Reference is made to commonly owned U.S. Pat. No. 9,741,785, filed Aug. 10, 2015, entitled Display Tile Structure and Tiled Display by Bower et al., and to commonly owned U.S. Pat. No. 10,181,507, filed Jul. 17, 2017, entitled Display Tile Structure and Tiled Display by Bower et al, the disclosures of each of which are incorporated herein by reference in their entirety.
The present disclosure relates to tiled displays and in particular to tiled displays that include black-matrix structures.
Large-format outdoor displays typically use inorganic light-emitting diodes (LEDs) individually mounted in a frame and replaced as necessary. In some displays, groups of LEDs are mounted in tiles, the tiles are assembled into a tile frame, and the tile frames are mounted in a display frame. If an LED in a tile fails, the faulty tile is removed, and a good tile replaces the faulty tile. Tiles can be tested before assembly, increasing display yields. The use of tiles increases the available size of a display since each tile is separately made and is much smaller than the size of the display itself. However, the mounting display frame can be larger or heavier than desired and can be visible or create undesirable and visible seams.
A variety of tiled display structures are known. U.S. Pat. No. 5,563,470 discloses a tiled panel display assembly with a common substrate on which multiple small display tiles are mounted in an array and electrically interconnected to form a large-area panel display. Each tile includes a plurality of contact pads that are aligned with corresponding contact pads on the common substrate and are electrically interconnected to provide electrical connections between adjacent tiles. Each of the tiles contains a plurality of metal-filled vias that connect contact pads on the under surfaces of the tiles to electrodes on the upper surface of the tile. Alternatively, electrical connections extend around the outer peripheral surface of the tile substrate. U.S. Pat. No. 8,531,642 shows a similar wrap-around electrical connection.
EP1548571 describes a configurable and scalable tiled OLED display. The OLED materials are deposited in a passive-matrix configuration on a transparent substrate and then interconnected with solder bump technology to a printed circuit board located on top of the transparent substrate. U.S. Pat. No. 6,897,855 describes a different tiled OLED structure with display tiles having picture element (pixel) positions defined up to the edge of the tiles. U.S. Pat. No. 6,897,855 also describes a tiled structure that employs vias through substrates to provide the electrical connections from the driving circuitry to the pixels on the display tiles, as does U.S. Pat. No. 6,853,411. U.S. Pat. No. 6,853,411 also describes locating pixel-driving circuitry beneath an OLED light emitter. Such a structure requires additional layers in a tile structure. In an alternative arrangement, U.S. Pat. No. 7,394,194 describes a tiled OLED structure with electrical standoffs connecting OLED electrodes on a tile substrate with conductors on a back panel. The electrical standoffs are located on the edge of each tile to avoid compromising the environmental integrity of the OLED materials on the tile.
Inorganic light-emitting diode displays using micro-LEDs (for example having an area less than 100 microns square or having an area small enough that it is not visible to an unaided observer of the display at a designed viewing distance) are also known. U.S. Pat. No. 8,722,458, entitled Optical Systems Fabricated by Printing-Based Assembly, teaches transferring light-emitting, light-sensing, or light-collecting semiconductor elements from a wafer substrate to a destination substrate. U.S. Pat. No. 5,739,800 describes an LED display chip with an array of micro-LEDs mounted on a mounting substrate and electrically connected to a driver substrate. However, this arrangement requires multiple substrates and the use of vias to connect integrated circuits on the driver substrate to the LED display substrate and is not suitable for a scalable tiled structure.
Some displays use light-emitting structures on a backplane together with integrated circuits mounted on the backplane to provide control signals to the light-emitting structures. As discussed in U.S. Pat. No. 5,686,790, integrated circuits mounted on the light-emitting side of the backplane unnecessarily increase the size of the backplane while integrated circuits mounted on the side of the backplane opposite the light-emitting structures require electrical vias through the backplane or electrical leads wrapped around the edge of the backplane to electrically connect the integrated circuits with the light-emitting structures. Such vias and leads are difficult and expensive to construct. Integrated circuits located within the display area of a display reduce the resolution and aperture ratio of the display. In flat-panel displays such as LCDs and OLEDs, a reduced aperture ratio also reduces the brightness or lifetime of the display.
