The present disclosure relates to a tile and tile support structure allowing use of placement of porcelain tiles for outdoor deck systems.
No federal funds were used to develop or create the invention disclosed and described in the patent application.
Not Applicable.
A portion of the disclosure of this patent document may contain material that is subject to copyright and trademark protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyrights whatsoever.
Not Applicable.
Not Applicable.
Not Applicable.
In order that the advantages of the invention will be readily understood, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered limited of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings.
Before the various embodiments of the present invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangements of components set forth in the following description. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that phraseology and terminology used herein with reference to device or element orientation (such as, for example, terms like “front”, “back”, “up”, “down”, “top”, “bottom”, and the like) are only used to simplify description of the present invention, and do not alone indicate or imply that the device or element referred to must have a particular orientation. In addition, terms such as “first”, “second”, and “third” are used herein and in the appended claims for purposes of description and are not intended to indicate or imply relative importance or significance. Further, although some figures included herewith show various dimensions of some features of certain illustrative embodiments of the present invention, such dimensions are for illustrative purposes only and in no way limits the scope of the present disclosure.
The following detailed description is of the best currently contemplated modes of carrying out illustrative embodiments of the invention. The description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating the general principles of the invention, since the scope of the invention is best defined by the appending claims. Various inventive features are described below herein that can each be used independently of one another or in combination with other features.
A group of joists 14 in a typical arrangement is shown in
As shown in
The support structures 30 may be configured such that they are oriented perpendicular with respect to the joists 14 so that the joists 14 and support structures 30 may form a grid. In certain embodiments it may be advantageous to position a cross lathe (not shown) under each support structure 30. The cross lathe may be configured as a wooden one-by-three inch board, a wooden one-by-four inch board, or any other suitable structure without limitation, including but not limited to plastic and/or polymer strips. The cross lathe and support structure 30 may be engaged with one another and the joists 14 and the relative positions thereof secured via one or more fasteners 16. It is contemplated that such a configuration may be especially useful if there is a reasonable likelihood that the position of the joists 14 and/or other underlying structure might shift over time. Accordingly, the scope of the present disclosure is in no way limited by whether a cross lathe is used. Furthermore, the specific method and/or structure used to engage the cross lathes with the joists 14 and/or support structures 30 in no way limits the scope of the present disclosure.
A perspective view of the joist 14 and support structure 30 grid after a plurality of tiles 20 have been engaged with the support structures 30 is shown in
A perspective view of an illustrative embodiment of a support structure 30 according to the present disclosure is shown in
In the illustrative embodiment, the apertures 32b formed in a given trough 32a may be spaced from one another by a distance of four inches such that a support structure 30 may be engaged with joists 14 spaced twelve or sixteen inches from adjacent joists 14 without need to modify the support structure 30. In such an embodiment, it is contemplated that multiple apertures 32b will not have a fastener 16 positioned therein, such that those apertures 32b may serve as an egress point for water and/or other liquid and/or precipitation in the trough 32a, and the trough 32a may serve as a fluid conduit (e.g., gutter) for water and/or other precipitation and/or liquids. However, the spacing of the apertures 32b in no way limits the scope of the present disclosure. Additionally, the apertures 32b may be tapered such that the head of a fastener 14 configured as a screw may seat within the aperture 32b, and such that in certain embodiments the head of a fastener 14 may be flush with the bottom of the trough 32a, and/or such that the head of a fastener 14 may be positioned below the upper surface of the flange 32. However, other embodiments of the apertures 32b may be differently configured without limitation.
A spine 34 may extend upward from the base 31 along the vertical centerline of the support structure 30. At the top distal end of the spine 34, two corresponding rails 36 may extend outward from the spine 34 in a generally horizontal dimension. A tip 34a that may be collinear with the spine 34 may extend downward from the spine 34 such that the distal end of the tip 34a is coplanar with the bottom surface of the base 31. Such a configuration may allow the tip 34a to abut a joist 14 and/or cross lathe during use. In certain embodiments, it may be advantageous to construct the support structure 30 of a metal or metallic alloy. However, the support structure 30 may be constructed of any suitable material, including but not limited to plastic, polymers, natural materials, and/or combinations thereof without limitation.
