Tiled touch system

Information

  • Patent Grant
  • 8120596
  • Patent Number
    8,120,596
  • Date Filed
    Friday, May 21, 2004
    20 years ago
  • Date Issued
    Tuesday, February 21, 2012
    12 years ago
Abstract
A tiled touch system comprises a display on which a computer-generated image is presented. The image is formed of an array of image segments. A digitizer is mapped to the display and senses pointer contacts made thereon.
Description
FIELD OF THE INVENTION

The present invention relates generally to interactive displays and in particular to a tiled touch system.


BACKGROUND OF THE INVENTION

Touch systems are well known in the art and typically include a touch screen having a touch surface on which contacts are made using a pointer in order to generate user input. Pointer contacts with the touch surface are detected and are used to generate corresponding output depending on areas of the contact surface where the contacts are made. There are basically two general types of touch systems available and they can be broadly classified as “active” touch systems and “passive” touch systems.


Active touch systems allow a user to generate user input by contacting the touch surface with a special pointer that usually requires some form of on-board power source, typically batteries. The special pointer emits signals such as infrared light, visible light, ultrasonic frequencies, electromagnetic frequencies, etc. that activate the touch surface.


Passive touch systems allow a user to generate user input by contacting the touch surface with a passive pointer and do not require the use of a special pointer in order to activate the touch surface. A passive pointer can be a finger, a cylinder of some material, or any suitable object that can be used to contact some predetermined area of interest on the touch surface.


Passive touch systems provide advantages over active touch systems in that any suitable pointing device, including a user's finger, can be used as a pointer to contact the touch surface. As a result, user input can easily be generated. Also, since special active pointers are not necessary in passive touch systems, battery power levels and/or pointer damage, theft, or misplacement are of no concern to users.


International PCT Application No. PCT/CA01/00980 filed on Jul. 5, 2001 and published under No. WO 02/03316 on Jan. 10, 2002, assigned to SMART Technologies Inc., assignee of the present invention, discloses a camera-based touch system comprising a touch screen that includes a passive touch surface overlying a display unit such as for example a plasma display on which a computer-generated image is presented. A rectangular bezel or frame surrounds the touch surface and supports digital cameras at its corners. The digital cameras have overlapping fields of view that encompass and look across the touch surface. The digital cameras acquire images looking across the touch surface from different locations and generate image data. Image data acquired by the digital cameras is processed by digital signal processors to determine if a pointer exists in the captured image data. When it is determined that a pointer exists in the captured image data, the digital signal processors convey pointer characteristic data to a master controller, which in turn processes the pointer characteristic data to determine the location of the pointer relative to the touch surface using triangulation. The pointer location data is conveyed to a computer executing one or more application programs. The computer uses the pointer location data to update the computer-generated image that is presented on the touch surface. Pointer contacts on the touch surface can therefore be recorded as writing or drawing or used to control execution of application programs executed by the computer.


Although this touch system works extremely well, the use of a single, large display unit to present the computer-generated image has its disadvantages. Large high-resolution display units such as plasma displays are expensive and their resolutions are limited. Although large, lower cost display units are available, there is an associated reduction in resolution.


Large display units composed of arrays of smaller high-resolution display units have been considered. However, to-date the ability for users to interact with these large display units has been limited. Accordingly, there is a need for a low-cost, high resolution large-scale touch system.


It is therefore an object of the present invention to provide a novel tiled touch system.


SUMMARY OF THE INVENTION

Accordingly, in one aspect of the present invention there is provided a tiled touch system comprising:

    • a display on which a computer-generated image is presented, said image being formed of an array of image segments; and
    • a digitizer mapped to said display and sensing pointer contacts made thereon.


In one embodiment each image segment is mapped to a corresponding segment of the active area of the digitizer. At least one processing unit is responsive to the digitizer and updates the computer-generated image in response to sensed contacts on the display surface.


In one embodiment, the image segments form portions of a generally continuous image presented over the display. In another embodiment, the image segments are discrete.


In one embodiment, the display is constituted by an array of display panels, each of which presents one of the image segments. The display panels are of high resolution such as for example liquid crystal displays. In another embodiment, each image segment is projected on to an associated portion of the display by a projector. Adjacent projected image segments overlap.


The present invention provides advantages in that by using an array of small display panels to form a large tiled touch system, a larger interactive touch system with better resolution that is less expensive than currently available high resolution touch systems can be created. Also, by orienting the tiled touch system to map the coordinate systems of the display panels to the coordinate system of the digitizer allows the gaps between the display panels to be accommodated so that they do not disrupt the operation of the tiled touch system.





BRIEF DESCRIPTION OF DRAWINGS

Embodiments of the present invention will now be described more fully with reference to the accompanying drawings in which:



FIG. 1 is a schematic view of a tiled touch system in accordance with the present invention including a display unit constituted by an array of display panels and a digitizer overlying the display unit;



FIG. 2 is another schematic view of the tiled touch system of FIG. 1;



FIG. 3 is a perspective view showing mapping of the display panels to the digitizer;



FIG. 4 is a front plan view of the display panels and digitizer with the display panels forming one large desktop;



FIG. 5 is a front plan view of the display panels and digitizer with each display panel forming an individual desktop;



FIG. 6 is a perspective view showing orientation points displayed on the display panels during orientation of the tiled touch system to map the coordinate systems of the display panels to the coordinate system of the digitizer;



FIGS. 7
a and 7b are graphs showing the orientations error associated with a prototype tiled touch system including two display panels;



FIGS. 8
a and 8b are graphs showing the orientation error associated with a modeled tiled touch system including an 8×1 array of display panels;



FIGS. 9
a and 9b are graphs showing the orientation error associated with a modeled tiled touch system including a 9×2 array of display panels;



FIG. 10 is a graph showing the relationship between maximum orientation error and the number of display panels in the tiled touch system;



FIG. 11 is a front plan view of an alternative display unit;



FIGS. 12
a and 12b are front plan schematic views of further embodiments of display units;



FIG. 13 is a schematic view of another embodiment of a tiled touch system in accordance with the present invention;



FIG. 14 is a schematic view of yet another embodiment of a tiled touch system in accordance with the present invention; and



FIGS. 15
a and 15b are front plan views of alternative digitizers.





DETAILED DESCRIPTION OF EMBODIMENTS

Turning now to FIGS. 1 and 2, a tiled touch system in accordance with the present invention is shown and is generally identified by reference numeral 10. As can be seen, tiled touch system 10 includes a display unit 12 constituted by an array of display panels or tiles 14, on which a computer-generated image is presented. In this embodiment, the display panels 14 are liquid crystal displays (LCDs) that are arranged to form a 2×2 array. Each LCD 14 has a 1280×1024 active display pixel array. The borders 16 of the LCDs 14 interrupt the overall display area 12a of the display unit 12. As a result, the display area 12a of the display unit 12 is made up of a L non-uniformly spaced linear matrix of display pixels. In this case, since an array of four LCDs 14 make up the display unit 12, the borders 16 of the LCDs form a t-shaped gap 18 that interrupts the display area 12a of the display unit 12.


