Tillage implement with offset cam for packers

Information

  • Patent Grant
  • 6321850
  • Patent Number
    6,321,850
  • Date Filed
    Monday, December 18, 2000
    23 years ago
  • Date Issued
    Tuesday, November 27, 2001
    22 years ago
Abstract
A forwardly folding tillage implement carries a number of ground engaging tools on a tool gang frame disposed to the rear of a carrier frame. A rockshaft is disposed between the carrier frame and the tool gang frame and is movable between four rotated positions about two axes of rotation. A control mechanism controls the relative angular position of the rockshaft. A support mechanism is disposed rearwardly of the axes of rotation to support the rear of the tool gang frame above the ground in the field working position. An abutment member restrains the relative rotation between the rockshaft and the tool gang frame to fully support the tool gang frame on the rockshaft upon rotation of the rockshaft. An offset cam is operatively connected between the carrier frame and the tool gang frame to provide translational movement of the packer members on the tool frame relative to the tillage tools on the carrier frame to shift the packer members out of aligmnent with the tillage tools so that their elements do not impact upon folding to the transport position.
Description




BACKGROUND OF THE INVENTION




Modem farmers strive to improve the management of increasing amounts of farm acres. Improving management requires farmers to be able to quickly prepare the soil for each season's farming operations. This haste has driven the need for more efficient and larger farming equipment.




Implements such as harrows, packers, or combined harrow-packers were some of the earliest implements to be made with widths exceeding sixty feet in the field operating position. As tractor horsepower has increased over time, larger tillage implements have been made available. These larger implements require a mechanism for compactly folding the implement for practical and safe transport over the highway. U.S. Pat. No. 4,821,809, patented by Summach et al., discloses a convenient mechanism for such folding.




The conventional method of folding tillage implements is by folding wing sections along forward aligned axes such that the wings are folded to a generally upright position. Double folding wing sections may have outer sections that fold inwardly and downwardly from the ends of inner wing sections in five section winged implements. In the case of these conventional wing implements, the minimum implement width that can be achieved by such folding is limited by the width of the center section. As a result, road transport may still be somewhat restricted as these implements often exceed twenty feet or more in transport width.




Road transport standards in North America are beginning to follow the standards set in Europe in which maximum road transport widths and heights for agricultural implements are being defined. Large implements that have conventional folding wing sections are not able to be folded such that they fall within width and height limits that may be generally 3 meters wide and 4 meters high. Some U.S. states have adopted transport width limits of 13.5 ft.




Forward or rear folding implements provide some relief with respect to such transport limits. However, implements must also be made to function with the accurate seeding ability that conventionally folded implements have become capable of. Although some rear or forward folding multibar tillage implements have been developed, they do not demonstrate the accurate depth control required for farming operations.




One problem is that a tillage-packer combination for drill seeding requires the gang supporting tillage elements to be maintained parallel to the ground through a range of adjustable operating levels. The drawbar disclosed in Summach '809 raises or lowers the first attached gang of elements in a rotatable manner through its field and transport ranges of motion. A level manner of height adjustment is required for tillage elements.




Another problem that must be overcome for compact folding is the avoidance of the packer elements of the second gang striking the tillage elements of the first gang when raised to the transport position. If compact folding is not required, then the downward rotation of the suspended second gang may be limited so as not to impact the elements of the first gang. But when compact folding is desired, the elements of the second gang are in direct alignment with the ground elements of the first gang so that alignment is achieved.




Therefore, a multibar implement is required for the tillage of high acre farms with both speed and efficiency.




SUMMARY OF THE INVENTION




It is an object of the invention to provide a compactly folding tillage implement that is capable of offsetting the packer members in the transport position.




It is another object of the invention to provide a spiral guide mechanism at the pivotal connection of a second tool frame to a first tool frame so that relative pivotal movement will effect a translational movement of the second tool frame relative to the first tool frame.