A cross-sectional view of an illustrative embodiment of an edge support structure 30a, which may be correlative to the illustrative embodiment of a support structure shown in
In the illustrative embodiment, the apertures 32b formed in the trough 32a may be spaced from one another by a distance of four inches such that an edge support structure 30a may be engaged with joists 14 spaced twelve or sixteen inches from adjacent joists 14 without need to modify the edge support structure 30a. However, the spacing of the apertures 32b in no way limits the scope of the present disclosure. Additionally, the apertures 32b may be tapered such that the head of a fastener 14 configured as a screw may seat within the aperture 32b, and such that in certain embodiments the head of a fastener 14 may be flush with the bottom of the trough 32a. However, other embodiments of the apertures 32b may be differently configured without limitation.
A spine 34 may extend upward from the base 31 in a generally vertical dimension. At the top distal end of the spine 34, a rail 36 may extend outward from the spine 34 in a generally horizontal dimension, wherein the rail 36 may be generally parallel with respect to the flange 32 and generally perpendicular with respect to the spine 34. A tip 34a that may be collinear with the spine 34 may extend downward from the spine 34 such that the distal end of the tip 34a is coplanar with the bottom surface of the base 31. Such a configuration may allow the tip 34a to abut a joist 14 and/or cross lathe during use.
The various relative dimensions of the components of the support structure 30 may be infinitely varied depending on the specific application of the support structure 30. Several illustrative embodiments of different support structures 30 according to the present disclosure and dimensions of the components of the support structure 30 are shown in
An illustrative embodiment of a tile 20 that may be engaged with the illustrative embodiment of a support structure 30 is shown in
Opposite edges 24 of a tile 20 may be formed with a groove 24a therein, as shown in
Referring now specifically to
Still referring to
It is contemplated that for certain applications of the tile and support structure 10, it may be especially advantageous to construct the tile 20 from porcelain or stone, the substrate 18 (if present) from fiberglass, and the support structure from aluminum. However, the tile and support structure 10 and various elements thereof may be constructed of any suitable material known to those skilled in the art without limitation. Accordingly, the present methods and structures may work with any tile-based product, particularly tile made of clay. As disclosed and claimed herein, a tile 20 suitable for use as a deck tile may be composed of fiber glass fiber and clay, with not less than one percent fiberglass fiber by weight may desirable for certain applications. Another tile 20 that may be suitable for certain applications according to the present disclosure may be composed of fiber glass fiber and clay, with not less than twenty five percent fiberglass fiber by weight. For certain applications, it may be advantageous for a tile 20 to have a width of approximately twelve inches, a length of approximately twenty-four inches, and a thickness of one to one and one half inches.
Illustrative Method of Use
Having described the preferred embodiments, an illustrative method of using the tile and support structure 10 will now be described. This method of use is not intended to limit the scope of the present disclosure in any way, but is instead provided for illustrative purposes only. Even though the foregoing illustrative method of use is primarily adapted for decks 12, the scope of the present disclosure is not so limited.
The tile and support structure 10 as disclosed and claimed herein may be used to build a deck 12, wherein the tread surface of the deck 12 is comprised of the top faces 22 of the tiles 20. Generally, the supporting surface for a deck 12 may be a plurality of joists 14 arranged in a parallel fashion in a manner similar to that shown in
An edge support structure 30a may be engaged with the joists 14 adjacent one end of the joists 14 (e.g., the end of the joists 14 engaged with the building or other structure adjacent the deck 12). A support structure 30 may then be spaced from the edge support structure 30 by a predetermined amount and engaged with the joists 14 such that the position of the support structure 30 is fixed. As previously explained, a cross lathe may be positioned between the edge support structure 30a and the joist(s) 14 and/or between the support structure 30 and the joist(s) 14 if needed/desired.
The distance between the edge support structure 30a and the support structure 30 may be dependent at least upon the configuration of the tile 20 to be used with the deck 12, and more specifically at least upon the distance between edges 24 of the tile 20 having grooves 24a formed therein. Subsequent support structures 30 may be engaged with the joists 14. Depending at least upon the configuration of the tiles 20 to be used for the deck 12, the distance between adjacent support structures 30 may be generally uniform for all support structures 30 (e.g., for use with a deck 12 wherein most tiles 20 are generally of a similar shape), or some support structures 30 may be differently spaced with respect to adjacent support structures 30 (e.g., for use with a deck 12 wherein a certain number tiles 20 have different shapes). One end of the support structures 30 may be left accessible and another end thereof may be blocked and/or bound by another structure (which structure may include but is not limited to a wall of a building, a deck frame, joist 14 etc.).