Tiled touch system 10 also includes a digitizer 20 for detecting pointer contacts relative to the display area 12a of the display unit 12. Digitizer 20 is coupled to a computer 22 that executes one or more application programs and that provides display data to the LCDs 14 via a multi-head video card such as that manufactured by Matrox under Model No. G200. The computer 22 uses pointer coordinate data generated by the digitizer 20 to update the display data conveyed to the LCDs 14 via the video card and hence, to update the computer-generated image that is presented over the display area 12a of the display unit 12.


Digitizer 20 in this embodiment is of the type disclosed in U.S. patent application Ser. No. 10/312,938 filed on Jan. 3, 2003 to Morrison et al. and U.S. patent application Ser. No. 10/354,168 filed on Jan. 30, 2003 to Akitt et al., both assigned to SMART Technologies Inc., assignee of the present invention, the contents of which are incorporated herein by reference. Digitizer 20 includes a rectangular bezel 30 that surrounds the display unit 12 and supports digital cameras 32 at its corners. The digital cameras 32 have overlapping fields of view that encompass and look generally across the plane of the display unit 12. The digital cameras 32 acquire images looking across the display unit 12 from different locations and generate image data. A transparent pane (not shown) formed of resistant material, such as for example glass, overlies the display unit 12 to provide a smooth continuous contact surface for the digitizer 20.


The active display pixel array of each LCD 14 is individually mapped to a corresponding generally rectangular segment of the digitizer's active area during an orientation procedure as will be described. As a result, the portions of the digitizer's active area associated with the active display pixel arrays of the LCDs 14 are known as are the portions of the digitizer's active area associated with the non-active gaps 18.


In this embodiment, the computer 22 is configured to treat all of the LCDs 14 collectively as one large desktop. As a result, the computer 22 provides display data to the LCDs 14 causing the computer-generated image to be broken into segments with each segment being displayed by one of the LCDs 14 as shown in FIG. 4.


During operation, image data acquired by the digital cameras 32 is processed by digital signal processors (not shown) associated with the digital cameras 32 to determine if a pointer exists in the captured image data. When it is determined that a pointer exists in the captured image data, the digital signal processors convey pointer characteristic data to the computer 22, which in turn processes the pointer characteristic data to determine the location of the pointer in (x,y) coordinates relative to the display area 12a of the display unit 12 using triangulation. The computer 22 uses the pointer coordinate data to update the computer-generated image that is presented over the display area of the display unit 12. Thus, the display unit 12, digitizer 20 and computer 22 form a closed-loop making the tiled touch system 10 user interactive. Pointer contacts on the contact surface of the digitizer 20 can therefore be recorded as writing or drawing or used to control execution of application programs executed by the computer 22.


As mentioned above, the active display pixel array of each LCD 14 is mapped to a corresponding segment of the digitizer's active area. Thus, pointer contacts on the contact surface of the digitizer 20 over a particular LCD 14 that are specific to that particular LCD are processed by the computer 22 so that only the display data conveyed to that particular LCD is effected. Pointer contacts representing global display commands are of course processed by the computer 22 in a manner that effects the overall computer-generated image displayed over the display area 12a.


Mapping the active display pixel arrays of the LCDs 14 to the digitizer's active area establishes the non-active regions of the digitizer's active area corresponding to the gaps 18. Compensating for the gaps 18 allows the tiled touch system 10 to handle pointer contacts that fully traverse gaps as well as start and/or stop within gaps.


For example, when a pointer is used to touch the contact surface of the digitizer 20 and initiate a left-to-right horizontal drag operation from one LCD 14 to the adjacent right LCD, when the pointer reaches the gap between the LCDs 14, the cursor remains at the right most column of pixels of the left LCD but follows the pointer vertically along the right most column of pixels as the pointer travels across the gap. When the pointer reaches the mid-point of the gap, the cursor flips to the left most column of pixels of the right LCD and remains in that pixel column while the pointer is in the gap. The cursor however moves vertically along the left most column of pixels to track the pointer. When the pointer reaches the active pixel display array of the right LCD 14, the cursor resumes tracking the pointer along both horizontal and vertical axis as the pointer moves over the active display pixel array of the right LCD panel.


A similar process is performed if a vertical drag operation is performed, except that the cursor remains in a horizontal pixel row when the pointer is moving across the gap but moves horizontally along the pixel row to track the pointer.


When a mouse down or mouse up event occurs at a gap, the mouse event can be translated to the closest LCD 14. Alternatively, mouse down or mouse up events in the gaps can be interpreted as gestures causing an associated function to be performed. For example, a window drag event starting over one LCD that ends in a gap could initiate a centering function causing the dragged window to be centered on the display of the LCD 14. Alternatively, a drag event initiated from a right gap into the active display pixel array of an LCD 14 may initiate a right click event at the location where the drag event is ended.


If desired command icons associated with particular commands can be provided within the gaps. Contacts that start and end on the command icons cause the computer 22 to execute the associated commands. Contacts with command icons that originate from outside of the gaps are ignored.


As mentioned previously, in order to enable the tiled touch system 10 to work effectively, it is necessary to orient or calibrate the tiled touch system 10 by mapping the coordinate system of the digitizer 20 to the coordinate system of each LCD 14 and to accommodate for the gaps 18 caused by the borders 16 of the LCDs 14.


During orientation, each LCD 14 is individually mapped to its corresponding rectangular segment 40 of the digitizer's active area as shown in FIG. 3. Thus, each segment 40 of the digitizer's active area generally overlies an associated LCD 14 with the (x,y) coordinates of each segment 40 being mapped to the (x,y) coordinates of its associated LCD 14 thereby to unify the display unit 12.


In order to achieve the desired mapping, the computer 22 drives each LCD 14 so that it presents a plurality of orientation points 50, in this example four (4) orientation points, at spaced locations as shown in FIG. 6. For each LCD 14, the user is prompted to touch the contact surface of the digitizer 20 at the displayed orientation points. As this is done, the digitizer 20 generates (x,y) pointer coordinate data corresponding to the locations where pointer contacts are made. Since the locations of the orientation points in the LCD coordinate system are known, the segments 40 of the digitizer 20 can be properly mapped to the coordinate system of the LCDs 14.


By displaying four orientation points 50 on each LCD 14 during orientation, the LCD and digitizer coordinate systems can be mapped to account for positional, scaling, rotation and non-linear aspects of the LCDs 14 such as keystone errors. If more than four orientation points are used, the mapping will take into account non-linear aspects of the digitizer 20.