It is a feature of the invention that the guide mechanism includes a cam track having a lower vertical portion that will guide the pivotal movement of the second tool frame without effecting any translational movement thereof.




It is another feature of this invention that the cam track is also provided with a diagonal track portion that has both a vertical component and a horizontal component to effect translational movement of the second tool frame as the second tool frame is pivotally moved into a compact transport configuration.




It is an advantage of this invention that the packer members carried on the second tool frame member are maintained in alignment with the tillage tool members carried by the first tool frame member while the implement is in a field operating configuration.




It is another advantage of this invention that the packer members are offset relative to the corresponding tillage tool members when the implement is moved into a transport configuration.




It is still another advantage of this invention that a compact transport configuration is obtained when the second tool frame is offset relative to the first tool frame.




It is still another object of the invention to provide a compact folding implement capable of being configured either as a multibar implement or as a single bar implement for row crop applications, thereby providing economy in manufacturing.




It is yet another object of this invention to provide a compact folding implement capable of accurate seeding across its working width even while traversing uneven slopes.




An implement having a toolbar or frame to which a first tool gang is attached may also have a second tool gang attached to the rearward end of the first tool gang so both sets of gangs are drawn by the implement frame or toolbar for field operation. Such an implement avails itself for compact folding in which the first tool gang may be rotated to a general upright position and the second tool gang becomes suspended from the now upper end of the first gang. Such an implement is patented in U.S. Pat. No. 4,821,809 to Summach et al. According to the patent, the implement frame or toolbar may be folded for compact folded transport. This design works particularly well for harrow-packer combined implements.




One key advantage of this style of folding is that for a harrow-packer combined implement, the packers are pulled inward toward the implement frame substantially before they are lifted from the ground, which significantly reduces the torsion required of the toolbar or frame elements in order to produce sufficient lifting force to effect compact folding.




This invention provides an offset for the alignment of the second gang elements from the first gang ground elements so they do not impact when the implement is folded.




A spiral guide is provided on the pivotal connection on which the second implement gang is attached to the first implement gang. When the implement is folded to transport position, the spiral guide shifts the second gang out of alignment with the first gang so their elements do not impact.




These and other objects, features, and advantages are accomplished according to the present invention by providing a forwardly folding tillage implement that carries a number of ground engaging tools on a tool gang frame disposed to the rear of a carrier frame. A rockshaft is disposed between the carrier frame and the tool gang frame and is movable between four rotated positions about two axes of rotation. A control mechanism controls the relative angular position of the rockshaft. A support mechanism is disposed rearwardly of the axes of rotation to support the rear of the tool gang frame above the ground in the field working position. An abutment member restrains the relative rotation between the rockshaft and the tool gang frame to fully support the tool gang frame on the rockshaft upon rotation of the rockshaft. An offset cam is operatively connected between the carrier frame and the tool gang frame to provide translational movement of the packer members on the tool frame relative to the tillage tools on the carrier frame to shift the packer members out of alignment with the tillage tools so that their elements do not impact upon folding to the transport position.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a schematic side elevational view of the preferred embodiment of the farm implement in a first position.





FIG. 2

is a schematic side elevational view of the preferred embodiment of the farm implement in a second position.





FIG. 3

is a schematic side elevational view of the preferred embodiment of the farm implement in a third position.





FIG. 4

is a schematic side elevational view of the preferred embodiment of the farm implement in a fourth position.





FIG. 5

is a schematic plan view of the preferred embodiment of the farm implement in its fully extended working position.





FIG. 5



a


is a schematic plan view of the preferred embodiment of the farm implement with its two wings partially folded forward.





FIG. 5



b


is a schematic plan view of the preferred embodiment of the farm implement with its two wings fully folded forward.





FIG. 6

is a schematic side elevational view of the preferred embodiment of the farm implement.





FIG. 7

is a schematic side elevational view of the preferred embodiment shown in

FIG. 1

showing the depth control in more detail.





FIG. 8

corresponds to FIG.


2


and shows the depth control in the second rockshaft position.





