JP |
54-108125 | Feb 1978 | JP |
62-57346 | Apr 1987 | JP |
63-80736 | May 1988 | JP |
H02-236025 | Sep 1990 | JP |
6-284906 | Nov 1994 | JP |
7-000208 | Jun 1995 | JP |
3031760 | Sep 1996 | JP |
3030988 | Nov 1996 | JP |
8308608 | Nov 1996 | JP |
10-199366 | Jul 1998 | JP |
2001-197905 | Jul 2001 | JP |
2004-016732 | Jan 2004 | JP |
2004-041666 | Feb 2004 | JP |
2009-504210 | Feb 2009 | JP |
20-0367882 | Nov 2004 | KR |
20-0400568 | Aug 2005 | KR |
10-0598627 | Mar 2006 | KR |
10-0953398 | Apr 2010 | KR |
10-1025134 | Mar 2011 | KR |
10-1028468 | Apr 2011 | KR |
10-1053551 | Jul 2011 | KR |
WO 9427456 | Dec 1994 | WO |
WO 9511602 | May 1995 | WO |
WO 9503720 | Sep 1995 | WO |
WO 9833408 | Aug 1998 | WO |
WO 9837782 | Sep 1998 | WO |
WO 9909850 | Mar 1999 | WO |
WO 9915043 | Apr 1999 | WO |
WO0053045 | Sep 2000 | WO |
WO 0076337 | Dec 2000 | WO |
WO 0108525 | Feb 2001 | WO |
WO 0115559 | Mar 2001 | WO |
WO 02051511 | Jul 2002 | WO |
WO 2004093569 | Nov 2004 | WO |
WO 2005013748 | Feb 2005 | WO |
WO 2008015214 | Feb 2008 | WO |
WO2008033963 | Mar 2008 | WO |
WO2009134858 | Nov 2009 | WO |
WO 2010059989 | May 2010 | WO |
WO 2012165803 | Dec 2012 | WO |
WO2015035885 | Mar 2015 | WO |
WO 2015179332 | Nov 2015 | WO |
WO 2015181928 | Dec 2015 | WO |
Entry |
---|
ASOLO® Boot Brochure Catalog upon information and belief date is as early as Aug. 22, 1997. |
U.S. Appl. No. 09/956,601, Including its prosecution history, filed Sep. 18, 2001, Hammerslag. |
La Sportiva, A Technical Lightweight Double Boot for Cold Environments http://www.sportiva.com/products/footwear/mountain/spantik. |
“Strength of materials used to make my Safety Harnesses,” Elaine, Inc. Jul. 9, 2012. Retrieved from <https://web.archive.org/web/20120709002720/http://www.childharness.ca/strength—data.html> on Mar. 17, 2014, 2 pages. |
Anonymous, “Shore durometer,” Wikipedia, the free encyclopedia, Mar. 10, 2012, XP002747470, Retrieved from the Internet: URL: https://en.wikipedia.org/w/index.php?title=Shore—durometer&oldid=481128180 [retrieved on Oct. 20, 2015] * shore A, shore D, durometer, polymer, rubber, gel; the whole document *, 6 pages. |
International Search Report and Written Opinion for PCT/US2013/032326 mailed Jun. 14, 2013, 27 pages. |
International Preliminary Report on Patentability for PCT/US2013/032326 issued Sep. 16, 2014, 6 pages. |
International Search Report and Written Opinion for PCT/US2013/057637 mailed Apr. 7, 2014, 34 pages. |
International Preliminary Report on Patentability for PCT/US2013/057637 issued Mar. 3, 2015, 9 pages. |
International Search Report and Written Opinion for PCT/US2013/068342 mailed Apr. 7, 2014, 29 pages. |
International Preliminary Report on Patentability for PCT/US2013/068342 issued May 5, 2015, 9 pages. |
International Search Report and Written Opinion for PCT/US2014/014952 mailed Apr. 25, 2014, 17 pages. |
International Preliminary Report on Patentability for PCT/US2014/014952 issued Aug. 11, 2015, 9 pages. |
International Search Report and Written Opinion for PCT/US2014/066212 mailed Apr. 22, 2015, 16 pages. |
International Search Report and Written Opinion for PCT/US2014/032574 mailed Oct. 31, 2014, 19 pages. |
International Search Report and Written Opinion for PCT/US2014/045291 mailed Nov. 6, 2014, 12 pages. |
International Search Report and Written Opinion for PCT/US2014/013458 mailed May 19, 2014, 12 pages. |
International Preliminary Report on Patentability for PCT/US2014/013458 issued Jul. 28, 2015, 7 pages. |
International Search Report and Written Opinion for PCT/US2013/068814 mailed Jun. 9, 2014, 18 pages. |
International Preliminary Report on Patentability for PCT/US2013/068814 issued May 12, 2015, 12 pages. |
Notice of Reasons for Rejection from the Japanese Patent Office dated Feb. 26, 2015 for design application No. 2014-015570, 4 pages. |
Receipt of Certificate of Design Registration No. 1529678 from the Japanese Patent Office for design application No. 2014-015570, 1 page. |
International Search Report and Written Opinion for PCT/US2014/055710 mailed Jul. 6, 2015, 19 pages. |
International Search Report and Written Opinion for PCT/US2014/054420 mailed Jul. 6, 2015, 21 pages. |
The Preliminary Rejections from the Korean Intellectual Property Office for Application No. 30-2014-34959 received Aug. 7, 2015, is not translated into English. The document requests a renaming of the application to be in accordance with Korean patent law, 6 pages total. |
The Preliminary Rejections from the Korean Intellectual Property Office for Application No. 30-2014-34959 received Apr. 7, 2015, is not translated into English. The document requests a revision of the drawings to be in accordance with Korean patent law, 6 pages total. |
Certificate of Design Registration No. 30-809409 on Aug. 3, 2015 from the Korean Intellectual Property Office for Appln No. 30-2015-11475, 2 pages. |
Certificate of Design Registration No. 30-809410 on Aug. 3, 2015 from the Korean Intellectual Property Office for Appln No. 30-2015-11476, 2 pages. |
European Search Report for EP 14168875 mailed Oct. 29, 2014, 9 pages. |
International Search Report and Written Opinion for PCT/US2014/020894 mailed Jun. 20, 2014, 12 pages. |
International Preliminary Report on Patentability for PCT/US2014/020894 issued Sep. 8, 2015, 7 pages. |
International Search Report and Written Opinion for PCT/US2014/041144 mailed Dec. 10, 2014, 13 pages. |
International Preliminary Report on Patentability for PCT/US2014/032574 issued Oct. 6, 2015, 11 pages. |
International Search Report and Written Opinion for PCT/US2014/046238 mailed Nov. 21, 2014, 17 pages. |
Office Action received Oct. 8, 2015 from the German Patent and Trademark Office for Appln No. 402015100191.2, regarding the title of the invention, 2 pages. |
“Save Tourniquet,” 3 pages. Copyright 2015. Accessed on Dec. 11, 2015. Retrieved from http://www.savetourniquet.com/. |
Supplementary European Search Report for EP 13761841 dated Oct. 21, 2015, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20130269219 A1 | Oct 2013 | US |
Number | Date | Country | |
---|---|---|---|
61611418 | Mar 2012 | US |