Light-absorbing black-matrix layers are commonly used to absorb ambient light in a display and are typically disposed in a layer coated over a light-emitter layer in the display. Such black-matrix layers improve the contrast of the display. U.S. Pat. No. 7,239,367 entitled Tiled Display Device with Black Matrix Film having Different Aperture Ratios to Jin et al., describes such a display.
Multi-layer printed circuit boards (PCBs) are widely used in digital electronic systems to interconnect electronic elements such as integrated circuits and passive components such as resistors and capacitors. Such printed circuit boards include layers of insulating material interdigitated with patterned conductive layers such as etched copper sheets laminated with electrically conductive through-hole vias to interconnect the electronic elements, for example as disclosed in U.S. Pat. No. 4,591,659. However, these PCBs can be limited in the spatial resolution provided for integrated circuit electrical interconnections. Daughter cards used in conjunction with motherboards (i.e., smaller printed circuit boards mounted upon and electrically connected to larger printed circuit boards) are also known but likewise have limited spatial resolution, orientation, and integration provided for integrated circuits.
Thus, there remains a need for a display tile structure that is simple to make and has increased contrast, manufacturability, and an improved form factor in a robust structure for a tiled display.
In some embodiments of the present disclosure, a tiled display structure comprises a screen support having a screen emitter side and an opposing screen back side. The tiled display structure can have only a single screen support. A black matrix comprises a patterned layer of black-matrix material disposed on the screen back side. The pattern defines pixel openings substantially devoid of black-matrix material. An array of tiles each comprise a tile substrate and a plurality of pixels disposed in or on the tile substrate. Each pixel comprises one or more light emitters. The one or more light emitters are each disposed to emit light through a pixel opening in the black matrix. A substantially transparent adhesive layer adheres the array of tiles to the black-matrix material.
In some embodiments, each of the pixels can comprise a plurality of light emitters and the plurality of light emitters of each pixel emit light through a common pixel opening in the black matrix. In some embodiments, each pixel comprises a plurality of light emitters and each light emitter of the plurality of light emitters of each pixel emits light through a different pixel opening in the black matrix.
In some embodiments, each of the pixels comprises a red-light emitter that emits red light, a green-light emitter that emits green light, and a blue-light emitter that emits blue light. One or more light emitters of each pixel of the plurality of pixels can each be a light-emitting diode (LED). Each of the light-emitting diodes can be a micro-LED having at least one of a length and width no greater than 200 microns, no greater than 100 microns, no greater than 50 microns, no greater than 20 microns, no greater than 10 microns, no greater than 5 microns, or no greater than 2 microns. Each light-emitting diode can comprise a fractured or separated tether.
In some embodiments, at least some of the pixel openings comprise a color filter. In some embodiments, black-matrix material is disposed in contact with and disposed between tile substrates and can adhere tile substrates together.
In some embodiments, two or more adjacent tiles in the array of tiles are butted together. In some embodiments, the pixels are disposed at a regular pixel pitch in a direction and the pixel openings have an opening size in the direction that is no greater than one half the pixel pitch, no greater than one quarter the pixel pitch, no greater than one fifth the pixel pitch, no greater than one tenth the pixel pitch, no greater than one twentieth the pixel pitch, no greater than one fiftieth the pixel pitch, no greater than one hundredth the pixel pitch, no greater than one five hundredth the pixel pitch, or no greater than one thousandth the pixel pitch. In some embodiments, the pixels are disposed at a regular pixel pitch in a direction and a distance between a pixel at an edge of a tile and the edge of the tile is no greater than one half the pixel pitch.
The substantially transparent adhesive can be an optically clear adhesive. An optically clear adhesive can have a transparency of, for example, no less than 50% (e.g., no less than 75%, no less than 85%, no less than 90%, no less than 95%, or no less than 98%) to light, for example visible light or light emitted by the one or more light emitters.
Each tile substrate of the array of tiles can have a tile emitter side and a tile back side and the one or more light emitters disposed on the tile substrate are disposed on the tile emitter side. Emitter-side electrodes can be disposed on the tile emitter side and back-side electrodes can be disposed on the tile back side and electrical connections can electrically connect the emitter-side electrodes to the back-side electrodes. The electrical connections can be made with through-via connections that pass through the tile substrate or can be made with wrap-around connections that are at least partly disposed on one or more edges of the tile substrate.