FIG. 9

is a schematic side elevational view depicting a rockshaft position intermediate the second and third rockshaft positions.





FIG. 10

is a schematic partial plan view of the tool gang frame of the preferred embodiment in the position corresponding to FIG.


10


.





FIG. 11

is an enlarged schematic detail plan view of the spiral guide of the preferred embodiment in the position shown in FIG.


10


.





FIG. 12

is an enlarged schematic detail elevational view of the spiral guide of

FIGS. 10 and 11

.





FIG. 13

is a schematic partial plan view of tool gang frame depicting the spiral guide of

FIG. 10

in the third and fourth rockshaft positions.





FIG. 14

is an enlarged schematic detail plan view of the spiral guide depicted in FIG.


13


.





FIG. 15

is a schematic side elevational view of the tool gang frame depicted in

FIGS. 13 and 14

including typical tool


5


raised to a transport position.





FIG. 16

is an enlarged schematic detail elevational view of the preferred embodiment corresponding to

FIG. 1

to show a spring pressure transfer of weight.





FIG. 17

is similar to FIG.


2


and shows the spring pressure mechanism out of contact with the rockshaft.





FIG. 18

is a schematic plan view of the tool gang frame showing the automatic locking devices of the preferred embodiment.





FIG. 18



a


is an enlarged schematic detail plan view of a first joint in the autolock mechanism positioned on the carrier frame as identified by the arrow referring to FIG.


18


.





FIG. 18



b


is an enlarged schematic detail plan view of a second joint in the autolock mechanism positioned on the carrier frame as identified by the arrow referred to in FIG.


18


.





FIG. 19

is a partial schematic plan view of the central portion of the carrier frame depicting the autolock mechanism in a field operating position.





FIG. 19



a


is a partial schematic elevational view of the central portion of the carrier frame as an orthogonal projection of FIG.


19


.





FIG. 19



b


is an enlarged schematic detail elevational view of a portion of the autolock mechanism positioned on the carrier frame as identified by the arrow referring to

FIG. 19



a.







FIG. 20

is a schematic plan view of the tool gang frame folded forwardly.





FIG. 20



a


is an enlarged schematic detail plan view of the first joints in the autolock mechanism similar to that of

FIG. 18



a


positioned on the carrier frame as identified by the arrow referring to

FIG. 20

, but depicting the mechanism when locked in the transport position.





FIG. 20



b


is an orthogonal projection of the locked first joints of

FIG. 20



a


depicting an elevational view thereof.





FIG. 20



c


is an enlarged schematic detail plan view of the second joint similar to that of

FIG. 18



b


, but depicted in the locked transport position, as identified by the arrow referring to FIG.


20


.





FIGS. 21 and 22

show the implement in the position shown in

FIG. 3

including more detail of the caster wheel lock in the elevational view of FIG.


21


and in the rear elevational view of FIG.


22


.





FIG. 23

shows the implement in the position depicted in

FIG. 4

with the wheels fully castered into the transportation position.





FIG. 23



a


is a schematic enlarged detail view of the castor wheel lock shown in FIG.


23


.





FIG. 23



b


is a schematic side elevational view of

FIGS. 23 and 23



a.







FIG. 24

is a schematic side elevational view similar to

FIG. 1

but additionally showing the angled wing axis.





FIG. 24



a


shows diagrammatically the angled wing axis angle of inclination.





FIGS. 24



b


and


24




c


show a partial schematic plan view and a partial elevation of the joint between the inner and outer wings in the field working position.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




The preferred embodiment of the farm implement of the invention, as shown in

FIG. 1

, comprises an implement carrier frame


1


on which is pivotally attached a rockshaft


2


at first pivot


5


. Wheels shown at b support the carrier frame above the ground. A tool gang frame


3


is also attached to the rockshaft


2


at second pivots


6


. A ground engaging rear depth control arm


4


is attached to the rear of the tool gang


3


at pivots


7


.

