Accommodating Intraocular Lenses were developed in the early 1900's and have been sold in Europe for the last ten years and later in the U.S. They function by means of forward movement of the optic upon constriction of the ciliary muscle which increases the intraocular vitreous pressure. The forward movement of the lens optic enables the patient implanted with the lens to automatically change their vision from distance vision, to see at intermediate and near distances. The increase in pressure in the posterior part of the eye is accompanied by a simultaneous decrease in pressure in the front part of the eye. The reverse pressure changes take place upon relaxation of the ciliary muscle, resulting in the backwards movement of the lens for distance vision.
The currently marketed accommodating plate haptic intraocular lenses provide excellent distance and intermediate vision but sometimes require weak, +1.00, reading glasses for prolonged reading, for seeing small print, or reading in dim lighting conditions.
It is important for intraocular lenses to have a consistent location along the axis of the eye to provide good uncorrected distance vision and to center in the middle of the vertical meridian of the eye. Without excellent uncorrected distance vision there is no point in implanting an accommodating lens. With the advent of the new premium lenses, not only are the above requirements important but also the vision is likely to be better if the lens after implantation and centration, is without any tilt which can reduce the quality of vision particularly if the lens optic has a toric component or is a multifocal.
The word “haptic” has been used to describe an attachment to intraocular lenses. The original intraocular lens consisted of a single optic. These single optic lenses, without any attachments, were first implanted in London by Harold Ridley in 1949. These lenses frequently de-centered and it was discovered that there was a need to center and fixate the lens optic in the vertical meridian of the eye.
The first attachments to the optic were called “haptics”. They consisted of multiple flexible loops of various designs, J loops, C loops, closed loops and flexible radial arms.
Later, these loops which became commonly referred to as “haptics” were replaced in some lens designs with oblong, flat, flexible plates, called “plate haptics”. It is necessary to fixate and center the plate haptics within the capsular bag and so “loops”, “fingers”, or “flexible arms” may be extended from the distal lateral ends of the plate haptics. These can be of the same material as the plate or integrally molded into the plate lens design during manufacturing, and can be made of polymide, prolene PMMA or titanium. These plate haptics are solid, flat, flexible and approximately between 3.0 and 6.0 mm in width, 0.20 to 0.75 mm thick, and may have tapered rounded or parallel sides.
When the accommodating lens plate haptic is fibrosed into the capsular bag of an eye after cataract surgery, sometimes several weeks or months following the surgery, a complication can occur. The lens can deform to a “Z” dislocated shape. This occurs when there is little sandwiching of the distal tip of the plate haptics between the remaining anterior and the posterior walls of the capsular bag.
The current accommodating lenses utilize an oblong lens body design having plate haptics connected to the lens optics by a single transverse hinge across the plate haptic. This promotes accommodation by allowing the optic to move forwards and backwards relative to the outer, or distal, ends of the plates. Such accommodating lenses are found in U.S. Pat. No. 5,476,514 and U.S. Pat. No. 5,496,366, both to Cumming, the disclosures of which are herein incorporated by reference. However, these designs do not permit adequate movement of the optic to a change in vitreous cavity pressure to allow many patients to read comfortably at near without glasses.
In order to increase the movement of the optic to respond to the increase in vitreous cavity pressure that occurs during constriction of the ciliary muscle, the transverse hinge may be weakened by elongating the hinge base or reducing the width of the hinge. However, elongating the hinge base would destabilize the lens optic, and making the hinge narrower would make it prone to tilting.
An accommodating intraocular lens design according to an embodiment of the present invention is described that overcomes the deficiencies of present designs noted above.
An accommodating intraocular lens (AIOL) is provided whereby an optic is coupled to opposing plate haptics by a plurality of spaced apart flexible connecting members.
One feature of the presently described AIOL is that the connecting members operate to stabilize the optic with respect to the plate haptics. Coupling the haptics to the optics with spaced apart connecting members permits pressure to be distributed more evenly along more of the circumference of the optic and thus increases optic stability. Whereas a single narrow connecting member on opposing sides of the optic may cause the lens to tilt easily during fibrosis.
Another feature of the presently described AIOL is that the connecting members improve near vision by reducing the resistance to pressure changes on the optic with contraction and relaxation of the ciliary muscle. This occurs because the spaces between the connecting members do not allow the connecting members to ‘share’ force. Furthermore, the connecting members preferably comprise one or more grooves or hinges on one or more opposing surfaces. These grooves or hinges further decrease the resistance of the connecting member to pressure changes caused by the contracting and relaxing ciliary muscle.
Still another feature of the presently described AIOL is that further stabilization of the optic is achieved by the plate haptics being at least as wide as the optic. In a two diametrically opposed or oblong design, this would form a longitudinal lens body.
Other features and advantages of the present invention will become apparent from the following more detailed description, taken in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of the presently described apparatus and method of its use.
Illustrated in the accompanying drawing(s) is at least one of the best mode embodiments of the present invention In such drawing(s):
The above described drawing figures illustrate the described invention and method of use in at least one of its preferred, best mode embodiment, which is further defined in detail in the following description. Those having ordinary skill in the art may be able to make alterations and modifications to what is described herein without departing from its spirit and scope. Therefore, it should be understood that what is illustrated is set forth only for the purposes of example and should not be taken as a limitation on the scope of the present apparatus and its method of use.
