1. Technical Field
The present application relates to a vectored exhaust system for an aircraft.
2. Description of Related Art
A conventional tiltrotor aircraft has an exhaust that is fixed in a specific direction. When the tiltrotor nacelles are vertically oriented to fly in helicopter mode, the hot exhaust gases are directed downward. When the tiltrotor nacelles are horizontally oriented to fly in airplane mode, the hot exhaust gases are directed aft. When the tiltrotor is on the ground, the nacelles are vertically oriented such that the hot exhaust gases are directed towards the ground. In some operational situations, a ground run can cause a risk of damage to the ground surface due to a concentration of the hot exhaust gases. Further, a conventional tiltrotor aircraft does not have an ability to actively control the perceived infrared (IR) signature of the hot exhaust.
Hence, there is a need for an improved exhaust system for a tiltrotor aircraft.
The novel features believed characteristic of the system of the present application are set forth in the appended claims. However, the system itself, as well as a preferred mode of use, and further objectives and advantages thereof, will best be understood by reference to the following detailed description when read in conjunction with the accompanying drawings, wherein:
Illustrative embodiments of the system are described below. In the interest of clarity, all features of an actual implementation may not be described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developer's specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.
In the specification, reference may be made to the spatial relationships between various components and to the spatial orientation of various aspects of components as the devices are depicted in the attached drawings. However, as will be recognized by those skilled in the art after a complete reading of the present application, the devices, members, apparatuses, etc. described herein may be positioned in any desired orientation. Thus, the use of terms such as “above,” “below,” “upper,” “lower,” or other like terms to describe a spatial relationship between various components or to describe the spatial orientation of aspects of such components should be understood to describe a relative relationship between the components or a spatial orientation of aspects of such components, respectively, as the system described herein may be oriented in any desired direction.
Referring to
Aircraft 101 is configured to fly in a helicopter mode, in which nacelles 111 are positioned approximately vertical. In addition, aircraft 101 is configured to fly in an airplane mode, in which nacelles 111 are positioned approximately horizontal. It should be appreciated that nacelles 111 can be oriented at any positioned between vertical and horizontal, which can correspond with flying in a conversion mode.
An exhaust system 103 is located on each nacelle 111. For clarity, only the left side nacelle 111 and exhaust system 103 are detailed herein. The right side nacelle 111 is a mirror image of the left side nacelle 111, as one of ordinary skill in the art would fully appreciate having benefit of this disclosure. Exhaust system 103 is configured with a vector nozzle 113. Vector nozzle 113 can be selectively rotated in relation to aircraft 101 and/or nacelle 111 in order to achieve certain desirables. For example, vector nozzle 113 can be oriented to provide maximum flight performance, reduce IR signature, or even to reduce/prevent ground heating, as further described herein.
Referring to
Referring to
Referring to
Referring to
Referring to
Vector nozzle 113 can be selectively rotated to achieve certain desirables even during rotation of nacelle 111 between helicopter mode and airplane mode orientations. For example, because vector nozzle 113 has a nozzle rotational axis 130 that is approximately parallel to a nacelle rotational axis 132, vector nozzle 113 can approximately maintain its relative orientation even while nacelle 111 rotates. The relative angle a between nozzle rotational axis 130 and nacelle rotational axis 132 is preferably approximately zero; however, even acute angles, such as less than 20 degrees, can provide desirable results. During operation, aircraft 101 can be in IR suppression mode such that vector nozzle 113 can be oriented to maintain the direction of exhaust gas in an upward/outboard direction. When tiltrotor 101 is in helicopter mode, vector nozzle 113 can be oriented as shown in
Referring now also to
Vector nozzle 113 can be selectively rotated with a control system and a vector nozzle pivot assembly 135. Pivot assembly 135 can include a pivot drive motor 137 mounted to a non-rotating structure. Drive motor 137 imparts a rotational force upon vector nozzle 113 with a flexible drive belt 131 wrapped around a rotating portion of the vector nozzle 113. It should be appreciated that pivot drive motor 137 is merely illustrative of a wide variety of actuator systems that may be used to rotate vector nozzle 113. However, with the illustrated geometry, rotation of vector nozzle 113 can be accomplished with a single pivot joint, thus decreasing complication as compared to other possible vectoring systems. Further, vector nozzle 113 is configured to only rotate about a single axis of rotation 130, thereby achieving efficiency in the mechanical system.
Referring now in particular to
Exhaust system 103 illustrated in
Referring now to
The position of vector nozzle in an airplane thrust mode 1513 corresponds with the position illustrated in
Further, if operation condition 1507 sends data to control system 1509 indicating that the aircraft is operating in a high enemy threat situation, then control system 1509 can command actuator 1511 to position vector nozzle in airplane IR suppression mode 1515 (when in airplane mode) and helicopter IR suppression mode 1521 (when in a hover). Further, if operation condition 1507 sends data to control system 1509 indicating that the aircraft is not operating in a high enemy threat situation and it is desirable to have maximum aircraft performance, then control system 1509 can command actuator 1511 to position vector nozzle in airplane thrust mode 1513 (when in airplane mode) and helicopter thrust mode 1517 (when in a hover). Further, if operation condition 1507 sends data to control system 1509 indicating that the aircraft is not operating in a high enemy threat situation and it is desirable to prevent ground surface heating, then control system 1509 can command actuator 1511 to position vector nozzle in helicopter ground heating reduction mode 1519 (when in a hover). It should be appreciated that system 1501 can be configured to position vector nozzle 113 in hybrid positions, especially during operation of the aircraft between airplane and helicopter modes.
The exhaust system of the present application provides significant advantages, including: 1) providing IR suppression that is threat selectable; 2) providing an exhaust system that can reduce ground heating when in helicopter mode; and 3) providing an exhaust system that can selectively position the thrust vector to increase performance in a variety of flight situations.
The particular embodiments disclosed above are illustrative only, as the apparatus may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Modifications, additions, or omissions may be made to the apparatuses described herein without departing from the scope of the invention. The components of the apparatus may be integrated or separated. Moreover, the operations of the apparatus may be performed by more, fewer, or other components.
Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the application. Accordingly, the protection sought herein is as set forth in the claims below.
To aid the Patent Office, and any readers of any patent issued on this application in interpreting the claims appended hereto, applicants wish to note that they do not intend any of the appended claims to invoke paragraph 6 of 35 U.S.C. §112 as it exists on the date of filing hereof unless the words “means for” or “step for” are explicitly used in the particular claim.
Number | Date | Country | |
---|---|---|---|
61536650 | Sep 2011 | US |