In some embodiments, each tile comprises a pixel controller disposed on the tile back side electrically connected to the back-side electrodes that controls the one or more light emitters in each of the pixels disposed on the tile substrate.
Tiled display structures can comprise one or more bus connections and the one or more bus connections can be electrically connected to the back-side electrodes of at least one tile. Each tile can comprise one or more separate bus connections electrically connected to the back-side electrodes of the tile. The back-side electrodes of one tile can be electrically connected to the back-side electrodes of an adjacent tile adjacent to the one tile. The back-side electrodes of one tile can be electrically connected to the back-side electrodes of an adjacent tile adjacent to the one tile with one or more of: a jumper comprising a jumper substrate, connection posts, and a fractured or separated tether, one or more wire bonds, and one or more wrapped connections.
In some embodiments, at least some of the back-side electrodes of a subset of the array of tiles are commonly connected and each of the commonly connected back-side electrodes is electrically connected to a bus connection. In some embodiments, the tiles are disposed in rows and the back-side electrodes of ones of the tiles in a row are electrically connected in common.
In some embodiments, the tile substrates are flexible substrates. In some embodiments, a portion of one tile substrate is at least partially folded behind a portion of another tile substrate adjacent to the one tile substrate, as viewed through the screen support. The portion of the one tile substrate can be a bezel portion or a pigtail portion. In some embodiments, the tile substrates comprise a pigtail that electrically connects the one or more light emitters to a bus connection.
The use of small, bright emitters, for example micro-LEDs, enables a low-aperture ratio display, in contrast to OLED displays and LCDs, having increased area for interconnections between the light emitters as well as additional circuitry that enhances the functionality of the tiles. A low-aperture ratio display (for example having an aperture ratio of no greater than 20%, no greater than 10%, no greater than 1%, no greater than 0.5%, or no greater than 0.1%) can enable visually seamless tiling by increasing the distance between a pixel and an edge of a tile substrate.
Furthermore, the present disclosure enables reduced-cost construction by providing tiles that are formed using very small components, for example micro-LEDs disposed on the tiles by micro-transfer printing, and small interconnections, for example made using photolithographic methods that enable a very high-resolution display that is then electrically connected to low-resolution contact pads electrically available to bus connectors, which can then be constructed using a much lower resolution and less expensive technology, for example using parts, materials, and methods that are commonly used in printed circuit board manufacturing. A pixel controller can control more than one pixel, for example all of the pixels on a tile substrate.
Tiles can also be made on a flexible tile substrate disposed on a rigid tile substrate that is subsequently removed, thereby forming a very thin structure that can be flexible. If the screen support is also flexible, very large, flexible displays can be constructed.
In certain embodiments, the display includes a plurality of tiles with light emitters arranged in a regular array. In certain embodiments, the display includes an index matching or light-absorbing layer located between the tiles. In certain embodiments, the tile comprises glass, a polymer, a curable polymer, sapphire, silicon carbide, metal, copper, or diamond.
In certain embodiments, the tile comprises one or more passive electrical components mounted onto, formed on, or formed in a tile substrate. In certain embodiments, the passive electrical components are resistors, capacitors, antennas, or inductors. In certain embodiments, the tile includes one or more active electrical components mounted onto, formed on, or formed in a tile substrate. In certain embodiments, the active electrical components are transistors, integrated circuits, power supplies, or power-conversion circuits. In certain embodiments, at least one of the active electrical components is a driver that drives one or more of the light emitters.
In certain embodiments, the light-emitter is a red-light emitter that emits red light, and some embodiments comprise a green-light emitter that emits green light and a blue-light emitter that emits blue light. In certain embodiments, the tile includes a plurality of pixels and light emitters. In certain embodiments, the tile includes redundant red-light, green-light, and blue-light emitters. In certain embodiments, the red, green, and blue light emitters form a full-color pixel in a display.
In some embodiments, a structure includes a tiled display including a plurality of tiles. The tiles can be display tiles and can be removable or replaceable.
In some embodiments, a method of making a tiled display structure comprises: providing a plurality of tiles, each of the tiles comprising a tile substrate and a plurality of pixels disposed in or on the tile substrate, each pixel comprising one or more light emitters; providing a screen support having a screen emitter side and an opposing screen back side; providing a black matrix comprising a patterned layer of black-matrix material disposed on the screen back side, the pattern defining pixel openings that are substantially devoid of black-matrix material; and adhering the tiles to the black matrix with a layer of substantially transparent adhesive such that each of the one or more light emitters of each of the plurality of tiles is disposed to emit light through one of the pixel openings in the black matrix.