After the desired number of support structures 30 (and/or edge support structures 30a) have been engaged with the joists 14, a tile 20 may be positioned between adjacent support structures 30 (and/or between an edge support structure 30a and a support structure 30). The tile 20 may be slid along the length of the support structures 30 from an open end thereof to the blocked and/or bound end thereof. During this step, the rails 36 of the support structure 30 may be positioned within the groove 24a formed in one or more edges 24 of the tile 20. Another tile 20 may be slide along the length of the same support structures 30 until the protrusions 24b on the edges 24 of the tiles 20 engage one another. Subsequent tiles 20 may be positioned between other support structures 30 until a majority of the deck 12 is built.
In many instances it is contemplated that tiles 20 positioned on the periphery of the deck 12 may require cutting and/or resizing due to various factors, including but not limited to the shape of the periphery of the deck 12. Accordingly, after all or a majority of the standard sized and/or shaped tiles 20 have been properly positioned, specialized tiles 20 may be slide between adjacent support structures 30. After all desired tiles 20 have been properly positioned, the open ends of the support structures 30 may be blocked and/or bound by another structure (which structure may include but is not limited to a wall of a building, a deck frame, joist 14, specialized support structure 30 with suitable aesthetics, etc.).
It is contemplated that for some embodiments it may be advantageous to use the tiles 20 to ensure that adjacent support structures 30 are properly spaced from one another. In such an embodiment, the support structures 30 may be engaged with a joist 14 only at one end of the support structures 30. As tiles 20 are positioned between the support structures 30, a user may ensure the proper position of the support structures 30 by placing a lateral force thereon such that the tiles 20 are effectively pinched between the support structures 30, at which point the support structures 30 may be engaged with the joist(s) 14 adjacent the most terminal tile 20. Those of ordinary skill in the art will appreciate that this may be done in a progressive manner. That is, as each row of tiles 20 is slid between the support structures 30, another fastener(s) 16 may be used to engage the support structure(s) 30 with the joist(s) 14.
Those of ordinary skill in the art will appreciate that at this point, the relative positions of the tiles 20, support structures 30, and joists 14 generally may fixed in three dimensions, but simultaneously incremental changes in those relative positions may be allowed via flexing, bending, and/or other allowed movement between one tile 20 and adjacent tiles 20, between a tile 20 and support structures 30 engaged with the tile, and/or between a support structure 30 and the joist(s) 14 (or other underlying structure) with which it is engaged. It is contemplated that at least the configuration of the tiles 20 may affect the amount of incremental changes in the above-referenced relative positions. It is contemplated that a configuration allowing some or all of the incremental changes listed above may prevent cracking and/or other damage to the tiles 20, which may be manufacturing of a generally rigid, inflexible material.
From the preceding detailed description, it will be apparent to those of ordinary skill in the art that the present disclosure provides many benefits over the prior art. Some of those benefits include, but are not limited to, the ability to provide a tile deck 12 without the need for grout and/or other sealer, the ability to provide a deck surface that is virtually maintenance free, the ability to provide a deck surface that mitigates and/or eliminates puddling even when the deck surface is level and/or nearly level, the ability to provide a more robust deck surface that is not affected by typical freeze/thaw cycles, and the ability to allow a certain amount of relative movement between tiles 20, tiles 20 and support structures 30, tiles 20 and joists 14, and/or tiles 20 and other structures without damaging the tiles 20.
Although the descriptions of the illustrative embodiments have been quite specific, it is contemplated that various modifications could be made without deviating from the spirit and scope of the present disclosure. Accordingly, the scope of the present disclosure is not limited by the description of the illustrative embodiments.
The number, configuration, dimensions, geometries, and/or relative locations of the various elements of the tile 20 and/or support structure 30 will vary from one embodiment of the tile and support structure 10 to the next, as will the optimal configuration thereof. Accordingly, the tile and support structure 10 as disclosed and claimed herein is in no way limited by the specific constraints of those elements.
In the foregoing detailed description, various features are grouped together in a single embodiment for purposes of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the present disclosure requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment. Thus, the following claims are hereby incorporated into this detailed description, with each claim standing on its own as a separate embodiment of the invention.
Having described the preferred embodiments, other features, advantages, and/or efficiencies of the present disclosure will undoubtedly occur to those versed in the art, as will numerous modifications and alterations of the disclosed embodiments and methods, all of which may be achieved without departing from the spirit and scope of the present disclosure as disclosed and claimed herein. It should be noted that the present disclosure is not limited to the specific embodiments pictured and described herein, but are intended to apply to all similar apparatuses and/or methods for providing the various benefits of those elements, which benefits are explicitly and/or inherently disclosed herein. Modifications and alterations from the described embodiments will occur to those skilled in the art without departure from the spirit and scope of the present disclosure.
