The present invention is generally related to hardware accelerated graphics computer systems.
Recent advances in computer performance have enabled graphic systems to provide more realistic graphical images using personal computers, home video game computers, handheld devices, and the like. In such graphic systems, a number of procedures are executed to “render” or draw graphic primitives to the screen of the system. A “graphic primitive” is a basic component of a graphic picture, such as a point, line, polygon, or the like. Rendered images are formed with combinations of these graphic primitives. Many procedures may be utilized to perform 3-D graphics rendering.
Specialized graphics processing units (e.g., GPUs, etc.) have been developed to optimize the computations required in executing the graphics rendering procedures. The GPUs are configured for high-speed operation and typically incorporate one or more rendering pipelines. Each pipeline includes a number of hardware-based functional units that are optimized for high-speed execution of graphics instructions/data, where the instructions/data are fed into the front end of the pipeline and the computed results emerge at the back end of the pipeline. The hardware-based functional units, cache memories, firmware, and the like, of the GPU are optimized to operate on the low-level graphics primitives (e.g., comprising “points”, “lines”, “triangles”, etc.) and produce real-time rendered 3-D images.
The real-time rendered 3-D images are generated using raster display technology. Raster display technology is widely used in computer graphics systems, and generally refers to the mechanism by which the grid of multiple pixels comprising an image are influenced by the graphics primitives. For each primitive, a typical rasterization system generally steps from pixel to pixel and determines whether or not to “render,” or write a given pixel into a frame buffer or pixel map, as per the contribution of the primitive. This, in turn, determines how to write the data to the display buffer representing each pixel.
Various traversal algorithms and various rasterization methods have been developed for computing from a graphics primitive based description to a pixel based description (e.g., rasterizing pixel to pixel per primitive) in a way such that all pixels within the primitives comprising a given 3-D scene are covered. For example, some solutions involve generating the pixels in a unidirectional manner. Such traditional unidirectional solutions involve generating the pixels row-by-row in a constant direction. This requires that the sequence shift across the primitive to a starting location on a first side of the primitive upon finishing at a location on an opposite side of the primitive.
Other traditional methods involve utilizing per pixel evaluation techniques to closely evaluate each of the pixels comprising a display and determine which pixels are covered by which primitives. The per pixel evaluation involves scanning across the pixels of a display to determine which pixels are touched/covered by the edges of a graphics primitive.
Once the primitives are rasterized into their constituent pixels, these pixels are then processed in pipeline stages subsequent to the rasterization stage where the rendering operations are performed. Generally, these rendering operations assign a color to each of the pixels of a display in accordance with the degree of coverage of the primitives comprising a scene. The per pixel color is also determined in accordance with texture map information that is assigned to the primitives, lighting information, and the like.
A problem exists however with the ability of prior art 3-D rendering architectures to scale to handle the increasingly complex 3-D scenes of today's applications. Computer screens now commonly have screen resolutions of 1920×1200 pixels or larger. Traditional methods of increasing 3-D rendering performance, such as, for example, increasing clock speed, have negative side effects such as increasing power consumption and increasing the heat produced by the GPU integrated circuit die. Other methods for increasing performance, such as incorporating large numbers of parallel execution units for parallel execution of GPU operations have negative side effects such as increasing integrated circuit die size, decreasing yield of the GPU manufacturing process, increasing power requirements, and the like.
Thus, a need exists for a rasterization process that can scale as graphics application needs require and provide added performance without incurring penalties such as increased power consumption and/or reduced fabrication yield.
Embodiments of the present invention provide a method and system for a rasterization process that can scale as graphics application needs require and provide added performance without incurring penalties such as increased power consumption and/or reduced fabrication yield.
In one embodiment, the present invention is implemented as a method for multiple queue output buffering in a raster stage of a graphics processor. The method includes receiving a graphics primitive (e.g., a triangle polygon) for rasterization in a raster stage of a graphics processor (e.g., a GPU). The graphics primitive is rasterized at a first level to generate a plurality of tiles of pixels related to the graphics primitive. Each tile is subsequently rasterized to determine related sub-portions of each tile (e.g., those sub portions which have some degree of coverage). The related sub-portions are transferred to a plurality of output queues. The related sub-portions are subsequently output on a per queue basis and on a per clock cycle basis (e.g., one sub portion per queue per clock cycle).