With the LCD and digitizer coordinate systems mapped and with the number of LCDs 14 in the array known, the gaps between adjacent LCDs 14 are known and can be taken into account allowing the entire display surface 12a of the display unit 12 to be treated as a single display.


If desired, the number of orientation points 50 displayed by the LCDs 14 during orientation of the tiled touch system 10 can be varied. Increasing the number of orientation points increases mapping accuracy but requires the user to spend more time to orient the tiled touch system. Fewer orientation points reduces the types of display and digitizer errors that can be taken into account.


Alternatively, during orientation of the tiled touch system 10, dimensional information concerning the tiled touch system can be entered to allow the computer 22 to calculate the locations of the gaps. In this case, the user is prompted to enter the size of the LCD array, the diagonal dimension of the display unit 12 and the dimension of the gap-widths. With this information, the LCD and digitizer coordinate systems can be oriented by displaying only four points over the entire display area 12a. Although this allows the coordinate systems to be mapped using a limited number of orientation points, using so few orientation points reduces the types of display and digitizer errors that can be taken into account.


To assist in calibrating the tiled touch system 10, a prototype tiled touch system including two display panels was constructed. The two display panels were separated by a one-inch gap. A four point orientation procedure was carried out as described above but without correcting for the gap between the display panels. The prototype tiled touch system exhibited a ½ inch orientation error as a result of the gap between the display panels. FIGS. 7a and 7b are graphs showing the orientation error associated with the prototype tiled touch system as a pointer is moved horizontally across the tiled touch system.


Building on this information, the orientation error associated with tiled touch systems was modeled. FIGS. 8a and 8b are graphs showing the orientation error associated with a modeled tiled touch system including an 8×1 array of display panels and FIGS. 9a and 9b are graphs showing the orientation error associated with a modeled tiled touch system including a 9×1 array of display panels. It can be seen that the first gap in these tiled touch systems creates the largest amount of orientation error. Error to one side of a touch point catches up when a gap is crossed resulting in the orientation error being distributed over the display unit, creating zones of alignment as the pointer moves across the display unit.


Of interest, the resolution of the display panels does not effect the orientation error nor does the size of the display panels. The maximum orientation error of a display unit including more than two display panels occurs at the first and last gaps. The gap width between the display panels represents the maximum orientation error that a tiled touch system having an infinite number of display panels would exhibit as represented in FIG. 10.


If desired, the computer 22 may be configured to treat each of the LCDs 14 as a separate monitor with each LCD 14 presenting its own complete computer-generated image. The computer-generated images displayed by the LCDs 14 may be the same as shown in FIG. 5 or may be different.


Those of skill in the art will appreciate that display units other than LCDs can be used to form the display unit 12. For example, plasma display panels, cathode ray tubes (CRTs), or front or rear projection display units arranged in the desired array can be used. Basically, any display unit or combination of display units that can be arranged in an array can be used. Creating a display unit having a generally flat display area provides advantages in that parallax is reduced, thereby creating a good touch environment for the digitizer 20.


Although a particular architecture for the tiled touch system is illustrated in FIGS. 1 to 6, those of skill in the art will appreciate that alternatives are available. For example, the display unit 12 need not be limited to an array of four display panels. The display unit 12 may be made up of virtually any number of display panels. For example, FIG. 11 shows a display unit 112 constituted by a 2×3 array of display panels 114. FIG. 12a shows a display unit 212 constituted by a single row of three display panels 214 while FIG. 12b shows a display unit 312 constituted by a 3×3 array of display panels 314.


Rather than using a single computer 22 to drive the display panels and to determine pointer contacts on the display area 12a of the display unit 12 by triangulating the pointer characteristic data generated by the digitizer 20, the computer 22 can be used in conjunction with a number of other computers allowing responsibility for these tasks to be divided. Computer 22 in this case remains responsible for generating the pointer coordinate data in response to pointer contacts made on the display surface of the display unit 12, while computers are responsible for generating the display data conveyed to the display panels. Since separate computers are used to provide the display data to the display panels, in this environment, each display panel in the display unit acts as a separate monitor as shown in FIG. 5. For example, as shown in FIG. 13, separate computers 400 are used to drive each display panel 14. In this embodiment when a pointer contact is made on one of the display panels, the computer 22 provides pointer coordinate data to the computer 400 associated with that display panel so that the computer-generated image displayed by that display panel can be updated to reflect the pointer activity.


In this embodiment, the gaps are treated differently for contact events and drag events since a single computer does not control the display data conveyed to the display panels.


Alternatively, as shown in FIG. 14, the separate computers 400 provide the display data to the computer 22, which in turn conveys the display data to the display panels 14. When a pointer contact is made on one of the display panels, the computer 22 provides pointer coordinate data to the computer associated with that display panel as well as contact information to the other computers so that contact and drag events occurring in the gaps can be accounted for. The computer in turn updates the display data and conveys the updated display data back to the computer 22. The computer 22 in turn modifies the received display data based on contact events received from the other computers and forwards the display data to the display panel so that the computer-generated image displayed by the display panel can be updated to reflect the pointer activity.


Alternative digitizers can also be used in the tiled touch system provided the digitizer's active area can be partitioned into segments corresponding generally with the display panels 14 making up the display unit 12. For example as shown in FIGS. 15a and 15b, analog resistance touch screens 520 and 620 can be disposed over the display unit. In this case, the electrodes of the analog resistive touch screens are configured to allow the active area of the touch screens to be partitioned into the appropriate segments.


The tiled touch system provides a high resolution interactive display unit having a number of applications that take advantage of the fact that the display unit is made up of a plurality of display panels. For example, in real estate applications, one display panel can be used to present high level details of houses for sale, another display panel can be used to present specific details concerning a selected house and the remaining display panels can be used to display images of rooms within the selected house.


In movie theatre applications, one display panel can be used to present a graphical user interface that allows a user to browse through the theatre and buy movie tickets, another display panel can be used to present current and upcoming movies and the remaining display panels can be used to present movie trailers.


In home improvement applications, one display panel can be used to present a list of do-it-yourself projects, another display panel can be used to present a selected do-it-yourself project, other display panels can present steps required for the selected project and remaining display panels can present advertising relating to tools and accessories required for the selected project.


The orientation procedure described above is also suitable for use in touch systems where multiple projectors are used to project discrete images on a common display surface that overlap to form a continuous image over the entire display surface. Since each image is projected by its own projector, each projector may produce a differently distorted image. By allowing each projected image to be calibrated relative to its associated segment of the digitizer, a low cost, high resolution projection touch system can be created using multiple low cost projectors. Also, in rear projection systems, since the projectors are only responsible for projecting images on to a portion of the display surface, the throw distances of the projectors are smaller allowing the housing thickness to be reduced.


Although embodiments of the present invention have been described, those of skill in the art will appreciate that variations and modification may be made without departing from the spirit and scope thereof as defined by the appended claims.