FIG. 1

shows a side elevation of the implement in its lowermost or first position. Tool gang frame


3


is disposed parallel to the ground a and is freely rotatable about and supported front and back by first and second pivot axes


6


and


7


respectively.




A plurality of ground working tools may be mounted on the tool gang frame for working at variable depths generally parallel to the surface of the ground a. A rockshaft


2


is mounted to carrier frame


1


for rotation about pivot axis


5


. The angular position of the rockshaft


2


is controlled by a hydraulic cylinder d shown fully retracted with the rockshaft


2


generally horizontal in

FIG. 1. A

flange


3


on tool gang frame


3


extends downward and provides pivotal support for tool gang frame


3


about axis


6


. A tool support arm


4


is pivotally attached at pivot axis


7


to support tool gang frame


3


at the rear and may carry an additional soil working tool c.





FIG. 2

shows a side elevation of the implement upon partial extension of the hydraulic cylinder d to a second position at which rotation of the tool gang frame


3


about pivot axis


6


ceases when abutment f contacts tool gang frame


3


at abutment point g. In the configuration shown in

FIG. 1

, the rear of tool gang frame


3


is supported by the control arm


4


. At the second position shown in

FIG. 2

, the working tools may be elevated above the ground.





FIG. 3

shows a side elevation of the implement upon further extension of cylinder d to move the rockshaft to a third position. Between the second position shown in FIG.


2


and the third position shown in

FIG. 3

, rotation of the tool gang frame


3


about second pivot axis


6


is restrained. Additionally, frame


3


rotates in conjunction with rockshaft


2


about first pivot axis


5


, is supported on rockshaft


2


, and is free of the ground. At the third position as shown in

FIG. 3

, tool gang frame roller j contacts curved track I mounted on carrier frame


1


.




As shown in

FIG. 4

, further extension of cylinder d rotates rockshaft


2


about the first axis


5


to a fourth position. Between the third position and the fourth position, the roller j interacts with curved track i to continue rotation of the tool gang frame


3


about the second axis


6


and moves the abutment f out of contact with the abutment point g.




Referring now to

FIG. 5

, the carrier frame


1


is preferably arranged as a pair of wings symmetrical about the implement center line


308


for travel in direction A. Each of the


2


wings is pivotally attached to the central telescoping hitch


301


for motion about a vertical axis at


305


. The carrier frame


1


is supported on transversely spaced pairs of wheels b. The rockshaft


2


shown in

FIGS. 1-4

is not shown on

FIGS. 5-6

for simplicity. A plurality of tool gang frames


3


and support arms


4


are shown. Support tools c are represented schematically. Draft arms


303


connect each wing section as at pivotal attachment


304


on frame


1


to telescoping hitch


301


at pivot point


302


.




As can be seen in

FIGS. 5

,


5




a


,


5




b


, and


6


, the carrier frame


1


is folded forward symmetrically by extension of telescoping hitch


301


. The hitch


301


is extended in length in each successive figure. A pair of secondary draft or hitch members


309


is pivotally attached to hitch


301


at


302


and extends rearwardly towards secondary hitching point


307


. Mounted between members


309


and hitch point


307


are rear hitch members


313


which are pivotally connected between pivot points


312


and


314


for rotation about vertical axes. Pivot points


312


are also connected to support arms


310


extending from each hitch member to a respective frame section for pivotal movement as at


311


.




As can be seen in

FIG. 5

, a secondary hitch is provided to which another implement may be attached as at


307


for operation in the direction of travel A. The draft load of the second implement is supported on hitch members


309


and


313


along with support arms


310


which act to maintain hitch members


309


and


313


separated from the implement center line


308


.




As telescoping hitch


301


is extended and the wings are folded forward as shown in

FIG. 5



a


, the distance B between pivots


305


and hitch point


307


is substantially shortened. As telescoping hitch


301


is further extended and the wings folded to the direction of travel A, the distance B is minimized, thereby bringing the second implement in close proximity to carrier frame


1


for stability in transport.




