Time-division-duplex repeaters with global navigation satellite system timing recovery

Information

  • Patent Grant
  • 11937199
  • Patent Number
    11,937,199
  • Date Filed
    Tuesday, April 18, 2023
    a year ago
  • Date Issued
    Tuesday, March 19, 2024
    10 months ago
Abstract
A repeater for wireless communications systems can include a time-division-duplex (TDD) architecture with a timing recovery system for switching between uplink and downlink. In some approaches, the timing recovery system can receive a timing reference from a global navigation satellite system (GNSS) such as Global Positioning System (GPS), Global Navigation Satellite System (GLONASS), or Galileo.
Description
TECHNICAL FIELD

The application has to do with repeaters for wireless communications.


BACKGROUND

Wireless communications, including 5th generation (5G) wireless communications, can be enhanced by placement of repeaters that extend or otherwise amplify the signals from wireless base stations. Repeaters can have several radio frequency (RF) architectures that are viable. One architecture is operation of the repeater in a full duplex mode. In this architecture, there can be four separate antennas for each of the Donor and Service side of the repeater device. These are generally Horizontal-polarization Uplink (H-UL), Vertical-polarization Uplink (V-UL), Horizontal-polarization Downlink (H-DL), and Vertical-polarization Downlink (V-DL). This is a robust architecture in that it is generally immune to changes in the underlying air interface such as Downlink-Uplink (DL-UL) allocation, dynamic slot formats, and flex slots/symbols—all of which are part of the 5G standard from 3rd Generation Partnership Project (3GPP).


However, it adds cost compared to other architectures: It can include four Donor unit apertures, generally, as well as a potentially costly set of Monolithic Microwave Integrated Circuit (MIMIC) chains for the conducted RF subsystems. In addition, the RF gain can be limited due to stringent isolation requirements.


Another architecture may use an off-the-shelf or modified user equipment (UE) modem. In this architecture, the modem can recover network synchronization to have knowledge of when the macro-level system is Downlink (DL), Uplink (UL), or even Flex. The modem can then use that information to control the MIMIC chains for the conducted RF subsystems. The conducted RF architecture is then inherently time-division-duplex (TDD), rather than full duplex: it only transmits (and receives) in either DL or UL directions at any instant, rather than both. This improves performance by relaxing isolation requirements. It also reduces the cost allocated to the antennas and (potentially) the MIMIC chains.


However, the cost of the modem can be prohibitively high. The modem itself, as a silicon chip, can be costly. The modem might entail a substantial startup/license cost to the modem supplier, and can be complex to implement and bring up on a Printed Circuit Board (PCB).


A technical problem, therefore, is to realize a repeater that uses a time division duplex (TDD) RF architecture but does not entail the high cost and complexity that come with using a UE modem. This can be accomplished if there is a dedicated timing recovery subsystem. The conventional way to accomplish a timing recovery subsystem is to use custom software running on high-performance silicon, to implement a partial UE modem. This requires frequency conversion from RF to Inphase component and Quadrature component (I/Q) baseband or Intermediate Frequency (IF), at least one high-speed analog to digital converter (ADC), and silicon running appropriate software. There is additional cost and complexity in implementing this solution.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts an example of a full-duplex (FD) repeater system.



FIGS. 2A-2C depict various examples of time-division-duplex (TDD) repeater systems.



FIG. 3 depicts an example of a TDD repeater system with timing recovery using a Global Navigation Satellite System (GNSS).



FIGS. 4-5 depict examples of switch timing for uplink and downlink in a TDD repeater system.





DESCRIPTION OF VARIOUS EMBODIMENTS OF THE INVENTION

The present invention now will be described more fully hereinafter with reference to the accompanying drawings, which form a part hereof, and which show, by way of illustration, specific embodiments by which the invention may be practiced. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Among other things, the present invention may be embodied as methods or devices. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment combining software and hardware aspects. The following detailed description is, therefore, not to be taken in a limiting sense.


Throughout the specification and claims, the following terms take the meanings explicitly associated herein, unless the context clearly dictates otherwise. The phrase “in one embodiment” as used herein does not necessarily refer to the same embodiment, though it may. Similarly, the phrase “in another embodiment” as used herein does not necessarily refer to a different embodiment, though it may. As used herein, the term “or” is an inclusive “or” operator, and is equivalent to the term “and/or,” unless the context clearly dictates otherwise. The term “based on” is not exclusive and allows for being based on additional factors not described, unless the context clearly dictates otherwise. In addition, throughout the specification, the meaning of “a,” “an,” and “the” include plural references. The meaning of “in” includes “in” and “on.”


The following briefly describes the embodiments of the invention to provide a basic understanding of some aspects of the invention. This brief description is not intended as an extensive overview. It is not intended to identify key or critical elements, or to delineate or otherwise narrow the scope. Its purpose is merely to present some concepts in a simplified form as a prelude to the more detailed description that is presented later.


