This invention relates generally to tilt switches in particular those that eliminate or minimize actuation electrical power, reduce operating hysteresis, provide positive electrical function, eliminate the need for switches containing mercury or other toxic liquid metals and reduce manufacturing costs.
Various methods have been devised to provide tilt switches in prior art. These switches may be classified as electrically actuated and self actuated.
The first class, electrically actuated, utilizes some form of electrically powered sensor or inertial stabilized element to sense the angle between the local gravity vertical and the reference plane of the switch (i.e. the “tilt angle”). Examples of such devices are servo pendulum accelerometers (U.S. Pat. No. 3,111,036, Kistler, and U.S. Pat. No. 5,006,487, Stokes), vibratory accelerometers (U.S. Pat. No. 2,928,668, Blasingame and U.S. Pat. No. 4,306,456, Maerfeld), convective accelerometers (U.S. Pat. No. 2,455,394, Webber and U.S. Pat. No. 6,182,509, Leung), and gyroscopic stabilized platforms (U.S. Pat. No. 1,563,934, Sperry) to name a few. These instruments generally have very low “operating hysteresis” (i.e. the angular difference between actuation during increasing tilt angle and deactivation during decreasing tilt angle or vice versa). The cited instruments suffer since they require electrical power to maintain any angle measuring capability either before or after the desired tilt angle is achieved. This generally prevents the extended duration use of such electrical switches in portable, battery powered devices.
The second class, self actuated, utilizes some form of gravity powered sensor or gravity stabilized element to sense the tilt angle. Examples of such devices are pendulum switches (U.S. Pat. No. 778,444, Carstarphen, Jr., U.S. Pat. No. 1,055,153, Ferguson, U.S. Pat. No. 3,962,693, Schamblin), rolling ball switches (U.S. Pat. No. 306,050, Bartlett, U.S. Pat. No. 1,414,932, Chisman and U.S. Pat. No. 1,241,888, Safford), mercury switches (U.S. Pat. No. 1,079,380, Thomas and U.S. Pat. No. 1,391,782, McDannold), and electrolytic switches (U.S. Pat. No. 2,852,645) to name a few.
These instruments have an advantage over powered sensors since they require no power to maintain angle measuring capability either before or after the desired tilt angles are achieved. All of these instruments suffer from the fact that they generally have very large operating hysteresis or require heavy masses (e.g. heavy pendulum bob) or large dimensions (e.g. long pendulum) to reduce operating hysteresis. The liquid electrical switches suffer from the use of toxic metals (e.g. mercury switches) or decomposable electrolytes (e.g. electrolytic switches). Rolling ball electrical switches generally suffer from poor electrical contact, excessive/unpredictable hysteresis, high contact resistance, short life and/or electrical bounce.
Other examples of metal-to-metal electrical switches are ball contact magnetic relays where a ferromagnetic ball is attracted (or repelled) by a solenoid or magnet to make or break an electrical circuit using the ferromagnetic ball as an electrical bridge between two electrical contacts. These devices generally suffer from poor electrical contact characteristics due to the nature of the metal ball surface electrical properties. As such, a large magnetic force is required to hold the metal ball in place between the contacts ensuring a good electrical connection between the contact terminals of the switch.
Prior art methods of increasing the electrical conductive properties of the ball have been attempted. For example, U.S. Pat. No. 6,180,873, Bitko, utilizes the discovery that certain liquids have varying dielectric properties depending upon the thickness of the liquid layer. These liquids are called mesoscopically conductive liquids or mesoscopic conductors or mesoscopic liquids. Thick layers of these mesoscopic liquids are insulators; whereas thin layers are conductors. One embodiment of the Bitko device involves a use of mesoscopic conductors in a current carrying device wherein a conductor moves relative to a conducting surface, which it engages. The Bitko device has the disadvantage of requiring containment of a (sometimes toxic) liquid substance which increases production costs and adds leakage risk.