In

FIG. 6

, a schematic elevation of the preferred embodiment is shown in which the secondary hitch members


309


,


310


and


313


are above carrier frame


1


.




Referring now to

FIGS. 7 through 9

, the preferred embodiment will be described in relation to depth adjustment.

FIGS. 7 and 8

correspond generally to

FIGS. 1 and 2

, respectively.

FIG. 9

is a side elevation intermediate the second and third rockshaft positions. At another point


13


on the rockshaft, offset from the tool gang pivot


6


, a depth control link


12


is pivotally attached. The depth control link is attached at end


14


to a first end of a depth control lever


8


. The lever is pivotally attached to the rear part of the tool gang frame


3


at an intermediate point between its ends. A roller


10


is attached to the lever's second end.




The implement depth control


4


consists of an arm


21


which is pivotally attached at one end


7


to a rear part of the tool gang frame


3


and has ground engaging wheels


23


pivotally attached at its other end having a generally transverse axis


20


. In the field position, roller


10


is in contact with the upper surface


22


of the support arm


21


and the support arm thereby supports the rearward part of the tool gang frame. This in part controls the depth of the tool gang frame as the ground wheels follow the surface of the ground.




In field positions, the tool gang frame


3


may pivot on attachment pivot


6


as ground wheels


23


and ground wheels


24


follow the slope of the ground. The tool gang is supported parallel to the ground between the frame ground wheels and depth gage ground wheels. A screw connects the depth control link to the depth control lever. The screw may be utilized to adjust the effective length of the depth control link for leveling the tool gang frame. Each tool gang frame may thereby be independently leveled. Alternatively, a turnbuckle or similar length adjusting means may be used in the depth control link.




The rockshaft


2


of respective frame sections is rotated clockwise or counterclockwise as shown in the view in

FIGS. 7 and 8

to respectively lower or raise the attached tool gang frame sections. The depth control link


12


is drawn forward relative to the tool gang frame


3


when the rockshaft is rotated counterclockwise to raise the tool gang frame. The depth control link causes the depth control lever


8


to rotate clockwise in the view of FIG.


8


and the roller on its second end bears down on the depth control support arm


4


, thereby causing rotation of the depth control in a clockwise direction. The attachment points of the linkage on the rockshaft and on the depth control lever are such that the rear depth control is rotated an amount causing an equal rise at the rear of the tool gang when the rockshaft raises the front of the tool gang as shown in

FIGS. 7 and 8

.




The preferred embodiment will now be described in respect of its spiral guide in conjunction with

FIGS. 10 through 14

. The spiral guide


60


is made to have an axis generally concentric with the pivot


7


by which packer arm


21


is attached to tillage gang frame


3


. The packer arm has a spindle


71


extending its pivotally connected end on which a roller


70


is secured. The spiral guide


60


has a non-spiral surface


61


which the roller


70


follows when the implement is in the field position, and which restricts the sideways movement of the packer arm on the pivot shaft


7


, as shown in

FIGS. 10-15

. As the implement is folded to the transport position as shown in

FIGS. 10-15

, the roller


70


leaves the non-spiral surface


61


and follows the angled or spiral surface


62


. The roller


70


is limited by opposing spiral surface


63


. As the packer pivots downwardly from the end of the tool gang frame


3


or tillage gang, the roller is caught in a track formed between the spiral surfaces


62


,


63


. The spiral shape is such that the controlled movement causes a sideways or lateral offset


69


of the packer elements as the packer is suspended and rotates downwardly when being raised to the transport position. The spiral surfaces


62


,


63


control the roller movement and cause the packer to return to alignment with the tillage elements when lowered into the field position.




Referring now to

FIGS. 16 and 17

, it is shown that the preferred embodiment may include a spring pressure mechanism to transfer weight to the tool gang frame


3


. In

FIGS. 16 and 17

, the spring


50


may be pre-compressed by selectively shortening the available stroke of rod


51


, such as by a nut and tread on rod


50


. This provides of a large unsprung range of rotation between the first and second positions while providing the operator with additional adjustments.




