The invention relates to fire extinguishers. More particularly, the invention relates to a time delayed actuation mechanism for a fire extinguisher.
Typical fire extinguishers include a simple pin and trigger mechanism for actuation thereof. The pin is pulled allowing for movement of the trigger, which opens a valve and allows for the flow of the fire suppressant from the fire extinguisher body.
However, it is at times desirable to control the actuation mechanism for timed release of the fire suppressant from the fire extinguisher. Such actuation mechanisms are, however, either highly limited in their functionality to control the release of fire suppressant from the fire extinguisher or they are highly complicated, and ultimately very expensive. In addition, such mechanisms are currently designed for specific fire extinguisher constructions and, therefore, are not available for use in conjunction with a wide range of fire extinguishers.
A need, therefore, exists for an actuation mechanism capable of controlling the release of fire suppressant from a fire extinguisher which is versatile, inexpensive and universal.
It is, therefore, an object of the present invention to provide a fire extinguisher with an actuation mechanism. The assembled device includes a fire extinguisher canister filled under pressure with a fire suppressant in a manner forcibly causing the fire suppressant to be expelled from the fire extinguisher with substantial force upon release. The assembled device also includes an actuation mechanism secured to the fire extinguisher canister for controlling expulsion of the fire suppressant from the fire extinguisher canister. The actuation mechanism includes a pneumatically controlled time delayed activation piston assembly that functions to control the release of the fire suppressant until desired by the user of the fire extinguisher. The activation piston assembly includes an actuator housing having a passageway in which a piston is positioned. The actuator housing includes a first end and second end. The first end of the actuator housing is covered with a first cap supporting a spring interposed between the piston and the first cap, and the second end of the actuator housing is provided with a second cap. The piston includes a first end with an annular shaped recess and a second end with a sealed piston head. The piston, under the control of balanced spring bias and pneumatic pressure, allows for time delayed release of the fire suppressant from the fire extinguisher canister.
It is also an object of the present invention to provide a fire extinguisher wherein the first end of the piston is shaped and dimensioned for engaging an end of the spring opposite the first cap at the first end of the actuator housing, which spring biases the piston toward the second end of the actuator housing.
It is another object of the present invention to provide a fire extinguisher wherein the sealed piston head is shaped and dimensioned for engaging an inner wall of the passageway of the actuator housing in a manner defining a substantially sealed lateral compartment in the actuator housing between the second end of the piston and the second cap.
It is a further object of the present invention to provide a fire extinguisher wherein the sealed piston head is provided with a circumferential recess in which an O-ring is positioned.
It is also an object of the present invention to provide a fire extinguisher wherein a central section of the piston is also provided with a circumferential recess in which an O-ring is positioned, the O-ring of the sealed piston head at the second end of the piston and the O-ring of the central section form a sealed section.
It is another object of the present invention to provide a fire extinguisher wherein the second cap includes a vent hole allowing air from the sealed lateral compartment to be forced out of the sealed lateral compartment.
It is a further object of the present invention to provide a fire extinguisher wherein the annular shaped recess allows for positioning of a locking pin therein for preventing movement of the piston and provides a pathway for the flow of fire suppressant.
It is also an object of the present invention to provide a fire extinguisher further including a locking pin holding the piston in a desired orientation prior to use.
It is another object of the present invention to provide a fire extinguisher wherein the pneumatically controlled time delayed activation piston assembly is secured to the fire extinguisher via an attachment sleeve that connects the actuation mechanism to the fire extinguisher in a manner permitting fluid communication from the fire extinguisher.
It is a further object of the present invention to provide a fire extinguisher wherein the sealed piston head is shaped and dimensioned for engaging an inner wall of the passageway of the actuator housing in a manner defining a substantially sealed lateral compartment in the actuator housing between the second end of the piston and the second cap, the sealed piston head being provided with a circumferential recess in which an O-ring is positioned and a central section of the piston is also provided with a circumferential recess in which an O-ring is positioned, the O-ring of the sealed piston head at the second end of the piston and the O-ring of the central section forming a sealed section preventing the flow of fire suppressant from the fire extinguisher when the sealed section is aligned with the attachment sleeve.
It is also an object of the present invention to provide an actuation mechanism for controlling expulsion of the fire suppressant from the fire extinguisher canister.