German Patents DE9007264 and DE4021055, Gillert, utilize a cylindrical housing of electrically conductive material that encloses a space having a downwardly tapered conical portion in which a ball rides in a partial filling of conductive powder or granular material, preferably graphite or metallic dust. In the rest position the ball is seated in the taper making no contact between the switch terminals. At a predetermined angle of tilt, the ball rolling is damped by the bed of powder. Thus, the switch contact is substantially free from bounce even when the apparatus is jolted due to the dampening effect of the graphite powder. The Gillert device uses a large amount of graphite powder to dampen the motion of the ball and is at a serious disadvantage since the pile of graphite can also short between the contacts thus increasing the hysteresis of the tilt switch.
The present invention is directed to tilt switches and other devices exploiting conductive graphite films. Graphite films operate as an insulator and as a conductor as a function of the thickness of a layer of the graphite film.
In one embodiment, the graphite film is applied to a charge carrying device as an interface between electrodes. In long distances across a film surface, the graphite film has high resistivity, acting as an insulator and thereby preventing or substantially eliminating charge transfer between electrodes. The graphite film conductor separating the electrodes transfers charge or current when the current carrying members touch each other. In such an embodiment, the electrodes might be movable into and out of engagement or be permanently engageable. The relative movement of electrodes might involve rolling, rotating, sliding, or the like, or any combination thereof.
The objects and advantages of embodiments of the present invention are apparent from the following detailed descriptions of preferred embodiments in connection with the accompanying drawings in which like numerals designate like elements, and in which:
a and 4b are fragmentary views depicting an interface between the roller and the case and an interface between the roller and the insulated electrode;
a and 5b depict yet another embodiment of the invention;
a-6c depicts another embodiment wherein the electrodes are in permanent, relatively rollable engagement;
a is a cross-sectional view of another embodiment of the present invention wherein a tilt switch is in a normally open state;
b is a view of the switch according to
a is a cross-sectional view of another embodiment of the invention wherein a tilt switch is in a normally closed state;
b is a view of the switch according to
a is a view of another embodiment of the present invention wherein a tilt switch is in a dual angle measuring mode, center position normally closed; and
b is a view of the switch according to
a is a view of another embodiment of the present invention wherein a tilt switch is in a dual angle measuring mode, center position normally open; and
b is a view of the switch according to
a is a view of another embodiment of the present invention as an omnidirectional tilt switch, center position normally closed; and
b is a view of the switch according to
a is a view of another embodiment of the present invention including a visual tilt indicator; and
b is a view of the switch according to
The present invention involves the use of graphite film conductors in devices wherein current is conducted, and particularly wherein the current is to be modified, e.g., insulated, reduced, amplified, or otherwise regulated. For example, the invention includes the use of graphite film conductors in devices wherein a current carrying element is insulated under certain circumstances but permitted to conduct under other predetermined circumstances, e.g., a switch.
Graphite film conductors are characterized by their ability to adhere to metal surfaces. This property produces a highly conductive, non-corroding surface on the metal surface. The natural self adhering graphite layer can be used on any conductive metal surface to enhance the electrical conductivity between two metal surfaces. This is particularly useful to enhance a point contact (e.g. a bearing resting on a flat surface) or a line contact (e.g. a cylinder resting on a flat surface) electrical connection as typically found in tilt switches.
A graphite film conductor can be applied in any manner for use in the invention. For example, dusting, wiping, brush application, rolling, solvent application, spraying, etc. can all be used in the invention. This disclosure contemplates that there will always be at least a minimal continuous layer (i.e., at least one molecule thick) of graphite film conductor between electrodes. A significant characteristic of graphite film conductors is that these films possess high resistivity in the transverse (i.e. parallel to the largest area dimension) direction across thin films but low resistivity in the normal direction through the graphite thin film.
The unique and advantageous properties of graphite film conductors ensure that such conductors will prove to be useful in a wide variety of applications. For example, graphite film conductors will be useful in the fabrication of various types of switches, magnetically operated relays, thermocouples, thermostats, pressure sensors, accelerometers, adjustable capacitors (i.e., electronically adjustable), and other such devices that will readily suggest themselves to the skilled worker in this art in view of the present disclosure.
The present invention provides, among other things, a current carrying device including a pair of electrodes and a mobile or variably positioned conductive or charge carrying element (or shorting element or member) surrounded by, or separated from an electrode by, a layer of graphite film. In one embodiment, the mobile shorting element is perpetually in electrically conductive proximity (or graphite film proximity) to at least one electrode. As such, the mobile shorting element functions as a variably positioned extension of at least one electrode. Alternatively, the current carrying device comprises a pair of electrodes coated with a graphite film, the coated electrodes separated by a layer of graphite film coated on a suitable shorting element.