In one embodiment, the output queues are configured to receive the related sub-portions on a per queue basis, wherein each of the output queues is configured to output a respective one of the sub-portions on the per clock cycle basis. In one embodiment, the output queues are configured to exchange at least one related sub-portion from one of the output queues to a different one of the output queues. In this manner, the exchanging can balance an output rate of the output queues. Similarly, the exchanging can balance per clock cycle output slots of the output queues. This attribute can ensure a per queue number of related sub portions are output each clock cycle, thereby minimizing the occurrence of any empty slots in one or more of the output queues. For example, subsequent stages of the graphics processor can be fully utilized since related sub portions are output per queue without slots being wasted on any empty or otherwise uncovered sub portions (e.g., those sub portions of the tile which are completely uncovered by the graphics primitive).
The present invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements.
Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with the preferred embodiments, it will be understood that they are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the invention as defined by the appended claims. Furthermore, in the following detailed description of embodiments of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be recognized by one of ordinary skill in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the embodiments of the present invention.
Notation and Nomenclature:
Some portions of the detailed descriptions, which follow, are presented in terms of procedures, steps, logic blocks, processing, and other symbolic representations of operations on data bits within a computer memory. These descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. A procedure, computer executed step, logic block, process, etc., is here, and generally, conceived to be a self-consistent sequence of steps or instructions leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated in a computer system. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.
It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussions, it is appreciated that throughout the present invention, discussions utilizing terms such as “processing” or “accessing” or “executing” or “storing” or “rendering” or the like, refer to the action and processes of a computer system (e.g., computer system 100 of
Computer System Platform:
It should be appreciated that the GPU 110 can be implemented as a discrete component, a discrete graphics card designed to couple to the computer system 100 via a connector (e.g., AGP slot, PCI-Express slot, etc.), a discrete integrated circuit die (e.g., mounted directly on a motherboard), or as an integrated GPU included within the integrated circuit die of a computer system chipset component (not shown). Additionally, a local graphics memory 114 can be included for the GPU 110 for high bandwidth graphics data storage.
Embodiments of the present invention implement a method and system for multiple queue output buffering in a raster stage of a graphics processor (e.g., GPU 110 of
In one embodiment, as depicted in
Thus, as depicted in
Referring still to
Additional details regarding boustrophedonic pattern rasterization can be found in US patent application “A GPU HAVING RASTER COMPONENTS CONFIGURED FOR USING NESTED BOUSTROPHEDONIC PATTERNS TO TRAVERSE SCREEN AREAS” by Franklin C. Crow et al., Ser. No. 11/304,904, filed on Dec. 15, 2005, which is incorporated herein in its entirety.
It should be noted that although embodiments of the present invention are described in the context of boustrophedonic rasterization, other types of rasterization patterns can be used. For example, the algorithms and GPU stages described herein for rasterizing tile groups can be readily applied to traditional left-to-right, line-by-line rasterization patterns.
As described above, the line 321 shows a boustrophedonic pattern of traversal, where the raster unit visits all pixels on a 2D area of the triangle 301 by scanning along one axis as each pass moves farther along on the orthogonal axis. In the
As described above, in one embodiment, the first level rasterization generates a tile (e.g., tile 401) comprising a set of pixels related to the graphics primitive (e.g., a tile that has at least some coverage with respect to the primitive). Generally, the first level rasterization is intended to quickly determine which pixels of the screen area relate to a given graphics primitive. Accordingly, relatively large groups of pixels (e.g., tiles) are examined at a time in order to quickly find those pixels that relate to the primitive. The process can be compared to a reconnaissance, whereby the coarse raster unit quickly scans a screen area and finds tiles that cover the triangle 301. Thus the pixels that relate to the triangle 301 can be discovered much more quickly than the traditional prior art process which utilizes a single level of rasterization and examines much smaller numbers of pixels at a time, in a more fine-grained manner.
The
As described above, the coarse raster unit examines relatively large groups of pixels at a time in order to quickly find those pixels that relate to the primitive. Accordingly, tiles can include large numbers of pixels, such as, for example, 1024 pixels in a 32×32 arrangement. Once relevant tiles are identified, embodiments of the present invention subdivide the large tile into constituent sub-portions as shown in
It should be noted that although embodiments of the present invention are described in the context of tiles having 16 sub-portions, tiles having other configurations and other numbers of sub-portions (e.g., 32 sub-portions, 64 sub-portions, etc.) can be implemented and are within the scope of the present invention.
Output unit 600 shows four output queues 601-604. As described above, in one embodiment, once a given tile is determined to have some coverage from a graphics primitive, that tile is subsequently rasterized to determine its related sub-portions. In the
In the
In this manner, the related sub-portions of the tile are output such that the sub-portions are adjacent to one another (e.g., within the same quadrant). This locality of memory reference aspect improves the chances that the related data for the sub-portions will be stored within caches have a comparatively low latency access.