The invention is a timing recovery subsystem that utilizes out-of-band communication to synchronize to the desired communications network (e.g., a 5G network). The out-of-band communication can include three pieces of data:


1. A reference to “absolute time”, or the synchronized time of the communications network. This can be provided by global navigation satellite system (GNSS) such as Global Positioning System (GPS), Global Navigation Satellite System (GLONASS), or Galileo. In other approaches, the reference to absolute time can be provided by a non-GNSS synchronization protocol such as Institute of Electrical and Electronics Engineers (IEEE) 1588, Synchronous Ethernet (SyncE), or Time Sensitive Networking (TSN).


2. The (locally or globally used) DL and UL pattern of the 5G network within a radio frame. This is also variously known as the TDD pattern, TDD allocation, slot format, and others


3. The start of a radio frame, referenced to “absolute time,” of the serving base station/Next Generation NodeB (gNB).


With this information, the timing recovery subsystem can be implemented using a low cost microcontroller. It does not require an Field Programmable Gate Array (FPGA); Digital Signal Processor (DSP); high-speed ADC; or frequency converter from RF to baseband or IF. The microcontroller may make use of the information above to switch the MIMIC chain/RF architecture between DL and UL on a scheduled basis: it knows the absolute time at any instant, it knows the pattern for each radio frame, and it knows when the radio frame starts.


This invention includes delivery of the above information with in-band or out-of-band communication. The information may be gathered in any fashion, from a local Next Generation NodeB (gNB) or higher protocol layer (or the core network). The information is then provided to the timing recovery subsystem of the repeater. Additional information could also be provided to assist with the timing recovery subsystem.


This could be done over a wide variety of interfaces. One possible implementation is to provide the information from a cloud-based management system. Another possible implementation is to provide the information from a device management server over a device management protocol such as Lightweight Machine to Machine (LWM2M), Open Mobile Alliance Device Management (OMA-DM), or Message Queues Telemetry Transport (MQTT). The physical interface could be conducted (as in Ethernet over copper or fiber) or wireless (as in any flavor of Global System for Mobile Communications (GSM), Long Term Evolution (LTE), Bluetooth™, WiFi™, etc). In any case, the interface could also be used to provide other diagnostic information, either to assist the timing recovery subsystem (such as RF power levels) or for general performance diagnostics.


While the following disclosure describes repeater systems with timing recovery, it will be appreciated that the timing recovery aspects that are herein disclosed can also be used in non-repeater contexts. For example, a signal receiver can use the timing recovery described herein to determine when to receive. As another example, a signal transmitter can use the timing recovery described herein to determine when to transmit to either minimize or maximize interference.


Illustrative Repeater Systems

With reference now to FIG. 1, an illustrative example of a full duplex wireless repeater 100 is depicted. The repeater includes a donor downlink (DD) antenna 101 that receives downlink RF signals from a wireless base station 130; amplifies the received downlink RF signals with a downlink RF amplifier 111; and retransmits the amplified downlink RF signals to user equipment 140 with a service downlink (SD) antenna 121. The repeater further includes a service uplink (SU) antenna 122 that received uplink RF signals from the user equipment 140; amplifies the received uplink RF signals with an uplink RF amplifier 112; and retransmits the amplified uplink RF signals to the wireless base station 130.


As shown by the zoom in FIG. 1, each of the amplifiers 111 and 112 may consist of an RF amplification chain that can include one or more low noise amplifiers 151, adjustable attenuators 152, band pass filters 153, and power amplifiers 154. The overall amplifier can then be adjusted by, for example, adjusting an attenuator, adjusting a gain of the low noise amplifier and/or power amplifier, turning a low noise amplifier and/or power amplifier on or off, or any combination of these adjustments.


In some approaches, the repeater may repeat RF communications having two orthogonal polarization, e.g., vertical and horizontal. In these approaches, all of the elements of the repeater 100 may be duplicated, with a first set of the elements serving to repeat vertically-polarized RF communications and a second set of the elements serving to repeat horizontally-polarized RF communications. Thus, these dual-polarization repeaters can have as many as eight antennas: four donor antennas communicating with the base station 130 and four service antennas communicating with the user equipment 140.


It can therefore be seen that operating a repeater in full duplex mode can have negative implications in terms of cost, size, and weight of the repeater because of the number of components that are needed to operate in full duplex and dual polarization; and also power consumption because four power amplifiers are consuming energy at the same time; and also mechanical complexity because of the need to provide RF isolation to prevent feedback oscillation. A time-division-duplex repeater avoids these negative implications, but with the added complexity that the TDD repeater needs a timing recovery system to be aware of when to operate in uplink mode and when to operate in downlink mode.