Claims
  • 1. A tiled touch system comprising: a display on which a computer-generated image is presented, said display comprising an array of display panels, each display panel having an active display area on which a segment of said computer-generated image is presented, the display areas of adjacent display panels being interrupted by physical gaps, said gaps defining non-active display regions;at least one digitizer disposed on said display and providing a generally continuous contact surface overlying the active display areas and the non-active display regions corresponding to said gaps, said at least one digitizer being mapped to both said active display areas and said non-active display regions, said at least one digitizer comprising at least two imaging devices looking generally across said contact surface from different vantages and acquiring image frames to detect pointer contacts made on said contact surface over active display areas and on said contact surface over non-active display regions; andat least one processing unit responsive to pointer data received from said at least one digitizer and updating said computer-generated image in response to detected pointer contacts on said contact surface, wherein mapping of said at least one digitizer to both said active display areas and said non-active display regions is performed during an orientation procedure, and wherein during said orientation procedure, said at least one processing unit updates the computer-generated image so that each display panel displays a plurality of orientation points.
  • 2. A tiled touch system according to claim 1 wherein said image segments form portions of a generally continuous image presented over said display.
  • 3. A tiled touch system according to claim 1 wherein said image segments are discrete.
  • 4. A tiled touch system according to claim 1 wherein each display panel is a high resolution display panel.
  • 5. A tiled touch system according to claim 1 wherein each image segment is projected onto the active display area of an associated display panel.
  • 6. A tiled system according to claim 1 wherein said at least one processing unit processes received pointer data to recognize pointer contacts on the contact surface starting and/or stopping at locations that are mapped to the non-active display regions corresponding to the gaps as input commands.
  • 7. A tiled touch system according to claim 1 wherein said at least one processing unit recognizes pointer contacts on said contact surface beginning and/or ending at locations that are mapped to the non-active display regions corresponding to said gaps as input command events.
  • 8. A tiled touch system according to claim 1 further comprising selectable icons at locations that are mapped to the non-active display regions corresponding to said gaps.
  • 9. A tiled touch system according to claim 1 wherein said at least one digitizer comprises a generally transparent, rigid pane overlying said display and having an upper surface defining said contact surface.
  • 10. A tiled touch system according to claim 1 wherein said at least one processing unit tracks pointer movements along said contact surface traversing the non-active display regions corresponding to the gaps.
  • 11. A tiled touch system according to claim 1 wherein each display panel displays at least four orientation points.
  • 12. A tiled touch system according to claim 4 wherein said display panels are liquid crystal displays.
  • 13. A tiled touch system according to claim 5 wherein said computer-generated image is formed of overlapping image segments.
  • 14. A tiled touch system according to claim 13 wherein each display panel is a high resolution display panel.
  • 15. A tiled touch system according to claim 6 wherein each display panel is a high resolution display panel.
  • 16. A tiled touch system according to claim 14 wherein said display panels are liquid crystal displays.
  • 17. A tiled touch system according to claim 14 wherein said at least one digitizer comprises a generally transparent, rigid pane overlying said display and having an upper surface defining said contact surface.
  • 18. A tiled touch system according to claim 15 wherein said display panels are liquid crystal displays.
  • 19. A tiled touch system comprising: a display comprising a plurality of display panels, each of said display panels comprising a matrix of display pixels defining an active display area and a border surrounding said display area thereby to interrupt said display and define non-active display regions, each display area presenting a portion of an image;a digitizer comprising a continuous, generally transparent rigid pane on said display and defining a contact surface overlying both said active display areas and said non-active display regions, the contact surface of said transparent pane being mapped to said active display areas and said non-active display regions, said digitizer further comprising at least two imaging devices looking generally across said contact surface and capturing image frames from different vantages; andat least one processing unit responsive to pointer data output by said digitizer and updating the image presented by said display in response to detected pointer contacts on said contact surface, contacts on said contact surface initiating at locations that are mapped to non-active display areas corresponding to the borders being recognized by said at least one processing unit as input command events, wherein the contact surface of the transparent pane is mapped to the active display areas and the non-active display regions during an orientation procedure, said mapping compensating for at least some of positional, scaling, rotation and keystone errors, and wherein during said orientation procedure, said at least one processing unit updates the computer-generated image so that each display panel displays a plurality of orientation points.