It is understood that the tile and support structure 10 as disclosed herein extends to all alternative combinations of one or more of the individual features mentioned, evident from the text and/or drawings, and/or inherently disclosed. All of these different combinations constitute various alternative aspects of the tile and support structure 10. The embodiments described herein explain the best modes known for practicing the tile and support structure 10 and will enable others skilled in the art to utilize the same. The claims are to be construed to include alternative embodiments to the extent permitted by the prior art. An Appendix, which is incorporated by reference herein and made a part of this disclosure, provides alternative configurations of various elements of the tile and support structure 10, additional details, fabrication prints, and designs for steps and/or varying elevation surfaces.
The present application is a continuation of and claims priority from U.S. patent application Ser. No. 15/947,774 filed on Apr. 6, 2018, which application was a continuation of and claimed priority from U.S. patent application Ser. No. 15/637,307 (now U.S. Pat. No. 9,938,715) filed on Jun. 29, 2017, which was a continuation of U.S. patent application Ser. No. 14/841,211 (now U.S. Pat. No. 9,702,145) filed on Aug. 31, 2015, which was a continuation of U.S. patent application Ser. No. 14/524,431 filed on Oct. 27, 2014 (now U.S. Pat. No. 9,151,063), which application claimed priority from provisional U.S. Pat. App. No. 61/895,930 filed on Oct. 25, 2013, all of which are incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
1399088 | Seymour | Dec 1921 | A |
RE16416 | Whittaker | Sep 1926 | E |
2033404 | Charles | Mar 1936 | A |
2183450 | Filangeri | Dec 1939 | A |
2382761 | Wilks | Aug 1945 | A |
2665104 | Myers | Jan 1954 | A |
3027140 | Holzbach | Mar 1962 | A |
3061055 | Nijhuis | Oct 1962 | A |
3065506 | Tremer | Nov 1962 | A |
3180460 | Liskey, Jr. | Apr 1965 | A |
3271916 | Omholt | Sep 1966 | A |
3295272 | Tomonobu | Jan 1967 | A |
3348459 | Harvey | Oct 1967 | A |
3379104 | Scholl | Apr 1968 | A |
3385183 | Kortz | May 1968 | A |
3398933 | Haroldson | Aug 1968 | A |
3443350 | Birum, Jr. | May 1969 | A |
3487756 | Glaza | Jan 1970 | A |
3553919 | Omholt | Jan 1971 | A |
3555762 | Costanzo, Jr. | Jan 1971 | A |
3557670 | Sutton | Jan 1971 | A |
3566561 | Tozer | Mar 1971 | A |
3645054 | Olvera | Feb 1972 | A |
3757485 | Vincens | Sep 1973 | A |
3784312 | Gordon | Jan 1974 | A |
3840908 | Greene | Oct 1974 | A |
3909145 | Ayer et al. | Sep 1975 | A |
4067161 | Rensch | Jan 1978 | A |
4077334 | Svirklys | Mar 1978 | A |
4266381 | Deller | May 1981 | A |
4320613 | Kaufman | Mar 1982 | A |
4395858 | Gwyther | Aug 1983 | A |
4408427 | Zilch | Oct 1983 | A |
4432177 | Amesso et al. | Feb 1984 | A |
4546580 | Ueno et al. | Oct 1985 | A |
4573299 | Meroni | Mar 1986 | A |
4599842 | Counihan | Jul 1986 | A |
4601137 | Bates | Jul 1986 | A |
4624084 | Esposito | Nov 1986 | A |
4648231 | Laroche | Mar 1987 | A |
4716704 | Murr | Jan 1988 | A |
4719127 | Greenberg | Jan 1988 | A |