In some embodiments, providing the black matrix comprises disposing [e.g., printing (e.g., ink-jet printing) or coating] the black-matrix material on the screen support in a patterned layer. In some embodiments, providing the black matrix comprises photolithographically processing an unpatterned layer of black-matrix material [e.g., formed by printing or coating (e.g., spin-coating)] to form the patterned layer of the black-matrix material.
In some embodiments, disposing the layer of substantially transparent adhesive on the black matrix (e.g., and in the pixel openings) and then adhering the tiles to the layer of substantially transparent adhesive. In some embodiments, the method comprises arranging the tiles in an array; disposing the layer of substantially transparent adhesive on the tiles; and adhering the black matrix to the layer of substantially transparent adhesive. In some embodiments, the method comprises: determining that each of one or more of the tiles is a defective (e.g., by visual inspection or optical, electronic, or optoelectronic testing); removing (e.g., peeling off) the one or more of the tiles that is defective from the layer of substantially transparent adhesive; and adhering an additional tile to the layer of substantially transparent adhesive for each of the one or more of the tiles that was removed. In some embodiments, the method comprises: determining whether the additional tile that replaced the one or more of the tiles that was defective is defective; and replacing any additional tile that is determined to be defective.
The present disclosure provides, inter alia, a tiled display having reduced thickness, improved functionality and manufacturability, and reduced manufacturing cost, as well as improved contrast and uniformity. In some embodiments, a single screen support can provide a global reference for all of the tile substrates of tiles, which reduces alignment runout and improve uniformity.
The foregoing and other objects, aspects, features, and advantages of the present disclosure will become more apparent and better understood by referring to the following description taken in conjunction with the accompanying drawings, in which:
Features and advantages of the present disclosure will become more apparent from the detailed description set forth below when taken in conjunction with the drawings, in which like reference characters identify corresponding elements throughout. In the drawings, like reference numbers generally indicate identical, functionally similar, and/or structurally similar elements. The figures are not necessarily drawn to scale since the variation in size of various elements in the Figures is generally too great to permit depiction to scale.
Referring to the cross section and inset of
Screen support 10 can comprise any useful substrate, for example as found in the display industry, capable of transmitting light 90 emitted by light-emitters 52, for example but not limited to glass, plastic, sapphire, or quartz. Screen emitter side 12 and opposing screen back side 14 can be substantially or effectively parallel, for example within the limitations of a suitable manufacturing process. Screen support 10 can comprise one or more fiducial markings, for example one or more screen fiducial markings for aligning screen support 10 and tile fiducial markings to facilitate alignment of tiles 40 with screen support 10. Screen support 10 can be substantially transparent to light 90 emitted from light emitters 52, for example at least 50% (e.g., at least 75%, at least 80%, at least 90%, at least 95%, or at least 98%) transparent to visible light.
Black-matrix material 22 can comprise a polymer or resin and can be curable so that it can be applied as a liquid (e.g., a viscous liquid) to screen back side 14 and cured to form a solid. Black-matrix material 22 can comprise carbon black, dyes, pigments, or other visible light-absorbing material, for example having a black appearance to a human observer. Black-matrix material 22 can be patterned using photolithographic processes known in the display art, such as spray or spin coating and patterning with photoresist, to form black matrix 20 defining pixel openings 24. Pixel openings 24 can be substantially transparent to light 90 emitted from light emitters 52, for example at least 50% (e.g., at least 75%, at least 80%, at least 90%, at least 95%, or at least 98%) transparent to visible light.
Adhesive layer 30 can comprise a curable material, for example a resin or polymer that can be cured with heat or radiation, for example ultra-violet radiation. Adhesive layer 30 can be a layer of optically clear adhesive. In some embodiments, adhesive layer 30 is a layer of commercially available optically clear adhesive (e.g., provided as liquid optically clear adhesive (LOCA) and then cured). Adhesive layer 30 can be non-curable or comprise a cured material, such as PDMS for example. Adhesive layer 30 can provide an adhesion from which tiles 40 can be removed or replaced, for example by peeling a defective tile 40 from adhesive layer 30 and then pressing a new tile 40 onto adhesive layer 30. For example, if a tile 40 fails, the failed tile 409 can be removed and another tile 40 adhered in its place. PDMS can provide such an adhesive layer 30 that allows for removal and replacement of defective tiles 40. Adhesive layer 30 can be substantially transparent to light 90 emitted from light emitters 52, for example at least 50% (e.g., at least 75%, at least 80%, at least 90%, at least 95%, or at least 98%) transparent to visible light.