  • 20. A tiled touch system according to claim 19 wherein said at least one processing unit further tracks pointer movements along said contact surface traversing borders between adjacent display panels.
  • 21. A tiled touch system according to claim 19 wherein said at least one processing unit is at least one computer coupled to said display.
  • 22. A tiled touch system according to claim 19 further comprising selectable icons at locations that are mapped to the non-active display corresponding to said borders.
  • 23. A tiled touch system according to claim 19 wherein each display panel displays at least four orientation points.
  • 24. A tiled touch system according to claim 20 wherein each display panel is a high resolution display panel.
  • 25. A tiled touch system according to claim 20 wherein said at least one processing unit is at least one computer coupled to said display.
  • 26. A tiled touch system according to claim 24 wherein said display panels are liquid crystal displays.
  • 27. A tiled touch system according to claim 21 wherein said at least one computer is a single computer coupled to said display.
  • 28. A tiled touch system according to claim 21 wherein said at least one computer is a plurality of computers coupled to said display, each computer being associated with a respective one of said display panels, each display panel presenting a different portion of said image in response to image data received from said associated computer.
  • 29. A tiled touch system according to claim 25 wherein said at least one computer tracks pointer movements along said contact surface traversing borders between adjacent display panels.
  • 30. A tiled touch system according to claim 29 wherein said at least one computer is a single computer coupled to said display.
  • 31. A tiled touch system according to claim 29 wherein said at least one computer is a plurality of computers coupled to said display, each computer being associated with a respective one of said display panels, each display panel presenting a different portion of said image in response to image data received from said associated computer.
  • 32. A tiled touch system according to claim 7 wherein said at least one processing unit executes an associated function in response each recognized input command event.
  • 33. A tiled touch system according to claim 8 wherein said at least one processing unit executes an associated function in response to selection of one of said selectable icons.
  • 34. A tiled touch system according to claim 22 wherein said at least one processing unit executes an associated function in response to selection of one of said selectable icons.
  • 35. A tiled touch surface according to claim 9 wherein said pane is formed of glass.
  • 36. A tiled touch surface according to claim 17 wherein said pane is formed of glass.
  • 37. A tiled touch system comprising: a display on which a computer-generated image is presented, said display comprising an array of display panels, each display panel having an active display area on which a segment of said computer-generated image is presented, the display areas of adjacent display panels being physically separated by gaps, said gaps defining non-active display regions;a digitizer disposed on said display and providing a generally continuous contact surface overlying both said active display areas and said non-active display regions corresponding to said gaps, the contact surface being mapped to both said active display areas and said non-active display regions, said digitizer comprising at least two imaging devices looking generally across said contact surface from different vantages and acquiring image frames to detect pointer contacts made on said contact surface over active display areas and on said contact surface over non-active display regions, said digitizer tracking pointer movements on and across the non-active display regions between adjacent display panels; andat least one processing unit responsive to pointer data received from said digitizer and updating said computer-generated image in response to detected pointer contacts on said contact surface, wherein mapping of said contact surface to both said active display areas and non-active display regions corresponding to said gaps is performed during an orientation procedure, and wherein during said orientation procedure, said at least one processing unit updates the computer-generated image so that each display panel displays a plurality of orientation points.
  • 38. A tiled touch system according to claim 37 wherein said image segments form portions of a generally continuous image presented on said display.
  • 39. A tiled touch system according to claim 37 wherein each display panel is a high resolution display panel.
  • 40. A tiled touch system according to claim 37 wherein said at least one processing unit tracks pointer movements along said contact surface traversing the non-active display regions corresponding to the gaps.
  • 41. A tiled touch system according to claim 37 wherein said at least one processing unit recognizes pointer contacts on said contact surface beginning and/or ending at locations that are mapped to the non-active display regions corresponding to gaps as input command events.
  • 42. A tiled touch system according to claim 37 further comprising selectable icons at locations that are mapped to the non-active display regions corresponding to the gaps.
  • 43. A tiled touch system according to claim 37 wherein said digitizer comprises a generally transparent, rigid pane overlying said display and having an upper surface defining said contact surface.