4719727 | Cooper et al. | Jan 1988 | A |
4736555 | Nagare et al. | Apr 1988 | A |
4835924 | Blacklin et al. | Jun 1989 | A |
4895335 | Oliver | Jan 1990 | A |
4911971 | McCue et al. | Mar 1990 | A |
RE33220 | Collier | May 1990 | E |
4947610 | Koemer | Aug 1990 | A |
5050361 | Hallsten | Sep 1991 | A |
D320685 | Huang | Oct 1991 | S |
5083410 | Watson | Jan 1992 | A |
5090170 | Propst | Feb 1992 | A |
5111627 | Brown | May 1992 | A |
5205942 | Fitzgerald | Apr 1993 | A |
5325646 | Hallsten | Jul 1994 | A |
5333423 | Propst | Aug 1994 | A |
5361554 | Bryan | Nov 1994 | A |
5390468 | Probst | Feb 1995 | A |
5396734 | Frey | Mar 1995 | A |
5409192 | Oliver | Apr 1995 | A |
5456189 | Belle Isle | Oct 1995 | A |
5483776 | Poppe | Jan 1996 | A |
5497593 | Riesberg | Mar 1996 | A |
5501754 | Hiraguri | Mar 1996 | A |
5553427 | Andres | Sep 1996 | A |
5588264 | Buzon | Dec 1996 | A |
5606840 | Hase | Mar 1997 | A |
5623803 | Willis | Apr 1997 | A |
5660016 | Erwin et al. | Aug 1997 | A |
5729948 | Levy et al. | Mar 1998 | A |
5758467 | Snear et al. | Jun 1998 | A |
5765329 | Huang | Jun 1998 | A |
5775048 | Orchard | Jul 1998 | A |
5778621 | Randjelovic | Jul 1998 | A |
5806897 | Nagai et al. | Sep 1998 | A |
5813180 | Whitney et al. | Sep 1998 | A |
5840078 | Yerys | Nov 1998 | A |
5850720 | Willis | Dec 1998 | A |
5906082 | Counihan | May 1999 | A |
5913784 | Hite | Jun 1999 | A |
5921030 | Ducotey | Jul 1999 | A |
5927041 | Sedlmeier et al. | Jul 1999 | A |
5953878 | Johnson | Sep 1999 | A |
5992109 | Jonker | Nov 1999 | A |
5997209 | Sachs | Dec 1999 | A |
6122873 | Randjelovic | Sep 2000 | A |
6189289 | Quaglia et al. | Feb 2001 | B1 |
6199340 | Davis | Mar 2001 | B1 |
6226950 | Davis | May 2001 | B1 |
6233886 | Andres | May 2001 | B1 |
6338229 | Botzen | Jan 2002 | B1 |
6363674 | Carver | Apr 2002 | B1 |
6430883 | Paz et al. | Aug 2002 | B1 |
6470641 | Faure | Oct 2002 | B1 |
6502791 | Parker | Jan 2003 | B2 |
D470039 | Pelc | Feb 2003 | S |
6550206 | Lee | Apr 2003 | B2 |
6584748 | Bresnahan | Jul 2003 | B2 |
6594961 | Leines | Jul 2003 | B2 |
6694691 | Ku | Feb 2004 | B2 |
6695541 | Spence | Feb 2004 | B1 |
6711864 | Erwin | Mar 2004 | B2 |
6729097 | Patel | May 2004 | B2 |
6863768 | Haffner | Mar 2005 | B2 |
6871467 | Hafner | Mar 2005 | B2 |
6883287 | Niese et al. | Apr 2005 | B2 |
6901715 | Brown et al. | Jun 2005 | B2 |
6973881 | Bianchi | Dec 2005 | B2 |
D522147 | Morton et al. | May 2006 | S |
7047697 | Heath | May 2006 | B1 |
7409803 | Grohman | Aug 2008 | B2 |
7454869 | Owen | Nov 2008 | B2 |
7600353 | Hafner | Oct 2009 | B2 |
7621089 | Potter | Nov 2009 | B2 |
7730693 | Schrotenboer | Jun 2010 | B2 |
7818925 | Benedict | Oct 2010 | B2 |
7908812 | Eberle | Mar 2011 | B2 |
7958688 | Vilar Llop | Jun 2011 | B2 |
7984599 | Snell et al. | Jul 2011 | B2 |
8002943 | Brown et al. | Aug 2011 | B2 |
8006458 | Olofsson | Aug 2011 | B1 |
8011153 | Orchard | Sep 2011 | B2 |
8056303 | Frobosilo | Nov 2011 | B2 |
8066464 | Dyke | Nov 2011 | B1 |
8156694 | Knight, I et al. | Apr 2012 | B2 |
8177385 | Porciatti | May 2012 | B2 |