Tile substrate 42 can be rigid or flexible and can, for example, comprise glass, or polymer, or other materials known in the display or integrated circuit industry. Tile substrate 42 can be, but need not necessarily be, transparent. In some embodiments of the present disclosure, tile substrate 42 is opaque or is partially coated with a light-absorbing layer, for example a polymer layer comprising carbon black, dyes, or pigments. In some embodiments, tile substrate 42 can be processed using photolithographic processes known in the display arts. The array of tiles 40 can be arranged in a rectangular array or in a row or column. Tile emitter side 44 and opposing tile back side 46 can be substantially or effectively parallel, for example within the limitations of a suitable manufacturing process. Tile substrate 42 can comprise one or more fiducial markings to facilitate alignment of tiles 40 with screen support 10.
Light emitters 52 can comprise inorganic light-emitting diodes (iLEDs) and can be disposed on tile emitter side 44 of tile substrate 42 by micro-transfer printing the iLEDs from a native LED source wafer to tile emitter side 44 of non-native tile substrate 42. As a part of the micro-transfer printing process, micro-LED light emitters 52 can comprise a fractured or separated light-emitter tether 54 (for example as shown in
Referring to
In some embodiments of the present disclosure, pixel openings 24 are empty (e.g., comprise air or a gas or are under vacuum). In some embodiments, pixel openings 24 comprise a transparent material (e.g., the transparent adhesive material of adhesive layer 30). Referring to
Referring to
Referring to
Referring to
Adjacent tiles 40 can be electrically connected together, for example as shown in
In some embodiments of the present disclosure, and as shown in
In some embodiments of the present disclosure and as shown in the one-dimensional tile array of
Tiled display structure 99 can be constructed by providing a screen support 10 and tile substrates 42. Black-matrix material 22 is coated on screen support 10 and patterned to define pixel openings 24 in black-matrix material 22, for example using pattern-wise exposed coatings of photo-resist that are developed, etched, and stripped, using conventional photolithographic methods. One or more fiducials can be defined on screen support 10. Tile substrates 42 are provided and back-side electrodes 62 and emitter-side electrodes 60 provided on tile emitter side 44 and tile back side 46, respectively, together with either through-via connections 64 or wrap-around connections 66. Light emitters 52 can be disposed on tile emitter side 44, for example by micro-transfer printing so that light-emitter tethers 54 are fractured or separated and light-emitter connection posts 58 pierce or otherwise contact emitter-side electrodes 60. Light emitters 52 emit light 90 in a direction opposite to tile substrate 42 into pixel openings 24 and through screen support 10. Screen support 10 can comprise additional layers, for example anti-reflection layers. Adhesive layer 30 is disposed on either black matrix 20 or tiles 40, tiles 40 are then aligned with screen support 10 and adhered together. If adhesive layer 30 is curable, adhesive layer 30 is then cured. In some embodiments, adhesive layer 30 is a pressure-sensitive adhesive and tiles 40 are pressed onto adhesive layer 30. In some embodiments, a tile 40 is discovered to be defective (e.g., by visual inspection or optical, electronic, or optoelectronic testing), is removed by peeling the defective tile 40, and replacing the defective tile 40 with another tile 40, by pressing the other tile 40 into the location of the removed defective tile 40.
In some embodiments, in operation, a display controller external to tiled display structure 99 provides control and power signals to tiles 40 in the array of tiles 40 for example through bus connections 80. Bus connections 80 can be provided individually to each tile 40 or provided to groups or subsets of tiles 40 having interconnected back-side electrodes 62. In some embodiments, the group of tiles 40 comprises all of tiles 40. Back-side electrodes 62 conduct the provided power and control signals to each pixel controller 56 (where present), pixels 50, and light emitters 52 to operate light emitters 52. Thus, tiled display structure 99 can provide an active-matrix display, or a passive-matrix display, such as in inorganic micro-light-emitting diode display.