As described above, each output queue is configured to handle its respective location of each quadrant of a given tile and to store those related sub-portions of its quadrants that have some coverage. This is shown in
In this manner, in one embodiment, the output queues are configured to exchange at least one related sub-portion from one of the output queues to a different one of the output queues. The exchanging can balance an output rate of the output queues, such as, for example, preventing one of the output queues for running empty while the other output queues have sub-portions to transfer. Similarly, the exchanging can balance per clock cycle output slots of the output queues, such as, for example, ensuring four sub-portions are output each clock cycle as long as possible.
These attributes can ensure a per queue number of related sub-portions are output each clock cycle, thereby minimizing the occurrence of any empty slots in one or more of the output queues. For example, the subsequent stages of the graphics processor can be fully utilized since related sub-portions are output per queue without slots being wasted on any empty or otherwise uncovered sub-portions (e.g., those sub-portions of the tile which are completely uncovered by the graphics primitive).
It should be noted that although sub-portions can be exchanged between the output queues, it is preferable that sub-portions are output with adjacent sub-portions in order to maintain their locality of memory reference. For example, in an implementation where each tile comprises 1024 pixels (e.g., 32×32), and where each of the related sub-portions comprises 64 pixels (e.g., 8×8), the output queues can be configured to ensure that the related sub-portions that are output on a per clock cycle basis are within an output area of two blocks comprising 16×16 pixels each.
In the
Referring still to
In one embodiment, the hardware comprising the raster unit 1002 is optimized for operations on a per clock basis. For example, to provide high throughput and thereby maintain high rendering frame rates, the coarse raster component 1003 and the fine raster component 1004 comprise hardware designed to implement the first level rasterization and the second level rasterization on a per-clock cycle basis. The rasterizer unit 1002 can be implemented such that the first level rasterization is implemented in the coarse raster component 1003 that “stamps out” tiles covering a given primitive within a single clock cycle. Subsequently, the rasterization at the second level can be implemented in the fine raster component 1004 that stamps out the covered pixels of a tile in a single clock cycle.
In one embodiment, wherein the first level rasterization is performed by the coarse rasterization component 1003 and the related sub-portions are output for rasterization at a second-level at the fine raster component 1004. In this manner, embodiments of the present invention provide a method and system for a rasterization process that can scale as graphics application needs require and provide added performance without incurring penalties such as increased power consumption and/or reduced fabrication yield.
The foregoing descriptions of specific embodiments of the present invention have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
4208810 | Rohner et al. | Jun 1980 | A |
4918626 | Watkins et al. | Apr 1990 | A |
5543935 | Harrington | Aug 1996 | A |
6259460 | Gossett et al. | Jul 2001 | B1 |
6323874 | Gossett | Nov 2001 | B1 |
6480205 | Greene et al. | Nov 2002 | B1 |
6611272 | Hussain et al. | Aug 2003 | B1 |
6614448 | Garlick et al. | Sep 2003 | B1 |
6717576 | Duluk, Jr. et al. | Apr 2004 | B1 |
6734861 | Van Dyke et al. | May 2004 | B1 |
6803916 | Ramani et al. | Oct 2004 | B2 |
6938176 | Alben et al. | Aug 2005 | B1 |
6956579 | Diard et al. | Oct 2005 | B1 |
6961057 | Van Dyke et al. | Nov 2005 | B1 |
7002591 | Leather et al. | Feb 2006 | B1 |
7061495 | Leather | Jun 2006 | B1 |
7075542 | Leather | Jul 2006 | B1 |
7307638 | Leather et al. | Dec 2007 | B2 |
7483029 | Crow et al. | Jan 2009 | B2 |
7634637 | Lindholm et al. | Dec 2009 | B1 |
20020130863 | Baldwin | Sep 2002 | A1 |
20030163589 | Bunce et al. | Aug 2003 | A1 |
20040085313 | Moreton et al. | May 2004 | A1 |
20040130552 | Duluk, Jr. et al. | Jul 2004 | A1 |
20060044317 | Bourd et al. | Mar 2006 | A1 |
20060267981 | Naoi | Nov 2006 | A1 |
Number | Date | Country |
---|---|---|
101093578 | Dec 2007 | CN |
06180758 | Jun 1994 | JP |
10-134198 | May 1998 | JP |
11195132 | Jul 1999 | JP |
2005182547 | Jul 2005 | JP |
0013145 | Mar 2000 | WO |