8225581 | Strickland et al. | Jul 2012 | B2 |
D667143 | Swanson | Sep 2012 | S |
8256172 | Benson | Sep 2012 | B2 |
8302356 | Knight et al. | Nov 2012 | B2 |
8375672 | Hannig | Feb 2013 | B2 |
8381461 | Repasky | Feb 2013 | B2 |
8387317 | Kugler et al. | Mar 2013 | B2 |
8464488 | Pelc, Jr. | Jun 2013 | B2 |
8505257 | Boo | Aug 2013 | B2 |
8511014 | Delforte | Aug 2013 | B2 |
8516762 | Jendusa | Aug 2013 | B1 |
D704864 | Chang | May 2014 | S |
8769895 | Amend | Jul 2014 | B2 |
8806826 | Mann | Aug 2014 | B2 |
8869481 | Dzigava | Oct 2014 | B2 |
8919068 | Wright et al. | Dec 2014 | B2 |
8925263 | Haddock et al. | Jan 2015 | B2 |
8984818 | McPheeters et al. | Mar 2015 | B2 |
D728185 | Pelc et al. | Apr 2015 | S |
9010068 | Sullivan | Apr 2015 | B2 |
9109367 | Plozner | Aug 2015 | B2 |
9151063 | McManus | Oct 2015 | B2 |
9180941 | Vandenworm | Nov 2015 | B1 |
9181715 | Orchard | Nov 2015 | B2 |
9181717 | Jamison | Nov 2015 | B1 |
9290889 | Choo | Mar 2016 | B2 |
9314936 | Pervan | Apr 2016 | B2 |
9347227 | Ramachandra | May 2016 | B2 |
9410296 | Tabibnia | Aug 2016 | B2 |
9435113 | Brandt et al. | Sep 2016 | B2 |
9447643 | Jack | Sep 2016 | B2 |
9534377 | Lee | Jan 2017 | B2 |
9551158 | Leines | Jan 2017 | B1 |
9580914 | Fountain | Feb 2017 | B2 |
9624677 | Wright | Apr 2017 | B2 |
9637934 | Wadsworth | May 2017 | B2 |
10247222 | Bertovic | Apr 2019 | B2 |
10415191 | Tabibnia | Sep 2019 | B2 |
20020059766 | Gregori | May 2002 | A1 |
20020078638 | Huang | Jun 2002 | A1 |
20030046895 | Haffner et al. | Mar 2003 | A1 |
20030074853 | Potter | Apr 2003 | A1 |
20030101673 | West et al. | Jun 2003 | A1 |
20030154662 | Bruchu et al. | Aug 2003 | A1 |
20030188500 | Voegele | Oct 2003 | A1 |
20040244325 | Nelson | Dec 2004 | A1 |
20060059822 | Guffey | Mar 2006 | A1 |
20060220276 | Giuliani | Oct 2006 | A1 |
20070113511 | Greiner | May 2007 | A1 |
20090019805 | Zanelli | Jan 2009 | A1 |
20090173018 | Buzon | Jul 2009 | A1 |
20110315646 | Otsubo | Dec 2011 | A1 |
20120047834 | Stal et al. | Mar 2012 | A1 |
20120151867 | Smith et al. | Jun 2012 | A1 |
20120291369 | Knight, I et al. | Nov 2012 | A1 |
20130205703 | Baumer | Aug 2013 | A1 |
20130283710 | Laurin et al. | Oct 2013 | A1 |
20140007525 | Wright | Jan 2014 | A1 |
20150275500 | Dalla et al. | Oct 2015 | A1 |
Number | Date | Country |
---|---|---|
3405755 | Dec 1985 | DE |
202013102695 | Jul 2013 | DE |
2669444 | Dec 2013 | EP |
2761095 | Sep 1998 | FR |
2371609 | Jul 2002 | GB |
4238954 | Aug 1992 | JP |
2008240417 | Oct 2008 | JP |
2008285953 | Nov 2008 | JP |
2010144372 | Jul 2010 | JP |
2012060488 | May 2012 | WO |
Entry |
---|
PCT/US2016/058511 International Search Report and Written Opinion, dated Apr. 13, 2017. |
Number | Date | Country | |
---|---|---|---|
20190249424 A1 | Aug 2019 | US |
Number | Date | Country | |
---|---|---|---|
61895930 | Oct 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15947774 | Apr 2018 | US |
Child | 16397597 | US | |
Parent | 15637307 | Jun 2017 | US |
Child | 15947774 | US | |
Parent | 14841211 | Aug 2015 | US |
Child | 15637307 | US | |
Parent | 14524431 | Oct 2014 | US |
Child | 14841211 | US |