The present disclosure relates to engine systems, and more specifically to systems and methods for evaluating a cylinder pressure.
The background description provided herein is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent it is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.
Some vehicles include an internal combustion engine that generates drive torque. More specifically, the engine draws in air and mixes the air with fuel to form a combustion mixture. The combustion mixture is compressed and ignited to drive pistons that are disposed within the cylinders. The pistons drive a crankshaft that transfers drive torque to a transmission and wheels.
A crankshaft position signal is generated based on the rotation of the crankshaft and a cylinder pressure signal is generated based on the pressure in the cylinder. A control module determines an engine position and an engine speed from the crankshaft signal and a cylinder pressure from the cylinder pressure signal. Cylinder pressure is used to control one or more subsystems within the vehicle. Errors in the cylinder pressure measurement can cause inaccurate cylinder pressure computations and therefore may cause one or more vehicle subsystems to operate inefficiently.
Cylinder pressure signals generated in the time and angle domains are used to control spark knock and combustion in the engine, respectively. A control module that determines cylinder pressure from cylinder pressure signals generated in the time and angle domains requires at least two analog-to-digital (A/D) converters, one A/D converter to sample cylinder pressure generated in the time domain and another A/D converter to sample cylinder pressure generated in the angle domain.
Cylinder pressure generated in the angle domain is typically sampled at each degree of rotation of the crankshaft. The location of each degree is predicted based on the engine position and engine speed. Variations in the engine speed may cause errors in the predicted location of each degree, which may cause errors in cylinder pressure sampled in the angle domain.
A control module comprising a crankshaft position determination module that determines a first crankshaft position in an engine at a first time, a time-based cylinder pressure determination module that determines N time-based cylinder pressures in the engine at N times, wherein N is an integer greater than one, and an angle-based cylinder pressure determination module that determines an angle-based cylinder pressure at the first crankshaft position based on the first time, the N time-based cylinder pressures, and the N times.
A method comprising determining a first crankshaft position in an engine at a first time, determining N time-based cylinder pressures in the engine at N times, wherein N is an integer greater than one, and determining an angle-based cylinder pressure at the first crankshaft position based on the first time, the N time-based cylinder pressures, and the N times.
Further areas of applicability of the present disclosure will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the disclosure.
The present disclosure will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description is merely exemplary in nature and is in no way intended to limit the disclosure, its application, or uses. For purposes of clarity, the same reference numbers will be used in the drawings to identify similar elements. As used herein, the phrase at least one of A, B, and C should be construed to mean a logical (A or B or C), using a non-exclusive logical or. It should be understood that steps within a method may be executed in different order without altering the principles of the present disclosure.
As used herein, the term module refers to an Application Specific Integrated Circuit (ASIC), an electronic circuit, a processor (shared, dedicated, or group) and memory that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable components that provide the described functionality.
Referring now to
Cylinder pressure sensors 24 are in communication with cylinders 16 and measure pressures within cylinders 16. Cylinder pressure sensors 24 are in communication with the control module 14. While each cylinder 16 is shown having a cylinder pressure sensor 24 in communication therewith, it is understood that a single one of cylinders 16 may have cylinder pressure sensor 24 in communication therewith and the remainder of cylinders 16 may not, as discussed below. For simplicity, the discussion below will relate to a single cylinder 16 and a single cylinder pressure sensor 24.
The cylinder pressure sensor 24 provides a signal indicative of a pressure within the cylinder 16 to the control module 14. A crankshaft position sensor 26 provides a signal indicative of the position of the crankshaft 20 to the control module 14. The control module 14 determines a pressure in the cylinder 16 at a degree of rotation of the crankshaft 20 based on the pressure within the cylinder 16 and the position of the crankshaft 20.
Referring now to
The time-based cylinder pressure determination module 30 is in communication with the buffer 32. The time-based cylinder pressure determination module 30 determines a cylinder pressure based on the signal indicative of cylinder pressure from the cylinder pressure sensor 24. The time-based cylinder pressure determination module 30 may include a filter (not shown) that filters the signal indicative of cylinder pressure to improve the accuracy of the determined cylinder pressure. The time-based cylinder pressure determination module 30 may also include an analog-to-digital (A/D) converter (not shown) that samples a signal indicative of the cylinder pressure at a predetermined rate that enables oversampling. The time-based cylinder pressure determination module 30 provides a signal indicative of the determined cylinder pressure and a corresponding time to the buffer 32.
The buffer 32 is in communication with the angle-based cylinder pressure determination module 34 and an output of the control module 14. The buffer 32 stores a plurality of cylinder pressures occurring at a plurality of times based on the signal indicative of the determined cylinder pressure and the corresponding time from the time-based cylinder pressure determination module 30. The buffer 32 has sufficient memory to store the plurality of cylinder pressures and the corresponding plurality of times with a range of the plurality of times including two times that correspond to crankshaft positions determined at the lowest speed of the engine 12. The buffer 32 provides a signal indicative of the plurality of cylinder pressures and the corresponding plurality of times to the angle-based cylinder pressure determination module 34 and the output of the control module 14, which may be used to control spark knock in the engine 12.