Known tilt switches may experience dramatic electrical hysteresis in operation. For a typical tilt switch wherein the circuit closes at 42° the circuit may only leave contact at 30°. The application of a graphite film reduces this electrical hysteresis to 1° or less, a reduction of approximately 90%.
In one embodiment the electrodes and mobile current carrying element are configured so that at least one electrode and the mobile current carrying element are substantially in perpetual graphite film proximity; under specified conditions, the mobile current carrying element moves into graphite film proximity, and thus electrically connects, the remaining electrode. The action of the mobile current carrying element is such that the electrodes are functionally isolated from each other only by the orientation of the mobile current carrying element and the graphite film. When the distance between the mobile current carrying element and the remaining electrode is great, i.e., a super-graphite film distance, there is no electrical connection; when the distance is small, i.e., a sub-graphite film distance or within graphite film proximity, an electrical connection is effected.
The present invention provides a method for regulating or controlling current flow through a current carrying device including separating electrodes by a layer of graphite film, and regulating the current flow between the electrodes by varying the current carrying distance of the graphite film conductor separating the electrodes. In such a method, the current flow is either facilitated or prevented as a function of the contact with the graphite film separating the electrodes.
Such a device will be recognized by one of ordinary skill in the art as a useful substitute for a tilt switch, particularly a mercury switch.
More particularly, an embodiment of tilt switch 10 is depicted in
At an end of the casing opposite circular surface portion 20, electrically conductive terminal 30 is sealed by insulator 32 within conductive shell 26, which shell has extended flange 24 welded to extended flange 22 of case 12. Conductive shell 26 has tab 28 which provides for electrical termination of the case. An end of terminal 30 projects into chamber 18 and includes terminal face 51 desirably, but not necessarily, shaped as a spherical segment of the same radius as sphere 14, i.e., one half diameter D. Other surface shapes could be used as well.
Terminal 30 extends along axis A, which axis A is offset relative to axis B so that when shorting member 14 rolls into contact with terminal 30, the axis A will pass through the geometrical center of shorting member 14 for alignment of that member in terminal face 51. The mutually contacting faces of terminal 30 and sphere 14 define electrically conductive interface 52 (see
Insofar as embodiments of the present invention are contemplated as substitutes for mercury tilt switches, graphite film coated conductors have the advantage of an increased temperature operating range. Thus, graphite film coated conductors will operate well outside of the typical mercury operating range of −40° C. to about 150° C. In addition, unlike most mercury tilt switches, the inventive tilt switch is made of non-frangible components (i.e. metals or plastics versus glass).
Generally, inner surface 16 of the casing, shorting element 14 and face 51 are all coated by the graphite film. It will be appreciated that inner surface 16, shorting element 14 and face 51 are not perfectly smooth, and as shown in
To enhance the number of such sites, it is also desirable to highly polish or smoothly finish the surfaces which define interfaces 50, 52, thereby minimizing the number of large projections which, by virtue of their presence, tend to separate the surfaces in a manner creating large gaps instead of the desired small gaps.
The graphite film must possess a relatively high electrical resistivity in the transverse direction (so as to avoid conducting current directly between terminal 30 and casing 12), and yet possess a relatively low electrical resistivity across a thin film (i.e., when disposed in interfaces 50, 52) so as to be highly electrically conductive in the direction normal to the film thickness.
In operation, it is obvious that if the left end of insulated terminal 30 or 30′ is tilted so that it is above the right-hand end, shorting element 14 or 14′ will roll away from face 51 or 51′, thereby providing an open circuit. The bulk resistance of the graphite film conductor is so large that no shorting can occur between terminals 30 and 12, or 30′ and 12′. Tilting the left end of terminal 30 to a level below the right-hand end will cause shorting element 14 or 14′ to contact the casing and face 51 or 51′ simultaneously, thereby closing the circuit. Connection to the switch is made via the external terminal portion of terminal 30, and to the casing via shell tab 28. The graphite film conductor contacts interfaces 50 and 52 thereby closing the circuit. Electrical resistance tests carried out in similar devices have indicated the presence of a contact resistance comparable to those found in prior art mercury switches of approximately the same size.