Other objects and advantages of the present invention will become apparent from the following detailed description when viewed in conjunction with the accompanying drawings, which set forth certain embodiments of the invention.
The detailed embodiments of the present invention are disclosed herein. It should be understood, however, that the disclosed embodiments are merely exemplary of the invention, which may be embodied in various forms. Therefore, the details disclosed herein are not to be interpreted as limiting, but merely as a basis for teaching one skilled in the art how to make and/or use the invention.
With reference to the various figures, an actuation mechanism 10 for a fire extinguisher 100 is disclosed. The actuation mechanism 10 is designed for permitting controlled, time delayed release of fire suppressant 102 expelled from the fire extinguisher 100. The present actuation mechanism 10, when secured to a fire extinguisher 100 is designed to be thrown at or near a fire. The fire extinguisher and actuation mechanism are referred to herein as the assembled device 1. The fire extinguisher 100 with the present actuation mechanism 10 is a non-pyrotechnic operated system. Non-pyrotechnic operation eliminates the risk of “secondary” fire due to a pyrotechnic ignition device. The present actuation mechanism 10 can be used on existing fire extinguisher bodies, or with a special designed container. The actuation mechanism 10 will operate with any existing suppressant agent; for example, dry chemical, water or other suppressant agents. In addition, it is appreciated that although the present invention is disclosed as being used in conjunction with fire suppressant in accordance with a preferred embodiment, it may be used for the time delayed release of various materials.
Briefly, the present invention is composed of a fire extinguisher 100 filled under pressure with a fire suppressant in a manner forcibly causing the fire suppressant 102 to be expelled from the fire extinguisher 100 with substantial force upon release. The fire extinguisher 100 is secured to an actuation mechanism 10 for controlling expulsion of the fire suppressant 102 from the fire extinguisher 100 in time delayed manner. The actuation mechanism 10 includes a pneumatically controlled time delayed activation piston assembly 14 that functions to control the release of the fire suppressant 102 until desired by the user of the fire extinguisher 100. The pneumatically controlled time delayed activation piston assembly 14 includes an actuator housing 24 having a passageway 25 in which a piston 26 is positioned. In accordance with a preferred embodiment, both the passageway 25 and the piston 26 have a circular cross-sectional profile. The actuator housing 24 includes a first end 28 and a second end 30 with the passageway 25 extending therebetween. The first end 28 of the actuator housing 24 is covered with a first cap 36 supporting a spring 38 interposed between the piston 26 and the first cap 36 in the passageway 25, and the passageway 25 at the second end 30 of the actuator housing 24 is provided with a second cap 42. The piston 26 includes a first end 48 with an annular shaped recess 54 and a second end 50 with a sealed piston head 58. The piston 26, under the control of balanced spring bias from the spring 38 and pneumatic pressure established between the sealed piston head 58 and the second cap 42, allows for time delayed release of the fire suppressant 102 from the fire extinguisher 100.
As will be appreciated based upon the following disclosure, the present actuation mechanism 10 is a pull actuated device designed to be tossed into enclosed spaces with active fires to provide controlled, time delayed fire suppression. When used by first responders, it provides controlled, time delayed suppression of the fire until dedicated fire personnel and equipment arrive. In addition, the fire extinguisher 100 with the present actuation mechanism 10 provides suppression of a fire and allows for more time for personnel to egress from confined spaces or other hazardous environments. It is also capable of “knockdown” and fire suppression for enclosed spaces and offers a reliable and cost effective method of fire protection in a wide range of applications.
The present actuation mechanism 10 also may be employed in embodiments using a thermal reactive device that automatically releases the actuation mechanism, and ultimately the fire suppressant at specified temperatures or on contact with flames. The actuation mechanism 10 may further be used in conjunction with a power interruption device, which when activated closes a circuit, eliminating a source of fuel for the fire. For example, the lock pin 12 used to hold the piston 26 in place (as explained below), could be replaced by other locking mechanism that are actuated via heat or electronics.
Briefly, and as discussed below in greater detail, in the event of a fire, the present actuation mechanism 10 is manually activated in two steps: One—pull the locking pin 12; and Two—throw or place the unit at or near the fire. The device will actuate following a predetermined time delay. Upon activation, the fire extinguisher 100 with the present actuation mechanism 10 secured thereto produces an effective suppressant that provides fast knockdown and rapid suppression of fires.