In particular, as shown in

FIG. 16

, the tool gang frame


3


is depicted in its first position, the lowermost position, as viewed in FIG.


1


. Spring


50


acts between frame


3


and rod


51


to advantageously transfer weight to the frame. The spring is adjustable by lengthening or shortening the rod


53


. Arm


52


acts between rod


51


and rockshaft


2


and is pivotally attached to provide for abutment of rod


53


, as at


54


in FIG.


16


. In the second rockshaft position, the highest field position, rod


53


loses abutting contact as at


54


in FIG.


17


and rod


51


is fully retracted by spring


50


.




As shown in

FIGS. 18-20



c


, automatic locking is provided by means of levers connected between the frame position control cylinders shown in FIG.


19


. The control cylinders have a limited degree of freedom of movement between the lever and the frame and the cylinders actuating movement. Interconnection of the lever with locks provides for automatic operation of the locks at the two extents of the cylinders'extension as shown so as to not interfere with extension and contraction of the cylinders and corresponding frame movement.




Referring now to

FIGS. 18 and 20

, the implement is shown with inner wings w


1


and outer wings w


2


symmetrically joined along the implement center line for pivotal relative motion between wings w


1


and w


2


about an axis generally in the direction of travel when in the field working position.





FIG. 21

shows the implement in the position shown in

FIG. 3

, and

FIG. 22

shows wheels b as item


24


for castering about a vertical axis at


25


with extending arm


26


in the field working position. Item f is referred to as


15


in

FIGS. 21-23



b.







FIG. 23

, and in more detail in

FIG. 23



a


, the transport condition with wheels


24


fully castered about axis


25


and arm


26


locked in position by plate


27


is shown.

FIG. 23



b


shows the arm


26


in recess in plate


27


.





FIG. 24

shows the implement in the position of FIG.


1


. Outer wing section w


2


is pivotally joined to inner wing section w


1


at forward and rearward points


51


and


52


respectively. In

FIG. 24



a


, angled wing axis


53


is depicted as inclined downward and forward in the direction of travel A by amount Dd.

FIG. 24



b


shows a partial plan view of inner wing section w


1


and outer wing section w


2


along with forward and rearward members w


1


a and w


1


b of inner wing w


1


.

FIG. 24



c


shows a partial rear elevation of

FIG. 24



b.