Certain embodiments of the present disclosure provide a tiled display structure for large displays (e.g., in excess of 3 m2 in display area). Certain embodiments provide one or more of: a large display from smaller pieces (tiles), invisible (e.g., to an unaided human viewer) seams between tiles of a display, very low reflectance, high ambient contrast, customizable “off state” appearance of a display, tiled active or passive matrix displays, displays with replaceable tiles. In certain embodiments, a display includes a host screen panel (e.g., screen support 10) with an opaque film that has windows with a pitch equal to a pixel pitch and window size smaller than half of the pixel pitch (e.g., smaller than 20% of the pixel pitch). The display may include emissive pixels having a core area in which multiple colored emitters of the pixel are located, where the core area is smaller than the windows in the opaque film. In some embodiments, a rectangular emissive display tile includes pixels having core areas in which multiple emitters are arranged, where the pixels are arranged in columns and rows and at least one edge of the tile is located a distance from the core areas of the nearest row or column of pixels by less than one half of a pixel pitch. In some embodiments, an optically clear adhesive layer connects a host screen panel to a display tile (e.g., a rectangular display tile). For example, a polydimethylsiloxane (PDMS) elastomer film can be applied to a host screen panel and cured.
As is understood by those skilled in the art, the terms “over” and “under” are relative terms and can be interchanged in reference to different orientations of the layers, elements, and substrates included in the present disclosure. For example, a first layer on a second layer, in some implementations means a first layer directly on and in contact with a second layer. In other implementations a first layer on a second layer includes a first layer and a second layer with another layer therebetween.
Having described certain implementations of embodiments, it will now become apparent to one of skill in the art that other implementations incorporating the concepts of the disclosure may be used. Therefore, the invention should not be limited to the expressly described embodiments, but rather should be limited only by the spirit and scope of the following claims.
Throughout the description, where apparatus and systems are described as having, including, or comprising specific components, or where processes and methods are described as having, including, or comprising specific steps, it is contemplated that, additionally, there are apparatus, and systems of the disclosed technology that consist essentially of, or consist of, the recited components, and that there are processes and methods according to the disclosed technology that consist essentially of, or consist of, the recited processing steps. It should be understood that the order of steps or order for performing certain action is immaterial so long as the disclosed technology remains operable. Moreover, two or more steps or actions in some circumstances can be conducted simultaneously.
This application claims the benefit of U.S. patent application Ser. No. 16/808,348, filed on Mar. 3, 2020, entitled Tiled Displays with Black-Matrix Support Screens, which claims the benefit of U.S. Provisional Patent Application No. 62/817,478, filed on Mar. 12, 2019, entitled Tiled Displays with Black-Matrix Support Screens, the content of each of which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4591659 | Leibowitz | May 1986 | A |