  • 44. A tiled touch system according to claim 37 wherein each display panel displays at least four orientation points.
  • 45. A tiled touch system according to claim 39 wherein said display panels are liquid crystal displays.
  • 46. A tiled touch system according to claim 40 wherein said at least one processing unit detects pointer contacts on said contact surface starting and/or stopping at locations that are mapped to the non-active display regions corresponding to the gaps as input command events.
  • 47. A tiled touch system according to claim 41 wherein said at least one processing unit executes an associated function in response each recognized input command event.
  • 48. A tiled touch system according to claim 42 wherein said at least one processing unit executes an associated function in response to selection of one of said selectable icons.
  • 49. A tiled touch system according to claim 10 further comprising selectable icons at locations that are mapped to the non-active display regions corresponding to the gaps.
US Referenced Citations (398)
Number Name Date Kind
2769374 Sick Nov 1956 A
3025406 Stewart et al. Mar 1962 A
3128340 Harmon Apr 1964 A
3187185 Milnes Jun 1965 A
3360654 Muller Dec 1967 A
3478220 Milroy Nov 1969 A
3613066 Cooreman Oct 1971 A
3764813 Clement et al. Oct 1973 A
3775560 Ebeling et al. Nov 1973 A
3857022 Rebane et al. Dec 1974 A
3860754 Johnson et al. Jan 1975 A
4107522 Walter Aug 1978 A
4144449 Funk et al. Mar 1979 A
4243879 Carroll et al. Jan 1981 A
4247767 O'Brien et al. Jan 1981 A
4420261 Barlow et al. Dec 1983 A
4459476 Weissmueller et al. Jul 1984 A
4468694 Edgar Aug 1984 A
4507557 Tsikos Mar 1985 A
4550250 Mueller et al. Oct 1985 A
4553842 Griffin Nov 1985 A
4558313 Garwin Dec 1985 A
4672364 Lucas Jun 1987 A
4673918 Adler et al. Jun 1987 A
4703316 Sherbeck Oct 1987 A
4710760 Kasday Dec 1987 A
4737631 Sasaki Apr 1988 A
4742221 Sasaki et al. May 1988 A
4746770 McAvinney May 1988 A
4762990 Caswell et al. Aug 1988 A
4766424 Adler et al. Aug 1988 A
4782328 Denlinger Nov 1988 A
4811004 Person et al. Mar 1989 A
4818826 Kimura Apr 1989 A
4820050 Griffin Apr 1989 A
4822145 Staelin Apr 1989 A
4831455 Ishikawa May 1989 A
4851664 Rieger Jul 1989 A
4868551 Arditty et al. Sep 1989 A
4868912 Doering Sep 1989 A
4888479 Tamaru Dec 1989 A
4893120 Doering et al. Jan 1990 A
4916308 Meadows Apr 1990 A
4928094 Smith May 1990 A
4943806 Masters et al. Jul 1990 A
4980547 Griffin Dec 1990 A
4990901 Beiswenger Feb 1991 A
5025314 Tang et al. Jun 1991 A
5025411 Tallman et al. Jun 1991 A
5097516 Amir Mar 1992 A
5103085 Zimmerman Apr 1992 A
5105186 May Apr 1992 A
5109435 Lo et al. Apr 1992 A
5130794 Ritcher Jul 1992 A
5140647 Ise et al. Aug 1992 A
5148015 Dolan Sep 1992 A
5162618 Knowles Nov 1992 A
5162783 Moreno Nov 1992 A
5164714 Wehrer Nov 1992 A
5168531 Sigel Dec 1992 A
5177328 Ito et al. Jan 1993 A
5179369 Person et al. Jan 1993 A
5196835 Blue et al. Mar 1993 A
5196836 Williams Mar 1993 A
5239152 Caldwell et al. Aug 1993 A
5239373 Tang et al. Aug 1993 A
5272470 Zetts Dec 1993 A
5317140 Dunthorn May 1994 A
5359155 Helser Oct 1994 A
5374971 Clapp et al. Dec 1994 A
5414413 Tamaru et al. May 1995 A
5422494 West et al. Jun 1995 A
5448263 Martin Sep 1995 A
5457289 Huang et al. Oct 1995 A
5483261 Yasutake Jan 1996 A
5483603 Luke et al. Jan 1996 A
5484966 Segen Jan 1996 A
5490655 Bates Feb 1996 A
5502568 Ogawa et al. Mar 1996 A
5525764 Junkins et al. Jun 1996 A
5528263 Platzker et al. Jun 1996 A
5528290 Saund Jun 1996 A
5537107 Funado Jul 1996 A
5554828 Primm Sep 1996 A
5581276 Cipolla et al. Dec 1996 A
5581637 Cass et al. Dec 1996 A
5591945 Kent Jan 1997 A
5594469 Freeman et al. Jan 1997 A
5594502 Bito et al. Jan 1997 A
5617312 Iura et al. Apr 1997 A
5638092 Eng et al. Jun 1997 A
5670755 Kwon Sep 1997 A
5686942 Ball Nov 1997 A
5698845 Kodama et al. Dec 1997 A
5729704 Stone et al. Mar 1998 A
5734375 Knox et al. Mar 1998 A
5736686 Perret, Jr. et al. Apr 1998 A
5737740 Henderson et al. Apr 1998 A
5739479 Davis-Cannon Apr 1998 A
5745116 Pisutha-Arnond Apr 1998 A
5764223 Chang et al. Jun 1998 A
5771039 Ditzik Jun 1998 A
5784054 Armstrong et al. Jul 1998 A
5785439 Bowen Jul 1998 A
5786810 Knox et al. Jul 1998 A
5790910 Haskin Aug 1998 A
5801704 Oohara et al. Sep 1998 A
5804773 Wilson et al. Sep 1998 A
5818421 Ogino et al. Oct 1998 A
5818424 Korth Oct 1998 A
5819201 DeGraaf Oct 1998 A
5825352 Bisset et al. Oct 1998 A
5831602 Sato et al. Nov 1998 A
5909210 Knox et al. Jun 1999 A
5911004 Ohuchi et al. Jun 1999 A
5914709 Graham et al. Jun 1999 A
5920342 Umeda et al. Jul 1999 A
5936615 Waters Aug 1999 A
5940065 Babb et al. Aug 1999 A
5943783 Jackson Aug 1999 A
5963199 Kato et al. Oct 1999 A
5982352 Pryor Nov 1999 A
5988645 Downing Nov 1999 A
5990874 Tsumura Nov 1999 A
6002808 Freeman Dec 1999 A
6008798 Mato, Jr. et al. Dec 1999 A
6031531 Kimble Feb 2000 A
6061177 Fujimoto May 2000 A
6075905 Herman et al. Jun 2000 A
6076041 Watanabe Jun 2000 A
6091406 Kambara et al. Jul 2000 A
6100538 Ogawa Aug 2000 A
6104387 Chery et al. Aug 2000 A
6118433 Jenkin et al. Sep 2000 A
6122865 Branc et al. Sep 2000 A
6128003 Smith et al. Oct 2000 A
6141000 Martin Oct 2000 A
6147678 Kumar et al. Nov 2000 A
6153836 Goszyk Nov 2000 A
6161066 Wright et al. Dec 2000 A
6179426 Rodriguez, Jr. et al. Jan 2001 B1
6188388 Arita et al. Feb 2001 B1
6191773 Maruno et al. Feb 2001 B1
6208329 Ballare Mar 2001 B1
6208330 Hasegawa et al. Mar 2001 B1
6209266 Branc et al. Apr 2001 B1
6215477 Morrison et al. Apr 2001 B1
6222175 Krymski Apr 2001 B1
6226035 Korein et al. May 2001 B1
6229529 Yano et al. May 2001 B1
6252989 Geisler et al. Jun 2001 B1
6256033 Nguyen Jul 2001 B1
6262718 Findlay et al. Jul 2001 B1
6310610 Beaton et al. Oct 2001 B1