In particular, a fire extinguisher 100 generally includes a canister (or body) 104 onto which an actuation mechanism 10 in accordance with the present invention is secured. With the exception of utilization of the present actuation mechanism 10, the fire extinguisher 100 employing the present delayed actuation mechanism 10 operates in much the same manner as a conventional fire extinguisher. As such, the fire extinguisher 100 includes a fire extinguisher canister 104 filled under pressure with a fire suppressant 102 in a manner forcibly causing the fire suppressant 102 to be expelled from an outlet valve 106 positioned at the top of the extinguisher canister 104 with substantial force upon release. The outlet valve 106 is a traditional pressure actuation valve that opens for release of the pressurized contents when the outlet valve 106 pressed downwardly during use. When no pressure is applied to the outlet valve 106 the fire suppressant 102 is prevented from escaping the extinguisher canister 104.
Controlled release of the fire suppressant 102 from the fire extinguisher canister 104 is achieved through the utilization of the present actuation mechanism 10. As will be discussed below in greater detail, the actuation mechanism 10 includes a housing in which the fire extinguisher 100 is contained in the assembled device, referred to herein as the fire extinguisher housing 11. The actuation mechanism also includes a pneumatically controlled time delayed activation piston assembly 14 that functions to control the release of fire suppressant 102 until desired by the user of the fire extinguisher 100. The pneumatically controlled time delayed activation piston assembly 14 is secured to the first extinguisher housing 11, and ultimately fire extinguisher 100, via an attachment sleeve 16 extending downwardly from the pneumatically controlled time delayed activation piston assembly 14 to connect the pneumatically controlled time delayed activation piston assembly 14 to the fire extinguisher 100 in a manner pressing down upon the outlet valve 106 to allow for the flow of fire suppressant from the extinguisher canister 104 and thereafter permitting fluid communication from the fire extinguisher canister 104, through the pneumatically controlled time delayed activation piston assembly 14 and out dispensing holes 18 found in the pneumatically controlled time delayed activation piston assembly 14 in a manner discussed below in greater detail.
The attachment sleeve 16 is provided with threading 20 for attachment to a threaded opening 76 in the fire extinguisher housing 11. The attachment sleeve 16 also includes a central passageway 22 that aligns with the outlet valve 106 of the fire extinguisher 100 permitting the flow of fire suppressant 102 in a manner discussed below in greater detail. In particular, the fire extinguisher housing 11 is shaped and dimensioned for the positioning of the first extinguisher 100 therein. The fire extinguisher housing 11, therefore, includes a cylindrical side wall 11a, an open bottom end 11b and a closed top wall 11c in which the threaded opening 76 mentioned above is formed. In this way, the first extinguisher 100 may be slid upwardly through the open bottom end lib with the top of the fire extinguisher 100 pushed upwardly until the output valve 106 is positioned adjacent to the top wall 11c and the threaded opening 76. The fire extinguisher 100 is secured within the fire extinguisher housing 11 via adhesive 13 positioned between the outer wall 104a of the fire extinguisher canister 104 and the inner wall 11d of the fire extinguisher housing 11. The adhesive also functions to prevent the flow of fire suppressant 102 out the bottom end 11b when the device is actuated so that all of the fire suppressant 102 flows through the pneumatically controlled time delayed activation piston assembly 14 as explained below. In addition, the rim 108 at the top of the fire extinguisher canister 104 also helps to prevent the flow of fire suppressant 102 out the bottom end 11b when the rim is pressed against the bottom of the top wall 11c. While the top wall is shown integrally formed with the side wall, it is appreciated the top and side walls may be formed as separate units if desired.
While adhesive is disclosed above for use in securing the fire extinguisher within the fire extinguisher housing, an alternate embodiment provides a bottom cap 13 for securing the fire extinguisher 100 within the fire extinguisher housing 11. In accordance with such an embodiment (please note that similar references numerals have been used for this embodiment), and with reference to
Because the outlet valve 106 is positioned adjacent to the top wall 11c and the threaded opening 76, the outlet valve 106 is actuated when the attachment sleeve 16 is screwed downwardly into the threaded opening 76 and the bottom surface 16a of the attachment sleeve 16 engages (that is, presses downwardly upon (for example, see
While the present actuation mechanism 10 is disclosed for use in conjunction with a fire extinguisher, it is contemplated it could be used in other similar applications. For example, it is contemplated it could be used as a replacement for a sprinkler head in an existing fire prevention system.