5523769 | Lauer | Jun 1996 | A |
5563470 | Li | Oct 1996 | A |
5686790 | Curtin et al. | Nov 1997 | A |
5739800 | Lebby et al. | Apr 1998 | A |
5838405 | Izumi et al. | Nov 1998 | A |
5986622 | Ong | Nov 1999 | A |
6142358 | Cohn et al. | Nov 2000 | A |
6476783 | Matthies et al. | Nov 2002 | B2 |
6498592 | Matthies | Dec 2002 | B1 |
6501441 | Ludtke | Dec 2002 | B1 |
6593902 | Ogino | Jul 2003 | B1 |
6624570 | Nishio et al. | Sep 2003 | B1 |
6683665 | Matthies | Jan 2004 | B1 |
6853411 | Freidhoff et al. | Feb 2005 | B2 |
6870519 | Sundahl | Mar 2005 | B2 |
6897855 | Matthies et al. | May 2005 | B1 |
7195733 | Rogers et al. | Mar 2007 | B2 |
7239367 | Jin et al. | Jul 2007 | B2 |
7354801 | Sugiyama et al. | Apr 2008 | B2 |
7394194 | Cok | Jul 2008 | B2 |
7521292 | Rogers et al. | Apr 2009 | B2 |
7557367 | Rogers et al. | Jul 2009 | B2 |
7662545 | Nuzzo et al. | Feb 2010 | B2 |
7704684 | Rogers et al. | Apr 2010 | B2 |
7719480 | Devos et al. | May 2010 | B2 |
7799699 | Nuzzo et al. | Sep 2010 | B2 |
7932123 | Rogers et al. | Apr 2011 | B2 |
7943491 | Nuzzo et al. | May 2011 | B2 |
7948450 | Kay et al. | May 2011 | B2 |
7972875 | Rogers et al. | Jul 2011 | B2 |
8232718 | Cok et al. | Jul 2012 | B2 |
8333860 | Bibl et al. | Dec 2012 | B1 |
8470701 | Rogers et al. | Jun 2013 | B2 |
8531642 | Kiryuschev et al. | Sep 2013 | B2 |
8558243 | Bibl et al. | Oct 2013 | B2 |
8722458 | Rogers et al. | May 2014 | B2 |
8791474 | Bibl et al. | Jul 2014 | B1 |
8794501 | Bibl et al. | Aug 2014 | B2 |
8835940 | Hu et al. | Sep 2014 | B2 |
8865489 | Rogers et al. | Oct 2014 | B2 |
8877648 | Bower et al. | Nov 2014 | B2 |
8889485 | Bower | Nov 2014 | B2 |
8934259 | Bower et al. | Jan 2015 | B2 |
8941215 | Hu et al. | Jan 2015 | B2 |
8987765 | Bibl et al. | Mar 2015 | B2 |
9049797 | Menard et al. | Jun 2015 | B2 |
9087764 | Chan et al. | Jul 2015 | B2 |
9105714 | Hu et al. | Aug 2015 | B2 |
9111464 | Bibl et al. | Aug 2015 | B2 |
9139425 | Vestyck | Sep 2015 | B2 |
9153171 | Sakariya et al. | Oct 2015 | B2 |
9161448 | Menard et al. | Oct 2015 | B2 |
9164722 | Hall | Oct 2015 | B2 |
9165989 | Bower et al. | Oct 2015 | B2 |
9166114 | Hu et al. | Oct 2015 | B2 |
9178123 | Sakariya et al. | Nov 2015 | B2 |
9207904 | Hall | Dec 2015 | B2 |
9217541 | Bathurst et al. | Dec 2015 | B2 |
9240397 | Bibl et al. | Jan 2016 | B2 |
9252375 | Bibl et al. | Feb 2016 | B2 |
9355854 | Meitl et al. | May 2016 | B2 |
9358775 | Bower et al. | Jun 2016 | B2 |
9367094 | Bibl et al. | Jun 2016 | B2 |
9412727 | Menard et al. | Aug 2016 | B2 |
9414503 | Lee et al. | Aug 2016 | B2 |
9478583 | Hu et al. | Oct 2016 | B2 |
9484504 | Bibl et al. | Nov 2016 | B2 |
9520537 | Bower et al. | Dec 2016 | B2 |
9555644 | Rogers et al. | Jan 2017 | B2 |
9583533 | Hu et al. | Feb 2017 | B2 |
9589944 | Higginson et al. | Mar 2017 | B2 |
9601356 | Bower et al. | Mar 2017 | B2 |
9640715 | Bower et al. | May 2017 | B2 |
9716082 | Bower et al. | Jul 2017 | B2 |
9741785 | Bower et al. | Aug 2017 | B2 |
9761754 | Bower et al. | Sep 2017 | B2 |
9765934 | Rogers et al. | Sep 2017 | B2 |
9818725 | Bower et al. | Nov 2017 | B2 |
9865832 | Bibl et al. | Jan 2018 | B2 |
9929053 | Bower et al. | Mar 2018 | B2 |
9934759 | Cross et al. | Apr 2018 | B1 |
10061553 | Hall | Aug 2018 | B2 |
10790173 | Gomez et al. | Sep 2020 | B2 |
11164934 | Bower | Nov 2021 | B2 |
20020050958 | Matthies et al. | May 2002 | A1 |
20020051106 | Nagashima et al. | May 2002 | A1 |
20020140629 | Sundahl | Oct 2002 | A1 |
20020163301 | Morley | Nov 2002 | A1 |
20030025864 | Chida et al. | Feb 2003 | A1 |