6320597 Ieperen Nov 2001 B1
6323846 Westerman Nov 2001 B1
6326954 Van Ieperen Dec 2001 B1
6328270 Elberbaum Dec 2001 B1
6335724 Takekawa et al. Jan 2002 B1
6337681 Martin Jan 2002 B1
6339748 Hiramatsu Jan 2002 B1
6346966 Toh Feb 2002 B1
6352351 Ogasahara et al. Mar 2002 B1
6353434 Akebi Mar 2002 B1
6359612 Peter et al. Mar 2002 B1
6362468 Murakami et al. Mar 2002 B1
6377228 Jenkin et al. Apr 2002 B1
6384743 Vanderheiden May 2002 B1
6414671 Gillespie et al. Jul 2002 B1
6414673 Wood et al. Jul 2002 B1
6421042 Omura et al. Jul 2002 B1
6427389 Branc et al. Aug 2002 B1
6429856 Omura et al. Aug 2002 B1
6429857 Masters et al. Aug 2002 B1
6480187 Sano et al. Nov 2002 B1
6496122 Sampsell Dec 2002 B2
6497608 Ho et al. Dec 2002 B2
6498602 Ogawa Dec 2002 B1
6504532 Ogasahara et al. Jan 2003 B1
6507339 Tanaka Jan 2003 B1
6512838 Rafii et al. Jan 2003 B1
6517266 Saund Feb 2003 B2
6518600 Shaddock Feb 2003 B1
6522830 Yamagami Feb 2003 B2
6529189 Colgan et al. Mar 2003 B1
6530664 Vanderwerf et al. Mar 2003 B2
6531999 Trajkovic Mar 2003 B1
6532006 Takekawa et al. Mar 2003 B1
6540366 Keenan et al. Apr 2003 B2
6540679 Slayton et al. Apr 2003 B2
6545669 Kinawi et al. Apr 2003 B1
6559813 DeLuca et al. May 2003 B1
6563491 Omura May 2003 B1
6567078 Ogawa May 2003 B2
6567121 Kuno May 2003 B1
6570103 Saka et al. May 2003 B1
6570612 Saund et al. May 2003 B1
6577299 Schiller et al. Jun 2003 B1
6587099 Takekawa Jul 2003 B2
6590568 Astala et al. Jul 2003 B1
6594023 Omura et al. Jul 2003 B1
6597348 Yamazaki et al. Jul 2003 B1
6597508 Seino et al. Jul 2003 B2
6603867 Sugino et al. Aug 2003 B1
6608619 Omura et al. Aug 2003 B2
6614422 Rafii et al. Sep 2003 B1
6624833 Kumar et al. Sep 2003 B1
6626718 Hiroki Sep 2003 B2
6630922 Fishkin et al. Oct 2003 B2
6633328 Byrd et al. Oct 2003 B1
6650318 Arnon Nov 2003 B1
6650822 Zhou Nov 2003 B1
6674424 Fujioka Jan 2004 B1
6683584 Ronzani et al. Jan 2004 B2
6690357 Dunton et al. Feb 2004 B1
6690363 Newton Feb 2004 B2
6690397 Daignault, Jr. Feb 2004 B1
6710770 Tomasi et al. Mar 2004 B2
6714311 Hashimoto Mar 2004 B2
6720949 Pryor et al. Apr 2004 B1
6736321 Tsikos et al. May 2004 B2
6738051 Boyd et al. May 2004 B2
6741250 Furlan et al. May 2004 B1
6747636 Martin Jun 2004 B2
6756910 Ohba et al. Jun 2004 B2
6760009 Omura et al. Jul 2004 B2
6760999 Branc et al. Jul 2004 B2
6774889 Zhang et al. Aug 2004 B1
6803906 Morrison et al. Oct 2004 B1
6828959 Takekawa et al. Dec 2004 B2
6864882 Newton Mar 2005 B2
6911972 Brinjes Jun 2005 B2
6919880 Morrison et al. Jul 2005 B2
6927384 Reime et al. Aug 2005 B2
6933981 Kishida et al. Aug 2005 B1
6947032 Morrison et al. Sep 2005 B2
6954197 Morrison et al. Oct 2005 B2
6972401 Akitt et al. Dec 2005 B2
6972753 Kimura et al. Dec 2005 B1
7002555 Jacobsen et al. Feb 2006 B1
7007236 Dempski et al. Feb 2006 B2
7015418 Cahill et al. Mar 2006 B2
7030861 Westerman et al. Apr 2006 B1
7057647 Monroe Jun 2006 B1
7058204 Hildreth et al. Jun 2006 B2
7075054 Iwamoto et al. Jul 2006 B2
7084857 Lieberman et al. Aug 2006 B2
7084868 Farag et al. Aug 2006 B2
7098392 Sitrick et al. Aug 2006 B2
7121470 McCall et al. Oct 2006 B2
7151533 Van Iperen Dec 2006 B2
7176904 Satoh Feb 2007 B2
7184030 McCharles et al. Feb 2007 B2
7187489 Miles Mar 2007 B2
7190496 Klug et al. Mar 2007 B2
7202860 Ogawa Apr 2007 B2
7227526 Hildreth et al. Jun 2007 B2
7232986 Worthington et al. Jun 2007 B2
7236162 Morrison et al. Jun 2007 B2
7237937 Kawashima et al. Jul 2007 B2
7242388 Lieberman et al. Jul 2007 B2
7265748 Ryynanen Sep 2007 B2
7268692 Lieberman Sep 2007 B1
7274356 Ung et al. Sep 2007 B2
7283126 Leung Oct 2007 B2
7283128 Sato Oct 2007 B2
7289113 Martin Oct 2007 B2
7302156 Lieberman et al. Nov 2007 B1
7305368 Lieberman et al. Dec 2007 B2
7330184 Leung Feb 2008 B2
7333094 Lieberman et al. Feb 2008 B2
7333095 Lieberman et al. Feb 2008 B1
7355593 Hill et al. Apr 2008 B2
7372456 McLintock May 2008 B2
7375720 Tanaka May 2008 B2
RE40368 Arnon Jun 2008 E
7411575 Hill et al. Aug 2008 B2
7414617 Ogawa Aug 2008 B2
7479949 Jobs et al. Jan 2009 B2
7492357 Morrison et al. Feb 2009 B2
7499037 Lube Mar 2009 B2
7538759 Newton May 2009 B2
7559664 Walleman et al. Jul 2009 B1
7619617 Morrison et al. Nov 2009 B2
7692625 Morrison et al. Apr 2010 B2
20010019325 Takekawa Sep 2001 A1
20010022579 Hirabayashi Sep 2001 A1
20010026268 Ito Oct 2001 A1
20010033274 Ong Oct 2001 A1
20010050677 Tosaya Dec 2001 A1
20010055006 Sano et al. Dec 2001 A1
20020008692 Omura et al. Jan 2002 A1
20020015159 Hashimoto Feb 2002 A1
20020036617 Pryor Mar 2002 A1
20020041327 Hildreth et al. Apr 2002 A1
20020050979 Oberoi et al. May 2002 A1
20020064382 Hildrerth et al. May 2002 A1
20020067922 Harris Jun 2002 A1
20020075243 Newton Jun 2002 A1
20020080123 Kennedy et al. Jun 2002 A1
20020118177 Newton Aug 2002 A1
20020145595 Satoh Oct 2002 A1
20020163530 Takakura et al. Nov 2002 A1
20030001825 Omura et al. Jan 2003 A1
20030025951 Pollard et al. Feb 2003 A1
20030043116 Morrison et al. Mar 2003 A1
20030046401 Abbott et al. Mar 2003 A1
20030063073 Geaghan et al. Apr 2003 A1
20030071858 Morohoshi Apr 2003 A1
20030085871 Ogawa May 2003 A1
20030095112 Kawano et al. May 2003 A1
20030137494 Tulbert Jul 2003 A1
20030142880 Hyodo Jul 2003 A1
20030151532 Chen et al. Aug 2003 A1
20030151562 Kulas Aug 2003 A1
20030156118 Ayinde Aug 2003 A1
20030161524 King Aug 2003 A1
20030227492 Wilde et al. Dec 2003 A1
20040001144 McCharles et al. Jan 2004 A1
20040012573 Morrison et al. Jan 2004 A1
20040021633 Rajkowski Feb 2004 A1
20040031779 Cahill et al. Feb 2004 A1
20040032401 Nakazawa et al. Feb 2004 A1
20040046749 Ikeda Mar 2004 A1
20040051709 Ogawa et al. Mar 2004 A1
20040108990 Lieberman Jun 2004 A1
20040125086 Hagermoser et al. Jul 2004 A1
20040149892 Akitt et al. Aug 2004 A1
20040150630 Hinckley et al. Aug 2004 A1
20040169639 Pate et al. Sep 2004 A1