The pneumatically controlled time delayed activation piston assembly 14 includes an actuator housing 24 shaped and dimensioned for receiving a piston 26. The actuator housing 24 includes a first end 28, a second end 30, a top surface 32 and a bottom surface 34. The actuator housing 24 also includes a cylindrical passageway 25 that runs from the first end 28 of the actuator housing 24 to the second end 26 of the actuator housing 24. The passageway 25 is in fluid communication with small apertures 18 formed in the actuator housing 24 to allow for the flow of fluid from the passageway 25 to the top surface 32 of the actuator housing 24. As such, the small apertures 18 extend between the top surface 32 and the passageway 25. While a circular shape for the actuator housing is disclosed in accordance with a preferred embodiment, and the first and second ends are respectively at diametrically opposed portions of the actuator housing, it is appreciated other shapes may be employed.
Many of the functional components of the pneumatically controlled time delayed activation piston assembly 14 are housed within the passageway 25 for movement in a manner discussed below in detail. The passageway 25 at the first end 28 of the actuator housing 24 is covered with a first cap 36 supporting a spring 38 interposed between the piston 26 and the first cap 36. The first cap 36 is screwed into an opening 40 formed in the first end 28 of the actuator housing 24. The passageway 25 at the second end 30 of the actuator housing 24 is provided with a second cap 42. The second cap 42 is screwed into an opening 44 formed in the second end 30 of the actuator housing 24 and includes a vent hole 46, the use of which is explained below in greater detail.
The piston 26, under the control of balanced spring bias from the spring 38 and pneumatic pressure created between the piston 26 and the second cap 42, allows for time delayed release of the fire suppressant 102 from the fire extinguisher canister 104. More particularly, the piston 26 includes a first end 48 and a second end 50. The first end 48 of the piston 26 is shaped and dimensioned for engaging the end 52 of the spring 38 opposite the first cap 36 at the first end 28 of the actuator housing 24. As a result, the piston 26 is biased toward the second end 30 of the actuator housing 24.
Adjacent the first end 48 of the piston 26, and between the first end 48 and the second end 50 of the piston 26, an annular shaped recess 54 is formed. The recess 54 serves two purposes. First, it allows for the positioning of the locking pin 12 therein for the purpose of preventing movement of the piston 26 until desired. Second, it provides a pathway for the flow of fire suppressant 102 in a manner that will be discussed below in greater detail.
With regard to the use of the annular shaped recess 54 as a mechanism to control movement of the piston 26 based upon interaction with the locking pin 12, one of the small apertures 18 extending between the passageway 25 and the top surface 32 of the actuator housing 24 is shaped and dimensioned to allow for the passage of the locking pin 12 therethrough and into the annular shaped recess 54 when the piston 26 is in its storage, non-firing position (as discussed below and shown with reference to
The second end 50 of the piston 26 includes a sealed piston head 58 shaped and dimensioned for engaging the inner wall 60 of the passageway 25 of the actuator housing 24 in manner defining a substantially sealed lateral compartment 62 in the actuator housing 24, that is, a compartment between the second end 50 of the piston 26 and the second cap 42. The piston head 58 is provided with a circumferential recess 64 in which a sealing member, for example, an O-ring 66, is positioned.
A central section 68 of the piston 26 is also provided with a circumferential recess 70 in which a sealing member, for example, an O-ring 72, is positioned. The O-ring 66 of the piston head 58 at the second end 50 of the piston 26 and the O-ring 72 of the central section 68 form a sealed section 74 when the piston 26 is positioned within the passageway 25 by contacting the inner wall 60 of the passageway 25 in a sealing manner. This sealed section 74, when aligned with the passageway 22 of the attachment sleeve 16 (and ultimately the outlet 108 of the fire extinguisher 100) as shown in
With this in mind, and considering the spring 38 functioning to bias the piston 26 toward the second end 30 of the actuator housing 24 against the sealed lateral compartment 62, it is necessary to vent the sealed lateral compartment 62 to allow for movement of the piston 26 toward the second end 30 of the actuator housing 24. Accordingly, and as briefly mentioned above, the second cap 42 is provided with a vent hole 46 allowing air from the sealed lateral compartment 62 to be forced out of the sealed lateral compartment 62, and into the atmosphere, as the spring 38 attempts to move the piston 26 toward the second end 30 of the actuator housing 24.