20030141570 | Chen et al. | Jul 2003 | A1 |
20050134526 | Willem et al. | Jun 2005 | A1 |
20050140569 | Sundahl | Jun 2005 | A1 |
20060001796 | Chang et al. | Jan 2006 | A1 |
20060012733 | Jin et al. | Jan 2006 | A1 |
20060060870 | Park | Mar 2006 | A1 |
20090033856 | Kiryuschev et al. | Feb 2009 | A1 |
20100306993 | Mayyas et al. | Dec 2010 | A1 |
20110057861 | Cok | Mar 2011 | A1 |
20110141404 | Kim et al. | Jun 2011 | A1 |
20130309792 | Tischler et al. | Nov 2013 | A1 |
20130316487 | de Graff et al. | Nov 2013 | A1 |
20140159043 | Sakariya et al. | Jun 2014 | A1 |
20150301781 | Ekkaia et al. | Oct 2015 | A1 |
20160037608 | Ikeda et al. | Feb 2016 | A1 |
20160093600 | Bower et al. | Mar 2016 | A1 |
20160132281 | Yamazaki et al. | May 2016 | A1 |
20160351539 | Bower | Dec 2016 | A1 |
20170047393 | Bower et al. | Feb 2017 | A1 |
20170256522 | Cok et al. | Sep 2017 | A1 |
20170338374 | Zou et al. | Nov 2017 | A1 |
20180323180 | Cok | Nov 2018 | A1 |
20200295120 | Bower et al. | Sep 2020 | A1 |
Number | Date | Country |
---|---|---|
1237141 | Sep 2002 | EP |
1548571 | Jun 2005 | EP |
3343273 | Jul 2018 | EP |
3343274 | Jul 2018 | EP |
3343551 | Jul 2018 | EP |
3007561 | Dec 2014 | FR |
Entry |
---|
Bower, C. A. et al., Emissive displays with transfer-printed assemblies of 8 μm ×15 μm inorganic light-emitting diodes, Photonics Research, 5(2):A23-A29, (2017). |
Bower, C. A. et al., Micro-Transfer-Printing: Heterogeneous Integration of Microscale Semiconductor Devises using Elastomer Stamps, IEEE Conference, (2014). |
Bower, C. A. et al., Transfer Printing: An Approach for Massively Parallel Assembly of Microscale Devices, IEEE, Electronic Components and Technology Conference, (2008). |
Cok, R. S. et al., 60.3: AMOLED Displays Using Transfer-Printed Integrated Circuits, Society for Information Display, 10:902-904, (2010). |
Cok, R. S. et al., Inorganic light-emitting diode displays using micro-transfer printing, Journal of the SID, 25(10):589-609, (2017). |
Cok, R. S. et. al., AMOLED displays with transfer-printed integrated circuits, Journal of SID, 19(4):335—341, (2011). |
Feng, X. et al., Competing Fracture in Kinetically Controlled Transfer Printing, Langmuir, 23(25):12555-12560, (2007). |
Gent, A.N., Adhesion and Strength of Viscoelastic Solids. Is There a Relationship between Adhesion and Bulk Properties, American Chemical Society, Langmuir, 12(19):4492-4496, (1996). |
Kim, Dae-Hyeong et al., Optimized Structural Designs for Stretchable Silicon Integrated Circuits, Small, 5(24):2841-2847, (2009). |
Kim, Dae-Hyeong et al., Stretchable and Foldable Silicon Integrated Circuits, Science, 320:507-511, (2008). |
Kim, S. et al., Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing, PNAS, 107(40):17095-17100 (2010). |
Kim, T. et al., Kinetically controlled, adhesiveless transfer printing using microstructured stamps, Applied Physics Letters, 94(11):113502-1-113502-3, (2009). |
Meitl, M. A. et al., Transfer printing by kinetic control of adhesion to an elastomeric stamp, Nature Material, 5:33-38, (2006). |
Michel, B. et al., Printing meets lithography: Soft approaches to high-resolution patterning, J. Res. & Dev. 45(5):697-708, (2001). |
Trindade, A.J. et al., Precision transfer printing of ultra-thin AlInGaN micron-size light-emitting diodes, Crown, pp. 217-218, (2012). |
Number | Date | Country | |
---|---|---|---|
20220093724 A1 | Mar 2022 | US |
Number | Date | Country | |
---|---|---|---|
62817478 | Mar 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16808348 | Mar 2020 | US |
Child | 17487900 | US |