In another embodiment, shown in
In another embodiment, shown in
In still another embodiment of the invention, shown in
In yet another embodiment of the invention, shown in
Depicted in
In
In
In
In
In all of the above embodiments of
In
Although the invention has been described in connection with preferred embodiments thereof, it will be appreciated by those skilled in the art that additions, modifications, substitutions and deletions not specifically described may be made without departing from the spirit and scope of the invention as defined in the appended claims.
This application is a continuation-in-part of U.S. patent application Ser. No. 11/401,162 entitled “DEVICE TO REDUCE THE INCIDENCE OF ASPIRATION” filed Apr. 10, 2006, which claims the benefit of priority to U.S. provisional patent application No. 60/670,842 entitled “HOSPITAL BED INCLINATION SENSOR AND ALARM” filed Apr. 13, 2005. This application also claims the benefit of priority of U.S. provisional patent application No. 61/067,000 entitled “TILT SWITCH EMPLOYING GRAPHITE” filed Feb. 25, 2008.
Number | Name | Date | Kind |
---|---|---|---|
306050 | Bartlett | Oct 1884 | A |
0466380 | Spencer | Jan 1892 | A |
0559090 | West | Apr 1896 | A |
0778444 | Carstarphen, Jr. | Dec 1904 | A |
1055153 | Ferguson | Mar 1913 | A |
1079380 | Thomas | Nov 1913 | A |
1241888 | Stafford | Oct 1917 | A |
1391782 | McDonnald | Sep 1921 | A |
1414932 | Chisman | May 1922 | A |
1563934 | Sperry | Dec 1925 | A |
2455394 | Webber | Dec 1948 | A |
2687453 | Saxl | Aug 1954 | A |
2852645 | Cid | Sep 1958 | A |
2928668 | Blasingame | Mar 1960 | A |
3103120 | Tinney | Sep 1963 | A |
3111036 | Kistler | Nov 1963 | A |
3806109 | Weber et al. | Apr 1974 | A |
3962693 | Schamblin | Jun 1976 | A |
4102055 | Volk, Jr. | Jul 1978 | A |
4205665 | Burton | Jun 1980 | A |
4306456 | Maerfeld | Dec 1981 | A |
4769584 | Irigoyen et al. | Sep 1988 | A |
5006487 | Stokes | Apr 1991 | A |
5058283 | Wise et al. | Oct 1991 | A |
5144823 | Wood | Sep 1992 | A |
5157842 | Swanda | Oct 1992 | A |
5205004 | Hayes et al. | Apr 1993 | A |
5611096 | Bartlett et al. | Mar 1997 | A |
5715548 | Weismiller et al. | Feb 1998 | A |
5822813 | Powell | Oct 1998 | A |
5956855 | Foss et al. | Sep 1999 | A |
6180873 | Bitko | Jan 2001 | B1 |
6182310 | Weismiller et al. | Feb 2001 | B1 |
6182509 | Leung | Feb 2001 | B1 |
6279183 | Kummer et al. | Aug 2001 | B1 |
6353949 | Falbo | Mar 2002 | B1 |
6353950 | Bartlett et al. | Mar 2002 | B1 |
6356203 | Halleck et al. | Mar 2002 | B1 |
6397716 | Garuglieri | Jun 2002 | B1 |
6505365 | Hanson et al. | Jan 2003 | B1 |
6706978 | Wagatsuma et al. | Mar 2004 | B2 |
6849814 | Ogden | Feb 2005 | B2 |
6986180 | Wilke et al. | Jan 2006 | B1 |
7117607 | Horgan | Oct 2006 | B2 |
7319386 | Collins, Jr. et al. | Jan 2008 | B2 |
7346944 | Shaw | Mar 2008 | B2 |
7487562 | Frondorf et al. | Feb 2009 | B2 |
7562458 | Clark et al. | Jul 2009 | B1 |
20070044237 | Williams | Mar 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20090223787 A1 | Sep 2009 | US |
Number | Date | Country | |
---|---|---|---|
60670842 | Apr 2005 | US | |
61067000 | Feb 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11401162 | Apr 2006 | US |
Child | 12392212 | US |