The vent hole 46 is, in accordance with a preferred embodiment constructed as an adjustable bleed valve. In particular, and with reference to
As is known to those skilled in the art, and with reference to
Because the speed at which the piston 26 will move within the passageway 25 is a function of the spring pressure being applied by the spring 38 and the size of the vent hole 46 as determined by the positioned of the bleed valve member 84 within the cap aperture 78, the present pneumatically controlled time delayed activation piston assembly 14 allows for pneumatically controlled movement of the piston 26 from its start position toward the second end 30 of the actuator housing 24. The adjustable vent hole 46 provided in accordance with the present invention allows for adjustment of the time for release of the fire suppressant from 1 second to 1 minute, or longer if desired.
As discussed above, and with reference to
As discussed above, the speed at which the piston 26 moves is a function of the force applied by the spring 38 and the amount of air allowed to pass through the vent hole 46. Referring to
The annular recess 54 is integrated with the piston 26 and comes into alignment with the passageway 22 of the attachment sleeve 16 at a specific time and location after the locking pin 12 is removed and the piston 26 is released from its starting position. With reference to
Referring to
While a locking pin is disclosed above for use in preventing movement of the piston until desired, other mechanism could be employed. For example, and with reference to
The underside of the first segment 283 also includes a locking pin 291 that extends downwardly therefrom and is shaped and dimensioned to pass through one of the small apertures 218 extending between the passageway 225 and the top surface 232 of the actuator housing 224 so as to allow for the passage of the locking pin 291 therethrough and into the annular shaped recess 254 when the piston 226 is in its storage, non-firing position. As such, and when the device 210 is in its storage, non-firing position, the release lever 281 is wrapped about the actuator housing 224 and the fire extinguisher housing 211. With the bent section 289 of the first segment 283 wrapped about the pivot pin 287, the release lever 281 is held in position by a release pin 293 that passes through both the release lever 281 and a portion of the actuator housing 224.
When it is desired to use the actuation mechanism 210, the user, with his or her hand about the fire extinguisher housing 211 and the second segment 285 of the release lever 281, pulls the release pin 293 from the release lever 281 and a portion of the actuator housing 224 through which it passes. At this point the release lever 281 is free to move away from the actuator housing 224 and the fire extinguisher housing 211. Movement of the release lever 281 away from the actuator housing 224 and the fire extinguisher housing 211 is achieved by the provisional of a spring 297 between the top surface 232 of the actuator housing 224 and the first segment 283 of the release lever 281. As the release lever 281 is forced away from the actuator housing 224 and the fire extinguisher housing 211 and rotates about the pivot pin 287, the locking pin 291 is pulled from the piston 226 and the piston 226 is free to move as described above. The bent section 289 of the first segment 283 is not fixedly coupled to the pivot pin 287 so the release lever 281 will fly away from the actuator housing 224 and the fire extinguisher housing 211 once it is released. If it is desired to keep the release lever 281 connected to the actuator housing and/or the fire extinguisher housing, a tether of some sort may be attached between the release lever and the actuator housing and/or the fire extinguisher housing.
While the preferred embodiments have been shown and described, it will be understood that there is no intent to limit the invention by such disclosure, but rather, is intended to cover all modifications and alternate constructions falling within the spirit and scope of the invention.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/533,083, entitled “TIME DELAYED ACTUATION MECHANISM FOR A FIRE EXTINGUISHER,” filed Jul. 16, 2017.
Number | Name | Date | Kind |
---|---|---|---|
1326927 | Hall | Jan 1920 | A |
3228474 | Huthsing, Jr. | Jan 1966 | A |
6702033 | Mitchell et al. | Mar 2004 | B1 |
7389825 | Gross | Jun 2008 | B2 |
8024849 | Geyer | Sep 2011 | B2 |
8083003 | Felten et al. | Dec 2011 | B2 |
8869905 | Thomas, III et al. | Oct 2014 | B2 |
20130240221 | Chaney | Sep 2013 | A1 |
20170368389 | Baxendell | Dec 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
20190015691 A1 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
62533083 | Jul 2017 | US |