The angle-based cylinder pressure determination module 34 is in communication with the output of the control module 14. The angle-based cylinder pressure determination module 34 determines a cylinder pressure at a degree of crankshaft rotation based on the signal indicative of the determined crankshaft position and the corresponding time from the crankshaft position determination module 28 and the signal indicative of the plurality of cylinder pressures and the corresponding plurality of times from the buffer 32. Since the pressure at a degree of crankshaft rotation is determined based on a time-based cylinder pressure signal, only a single A/D converter is required to determine a time-based cylinder pressure and an angle-based cylinder pressure. The angle-based cylinder pressure determination module 34 provides a signal indicative of the pressure corresponding to a degree of crankshaft rotation to the output of the control module 14, which may be used to control combustion in the engine 12.
Referring to
In step 40, control determines a time at a degree of crankshaft rotation (tD) between said first and second crankshaft positions (θ1, θ2) based on the first and second crankshaft positions (θ1, θ2) and the first and second times (tθ1, tθ2). In this manner, control is back-calculating a location of each degree based on engine position rather than predicting the location of each degree based on engine position and engine speed, which avoids errors in the location of each degree due to variations in engine speed.
In step 42, control compares the time at a degree of crankshaft rotation (tD) to the plurality of times (tP). In step 44, when the time at a degree of crankshaft rotation (tD) is equal to one of the plurality of times (tP), control sets a cylinder pressure at a degree of crankshaft rotation (PD) equal to one of the plurality of cylinder pressures (Pt) occurring at the equivalent one of the plurality of times (tP).
In step 46, when the time at a degree of crankshaft rotation (tD) is not equal to one of the plurality of times (tP), control determines the cylinder pressure at a degree of crankshaft rotation (PD) based on the time at a degree of crankshaft rotation (tD), two of the plurality of times (tP) nearest in magnitude to the time at a degree of crankshaft rotation (tD), and two of the plurality of cylinder pressures (Pt) occurring at the two of the plurality of times (tP).
Referring now to
Control determines a time at a degree of crankshaft rotation (tD) by multiplying a time per degree by a difference between the degree and one of the first and second crankshaft positions (θ1, θ2) and adding the product to one of the first and second times (tθ1, tθ2), respectively. The time at a degree of crankshaft rotation (tD) is represented by the vertical dashed lines. Control determines the time per degree by dividing the difference between first and second times (tθ1, tθ2) by the difference between the first and second crankshaft positions (θ1, θ2). Control determines a number of samples per degree by dividing the time per degree by the predetermined sampling period (T). Control uses the number of samples per degree as a pointer to the plurality of cylinder pressures relative to a degree of crankshaft rotation.
Control determines the cylinder pressure at a degree of crankshaft rotation (PD) based on the corresponding time at the degree of crankshaft rotation (tD), the plurality of cylinder pressures (Pt), and the plurality of times (tP). The cylinder pressure at a degree of crankshaft rotation (PD) is represented by the bottom solid vertical lines. When the time at a degree of crankshaft rotation (tD) is equal to one of the plurality of times (tP), control sets the pressure at the degree of rotation (PD) equal to the one of the plurality of cylinder pressures (Pt) occurring at the equivalent predetermined time (tP). When the time at a degree of crankshaft rotation (tD) is not equal to one of the plurality of times (tP), as shown in
Those skilled in the art can now appreciate from the foregoing description that the broad teachings of the disclosure can be implemented in a variety of forms. Therefore, while this disclosure includes particular examples, the true scope of the disclosure should not be so limited since other modifications will become apparent to the skilled practitioner upon a study of the drawings, the specification, and the following claims.
This application claims the benefit of U.S. Provisional Application No. 61/049,045, filed on Apr. 30, 2008. The disclosure of the above application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4556030 | Aono | Dec 1985 | A |
5284114 | Fukui | Feb 1994 | A |
7377262 | Oki et al. | May 2008 | B2 |
7455047 | Hashizume et al. | Nov 2008 | B2 |
7568467 | Buslepp et al. | Aug 2009 | B2 |
20070251494 | Hashizume et al. | Nov 2007 | A1 |
20080053404 | Mizuno et al. | Mar 2008 | A1 |
20090055074 | Ishiguro et al. | Feb 2009 | A1 |
20090293842 | Akazaki et al. | Dec 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20090276138 A1 | Nov 2009 | US |
Number | Date | Country | |
---|---|---|---|
61049045 | Apr 2008 | US |