20040178993 Morrison et al. Sep 2004 A1
20040178997 Gillespie et al. Sep 2004 A1
20040179001 Morrison et al. Sep 2004 A1
20040189720 Wilson et al. Sep 2004 A1
20040201575 Morrison Oct 2004 A1
20040204129 Payne et al. Oct 2004 A1
20040218479 Iwamoto et al. Nov 2004 A1
20040221265 Leung et al. Nov 2004 A1
20040252091 Ma et al. Dec 2004 A1
20050052427 Wu et al. Mar 2005 A1
20050057524 Hill et al. Mar 2005 A1
20050077452 Morrison et al. Apr 2005 A1
20050083308 Homer et al. Apr 2005 A1
20050104860 McCreary et al. May 2005 A1
20050128190 Ryynanen Jun 2005 A1
20050151733 Sander et al. Jul 2005 A1
20050156900 Hill et al. Jul 2005 A1
20050190162 Newton Sep 2005 A1
20050241929 Auger et al. Nov 2005 A1
20050243070 Ung et al. Nov 2005 A1
20050248539 Morrison et al. Nov 2005 A1
20050248540 Newton Nov 2005 A1
20050270781 Marks Dec 2005 A1
20050276448 Pryor Dec 2005 A1
20060012579 Sato Jan 2006 A1
20060022962 Morrison et al. Feb 2006 A1
20060028456 Kang Feb 2006 A1
20060034486 Morrison et al. Feb 2006 A1
20060152500 Weng Jul 2006 A1
20060158437 Blythe et al. Jul 2006 A1
20060170658 Nakamura et al. Aug 2006 A1
20060197749 Popovich Sep 2006 A1
20060202953 Pryor et al. Sep 2006 A1
20060227120 Eikman Oct 2006 A1
20060244734 Hill et al. Nov 2006 A1
20060274067 Hidai Dec 2006 A1
20060279558 Van Delden et al. Dec 2006 A1
20070002028 Morrison et al. Jan 2007 A1
20070019103 Lieberman et al. Jan 2007 A1
20070075648 Blythe et al. Apr 2007 A1
20070075982 Morrison et al. Apr 2007 A1
20070089915 Ogawa et al. Apr 2007 A1
20070116333 Dempski et al. May 2007 A1
20070126755 Zhang et al. Jun 2007 A1
20070139932 Sun et al. Jun 2007 A1
20070152984 Ording et al. Jul 2007 A1
20070152986 Ogawa et al. Jul 2007 A1
20070165007 Morrison et al. Jul 2007 A1
20070167709 Slayton et al. Jul 2007 A1
20070205994 van Ieperen Sep 2007 A1
20070236454 Ung et al. Oct 2007 A1
20070273842 Morrison Nov 2007 A1
20080029691 Han Feb 2008 A1
20080042999 Martin Feb 2008 A1
20080055262 Wu et al. Mar 2008 A1
20080055267 Wu et al. Mar 2008 A1
20080062140 Hotelling et al. Mar 2008 A1
20080062149 Baruk Mar 2008 A1
20080068352 Worthington et al. Mar 2008 A1
20080083602 Auger et al. Apr 2008 A1
20080106706 Holmgren et al. May 2008 A1
20080122803 Izadi et al. May 2008 A1
20080129707 Pryor Jun 2008 A1
20080259050 Lin et al. Oct 2008 A1
20080259052 Lin et al. Oct 2008 A1
20090058832 Newton Mar 2009 A1
20090058833 Newton Mar 2009 A1
20090146972 Morrison et al. Jun 2009 A1
Foreign Referenced Citations (151)
Number Date Country
2003233728 Dec 2003 AU
2006243730 Nov 2006 AU
2058219 Apr 1993 CA
2367864 Apr 1993 CA
2219886 Apr 1999 CA
2251221 Apr 1999 CA
2267733 Oct 1999 CA
2268208 Oct 1999 CA
2252302 Apr 2000 CA
2350152 Jun 2001 CA
2412878 Jan 2002 CA
2341918 Sep 2002 CA
2386094 Dec 2002 CA
2372868 Aug 2003 CA
2390503 Dec 2003 CA
2390506 Dec 2003 CA
2432770 Dec 2003 CA
2493236 Dec 2003 CA
2448603 May 2004 CA
2453873 Jul 2004 CA
2460449 Sep 2004 CA
2521418 Oct 2004 CA
2481396 Mar 2005 CA
2491582 Jul 2005 CA
2563566 Nov 2005 CA
2564262 Nov 2005 CA
2501214 Sep 2006 CA
2606863 Nov 2006 CA
2580046 Sep 2007 CA
1310126 Aug 2001 CN
1784649 Jun 2006 CN
101019096 Aug 2007 CN
101023582 Aug 2007 CN
1440539 Sep 2009 CN
3836429 May 1990 DE
198 10 452 Dec 1998 DE
60124549 Sep 2007 DE
125068 Nov 1984 EP
0279652 Aug 1988 EP
0347725 Dec 1989 EP
420335 Apr 1991 EP
0 657 841 Jun 1995 EP
0762319 Mar 1997 EP
0829798 Mar 1998 EP
897161 Feb 1999 EP
911721 Apr 1999 EP
1059605 Dec 2000 EP
1262909 Dec 2002 EP
1739528 Jan 2003 EP
1739529 Jan 2003 EP
1420335 May 2004 EP
1 450 243 Aug 2004 EP
1457870 Sep 2004 EP
1471459 Oct 2004 EP
1517228 Mar 2005 EP
1550940 Jun 2005 EP
1611503 Jan 2006 EP
1674977 Jun 2006 EP
1 297 488 Nov 2006 EP
1741186 Jan 2007 EP
1766501 Mar 2007 EP
1830248 Sep 2007 EP
1877893 Jan 2008 EP
2279823 Sep 2007 ES
1575420 Sep 1980 GB
2176282 May 1986 GB
2204126 Nov 1988 GB
2263765 Aug 1993 GB
57-211637 Dec 1982 JP
61-196317 Aug 1986 JP
61-260322 Nov 1986 JP
62-005428 Jan 1987 JP
63-223819 Sep 1988 JP
3-054618 Mar 1991 JP
3244017 Oct 1991 JP
4-350715 Dec 1992 JP
4-355815 Dec 1992 JP
5-181605 Jul 1993 JP
5-189137 Jul 1993 JP
5-197810 Aug 1993 JP
6-110608 Apr 1994 JP
7-110733 Apr 1995 JP
7-230352 Aug 1995 JP
8-016931 Feb 1996 JP
8-108689 Apr 1996 JP
8-240407 Sep 1996 JP
8-315152 Nov 1996 JP
9-091094 Apr 1997 JP
9-224111 Aug 1997 JP
9-319501 Dec 1997 JP
10-105324 Apr 1998 JP
11-051644 Feb 1999 JP
11-064026 Mar 1999 JP
11-085376 Mar 1999 JP
11-110116 Apr 1999 JP
11-203042 Jul 1999 JP
11-212692 Aug 1999 JP
2000-105671 Apr 2000 JP
2000-132340 May 2000 JP
2001-075735 Mar 2001 JP
2001-142642 May 2001 JP
2001-282457 Oct 2001 JP
2001282456 Oct 2001 JP
2002-055770 Feb 2002 JP
2002-236547 Aug 2002 JP
2003-65716 Mar 2003 JP
2003-158597 May 2003 JP
2003167669 Jun 2003 JP
2003173237 Jun 2003 JP
2005-108211 Apr 2005 JP
2005-182423 Jul 2005 JP
2005-202950 Jul 2005 JP
9807112 Feb 1998 WO
9908897 Feb 1999 WO
9921122 Apr 1999 WO
9928812 Jun 1999 WO
9940562 Aug 1999 WO
0124157 Apr 2001 WO
0131570 May 2001 WO
0163550 Aug 2001 WO
0191043 Nov 2001 WO
0203316 Jan 2002 WO
0207073 Jan 2002 WO
0227461 Apr 2002 WO
03104887 Dec 2003 WO
03105074 Dec 2003 WO
2004072843 Aug 2004 WO
2004090706 Oct 2004 WO
2004102523 Nov 2004 WO
2004104810 Dec 2004 WO
2005031554 Apr 2005 WO
2005034027 Apr 2005 WO
2005106775 Nov 2005 WO
2005107072 Nov 2005 WO
2006002544 Jan 2006 WO
2006092058 Sep 2006 WO
2006095320 Sep 2006 WO
2006096962 Sep 2006 WO
2006116869 Nov 2006 WO
2007003196 Jan 2007 WO
2007019600 Feb 2007 WO
2007037809 Apr 2007 WO
2007064804 Jun 2007 WO
2007079590 Jul 2007 WO
2007132033 Nov 2007 WO
2007134456 Nov 2007 WO
2008128096 Oct 2008 WO
2009029764 Mar 2009 WO
2009029767 Mar 2009 WO
2009146544 Dec 2009 WO
2010051633 May 2010 WO
Related Publications (1)
Number Date Country
20050259084 A1 Nov 2005 US