Claims
  • 1. A farm implement comprising:a first tool frame carrying ground engaging tools; a second tool frame pivotally attached to said first tool frame for rotational movement about an axis; said second tool frame carrying packers in alignment with said ground engaging tools when in a field operating position; and a guide mechanism operably connected between said first and second tool frames to provide translational movement of said second tool frame relative to said first tool frame as said second tool frame is rotatably moved relative to said first tool frame; said guide mechanism effecting a misalignment of said packers with respect to said ground engaging tools when in a transport position.
  • 2. The farm implement of claim 1, wherein said guide mechanism includes a track mounted on said first tool frame and a follower mounted on said second tool member to be engagable with said track.
  • 3. The farm implement of claim 2, wherein said track includes a first vertical portion and a second portion extending diagonally upward from said first vertical portion so as to have a vertical component and a horizontal component.
  • 4. The farm implement of claim 3, wherein said follower engages said first portion of said track during normal movement while in said field operating position.
  • 5. The farm implement of claim 4, wherein said follower engages said second portion of said track when said implement is moved into said transport position so that said second tool frame is laterally offset relative to said first tool frame.
  • 6. The farm implement of claim 1, wherein said first tool frame is moved into a vertical orientation when moved into said transport position, said second tool frame pivotally moving with respect to said first tool frame to create a compact configuration when in said transport position, said second tool frame offsetting laterally when moved into said transport position.
  • 7. The farm implement of claim 6, wherein said second tool frame includes a longitudinally extending packer arm pivotally connected to said first tool frame, said follower being mounted to said packer arm and extending forwardly thereof for engagement with said track.
  • 8. In a farm implement having a primary frame; a first tool frame supporting first ground engaging tools, said first tool frame being vertically movable to said primary frame; and a second tool frame pivotally connected to said first tool frame for vertical movement relative thereto, said second tool frame carrying second ground engaging tools in alignment with said first alignment with said first ground engaging tools, the improvement comprising:a guide mechanism operably connected between said first and second tool frames to provide translational movement of second tool frame relative to said first tool frame as said second tool frame is rotatably moved relative to said first tool frame, said guide mechanism including: a cam track supported on said first tool frame; and a follower roller engaged in said cam track and being attached to said second tool frame; wherein said cam track includes a first vertical portion and a second portion extending diagonally upward from said first vertical portion so as to have a vertical component and a horizontal component.
  • 9. The farm implement of claim 8, wherein said follower roller engages said first vertical portion of said track during normal movement while in a field operating position to prevent any offset movement of said second tool frame while in said field operating position.
  • 10. The farm implement of claim 9, wherein said follower roller engages said second portion of said track when said implement is moved into a transport position so that said second tool frame is laterally offset relative to said first tool frame.
  • 11. The farm implement of claim 10, wherein said first tool frame is moved into a vertical orientation when moved into said transport position, said second tool frame pivotally moving with respect to said first tool frame to create a compact configuration when in said transport position, said second tool frame offsetting laterally when moved into said transport position.
  • 12. The farm implement of claim 11, wherein said first tool frame carries ground engaging tools and said second tool frame carries packers in alignment with said ground engaging tools when is said field operating position, said guide mechanism effecting a misalignment of said packers with respect to said ground engaging tools when in said transport position.
  • 13. The farm implement of claim 12, wherein said second tool frame includes a longitudinally extending packer arm pivotally connected to said first tool frame, said follower being mounted to said packer arm and extending forwardly thereof for engagement with said track.
  • 14. A farm implement comprising:a primary frame adapted for movement over a field; a first tool frame supporting first ground engaging tools, said first tool frame being vertically movable to said primary frame; a second tool frame pivotally connected to said first tool frame for vertical movement relative thereto, said second tool frame carrying second ground engaging tools in alignment with said first alignment with said first ground engaging tools; a cam track supported on said first tool frame and including a diaganol portion defining a vertical component and a horizontal component; and a follower roller engaged in said cam track and being attached to said second tool frame so that said second tool frame is moved laterally whenever said implement is moved into a transport position.
  • 15. The farm implement of claim 14, wherein said cam track further includes a vertical portion engagable with said roller when in a field operating position such that said second tool frame is not offset relative to said first tool frame during movement in said field operating position.
  • 16. The farm implement of claim 15, wherein said second ground engaging tools are offset relative to said first ground engaging tools when placed into said transport position.
  • 17. The farm implement of claim 15, wherein said first tool frame is moved into a vertical orientation when moved into said transport position, said second tool frame pivotally moving with respect to said first tool frame to create a compact configuration when in said transport position, said second tool frame offsetting laterally when moved into said transport position.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. application Ser. No. 09/348,995, filed on Mar. 12, 1998, now U.S. Pat. No. 6,209,657.

US Referenced Citations (12)
Number Name Date Kind
2882979 Chandler et al. Apr 1959
3106254 Clark Oct 1963
4418762 Page Dec 1983
4625345 Wood Dec 1986
4650006 Reimann Mar 1987
4813489 Just et al. Mar 1989
4821809 Summach et al. Apr 1989
5143160 May Sep 1992
5158145 Karchewski Oct 1992
5372540 Burch et al. Dec 1994
5746566 Pfarr et al. May 1998
6192994 Friggstad et al. Feb 2001
Foreign Referenced Citations (5)
Number Date Country
1017166 Feb 1967 AU
1187731 May 1985 CA
908625 Oct 1962 GB
1037884 Aug 1966 GB
456977 Apr 1950 IT