Returning to
In some embodiments, the lens optic 10 is further stabilized by plate haptics 20 having parallel sides 22. In other embodiments, the lens optic 10 may be stabilized by plate haptics 20 having sides which have parallel portions 22a and non-parallel portions 22b. In at least one embodiment, the non-parallel portions 22b may be substantially convergent, as shown in
A plurality of spaced apart connecting members 30 flexibly couple the lens optic 10 to each plate haptic 20, forming at least one aperture 50 defined by the lens optic 10, the plate haptic 20 and the spaced apart coupling members 30. In order to aid in lens optic 10 stabilization, in at least one embodiment, the connecting members 30 extend radially from the lens optic 10 to the haptic 20. However, other embodiments stabilize the lens optic 10 with connecting members 30 that extend longitudinally from the plate haptic 20 to the lens optic 10. The connecting members are preferably narrow, thin straps, but may be any structure permitting longitudinal flexion. In at least one embodiment, the connecting member is between 0.5 to 2.0 mm in width.
As illustrated in
As shown, for example, in
Returning now to
The centration fixation component 42 may be of the same material as the plate haptic 20 and/or the lens optic 10, or may be polymide, prolene, polymethylmethanylate (PMMA), titanium or similar material. In one embodiment, the projection comprises a homogenous integral part of the plate haptic. In another embodiment, the projection comprises a distinct unit set into the plate haptic during molding. Preferably, the projections measure from 2.0 to 4.0 mm in length extending from the distal end of the haptic and are flexible extending to a transverse diameter that exceeds the diameter of the capsular bag.
The lens optic 10 is preferably a solid refractive single vision optic, however other optics are contemplated. For example, the lens optic 10 may be at least one of: solid, single vision, multifocal, Fresnell, spheric, aspheric, toric, biconvex, plano-convex, liquid filled, diffractive or refractive. Additionally, the lens optic 10 is preferably constructed of a flexible optical material such as silicone, hydrogel or acrylic material, but may be made of any similar material. In at least one embodiment, the lens optic has a diameter of 5.0 mm.
According to one embodiment, when the AIOL is implanted into the capsular bag of the eye, the plate haptics 20 and its loops 42 contact the periphery of the capsular bag and operate to support the optic 10 within the eye and to substantially align and fix the lens into the capsular bag, thereby centering the lens optic 10 along the optical axis of the eye. The flexible projections 42 extend beyond the diameter of the capsular bag. Lateral and distal end extensions (not shown) may be provided to contact the periphery of the capsular bag, increasing the contact area of the lens within the bag and provide additional fixation and support to for the lens within the capsular bag.
As illustrated in
The enablements described in detail above are considered novel over the prior art of record and are considered critical to the operation of at least one aspect of the invention and to the achievement of the above described objectives. The words used in this specification to describe the instant embodiments are to be understood not only in the sense of their commonly defined meanings, but to include by special definition in this specification: structure, material or acts beyond the scope of the commonly defined meanings Thus if an element can be understood in the context of this specification as including more than one meaning, then its use must be understood as being generic to all possible meanings supported by the specification and by the word or words describing the element.
The definitions of the words or drawing elements described herein are meant to include not only the combination of elements which are literally set forth, but all equivalent structure, material or acts for performing substantially the same function in substantially the same way to obtain substantially the same result. In this sense it is therefore contemplated that an equivalent substitution of two or more elements may be made for any one of the elements described and its various embodiments or that a single element may be substituted for two or more elements in a claim.
Changes from the claimed subject matter as viewed by a person with ordinary skill in the art, now known or later devised, are expressly contemplated as being equivalents within the scope intended and its various embodiments. Therefore, obvious substitutions now or later known to one with ordinary skill in the art are defined to be within the scope of the defined elements. This disclosure is thus meant to be understood to include what is specifically illustrated and described above, what is conceptually equivalent, what can be obviously substituted, and also what incorporates the essential ideas.
The scope of this description is to be interpreted only in conjunction with the appended claims and it is made clear, here, that the named inventor believes that the claimed subject matter is what is intended to be patented.
This application is based on and claims the benefit of the filing of U.S. Provisional Patent Application No. 61/398,107 filed Jun. 21, 2010; U.S. Provisional Patent Application No. 61/398,098 filed Jun. 21, 2010; U.S. Provisional Patent Application No. 61/398,115, filed Jun. 21, 2010; and U.S. Provisional Patent Application No. 61/398,099, filed Jun. 21, 2010, the contents and disclosure of which are fully incorporated herein by reference. This application is related to U.S. Non-Provisional patent application Ser. No. 13/017,189, filed Feb. 14, 2011; and U.S. Non-Provisional patent application Ser. No. 13/092,359, filed Apr. 22, 2011, the contents and disclosure of which are fully incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61398107 | Jun 2010 | US | |
61398098 | Jun 2010 | US | |
61398115 | Jun 2010 | US | |
61398099 | Jun 2010 | US |