With reference now to FIGS. 2A-2C, illustrative embodiments of TDD wireless repeaters are depicted. In FIG. 2A, repeater 200A includes a donor antenna 201 that transmits RF communications to, or receives RF communications from, a wireless base station 230, depending on whether the repeater is operating in uplink mode or downlink mode, respectively. Repeater 200A further includes a service antenna 221 that transmits RF communications to, or receives RF communications from, user equipment 240, depending on whether the repeater is operating in downlink mode or uplink mode, respectively. Repeater 200A includes a downlink amplifier 211, an uplink amplifier 212, and RF switches 251 and 252 that are operable to switch the repeater between downlink mode and uplink mode.


As with FIG. 1, each amplifier 211, 212 can actually consist of an RF amplification chain consisting of one or more low noise amplifiers, attenuators, band pass filters, and power amplifiers. In some approaches, as illustrated in FIG. 2B, some of these amplifier components can be shared by both uplink and downlink RF amplification chains; in this example, there is a dedicated downlink power amplifier 211 and a dedicated uplink power amplifier 212, but the uplink and downlink amplification chains share a common low noise amplifier 213 and attenuator 214, with RF switches 251, 252, 253, and 254 that are operable to switch the repeater 200B between downlink mode and uplink mode. In other approaches, as illustrated in FIG. 2C, all of the amplifier components can be shared by both uplink and downlink; in this example, there is a single amplifier (or amplifier chain) 211, with RF switches 251 and 252 that are operable to switch the repeater 200C between downlink mode and uplink mode.


The TDD repeaters 200A, 200B, and 200C may repeat RF communications having two orthogonal polarization, e.g., vertical and horizontal. In these approaches, all of the elements of the repeaters 200A, 200B, and 200C may be duplicated, with a first set of the elements serving to repeat vertically-polarized RF communications and a second set of the elements serving to repeat horizontally-polarized RF communications.


With reference now to FIG. 3, an illustrative scenario for timing recovery for a wireless TDD repeater is depicted. In this example, wireless repeater 300 includes a donor antenna 301 for communication with wireless base station 330; a service antenna 302 for communication with user equipment 340; a downlink amplifier 311 that can be switched on or off with control signal 311S; an uplink amplifier 312 that can be switch on or off with control signal 312S; and RF switches 351, 352 that can be toggled with control signals 351S and 351S, respectively.


The repeater includes a timing control unit, such as microcontroller unit 360, which outputs the control signals 311S, 312S, 3351S, and 352S that switch the repeater between uplink mode and downlink mode. The timing control unit can determine a schedule for switching between uplink and downlink based on several inputs.


First, the timing control unit can receive a reference to absolute time for communication on the wireless network. For example, the repeater can include an antenna 371 and receiver 372 operable to receive information from a global navigation satellite system (GNSS) 370 such as Global Positioning System (GPS), Global Navigation Satellite System (GLONASS), or Galileo. The GNSS receiver can output an absolute time reference signal 372T, for example a one-pulse-per-second (1PPS) signal. Signals from a GNSS system can have intermittent outages, e.g., due to satellite flyover/handoff, weather conditions, transient physical obstructions, etc. To accommodate for brief periods of outage, the repeater can include a phase-locked loop (PLL) unit 373 that provides a “holdover” mode with reference to a high quality local oscillator 374, e.g., a crystal oscillator such as a temperature compensated crystal oscillator (TCXO), oven controlled crystal oscillator (OXCO), voltage controlled crystal oscillator (VCXO), or digital controlled crystal oscillator (DCXO). Then, the PLL unit can output an absolute time reference signal 373TH with holdover to the timing control unit 360 to provide reliable timing during the brief periods of GNSS outage. In some approaches, the quality of the timing reference in holdover mode can be improved by applying a correction factor within the microcontroller unit 360, to compensate for any drift in the holdover timing and therefore reduce any phase error between absolute time and the start of a radio frame. For example, user equipment 340 in communication with the repeater can provide key performance indicators (KPIs) as feedback to tune or validate a correction factor that is applied when the PLL is in holdover mode. While the illustrative example of FIG. 3 depicts a repeater that uses signals from a global navigation satellite system (GNSS) to provide a reference to absolute time, in other approaches, the reference to absolute time can be provided by a non-GNSS synchronization protocol such as IEEE 1588, SyncE, or TSN.


Second, the timing control unit can determine a reference to the start time of a radio frame relative to absolute time. In some approaches, the start time is defined, e.g., by a wireless service provider and/or according to a wireless service standard, by adding a selected integer multiple of radio frame lengths to a start time of a coordinated universal time (UTC) second. The reference to the start time of the radio frame can be received in various ways. In the illustrative example of FIG. 3, the repeater includes an LTE antenna 382 and LTE receiver 383, and the information is communicated by a server 380 by way of a wireless base station 381 that communicates with the LTE component, which then relays information 383I to the timing control unit 360. The server 380 could be, for example, a cloud-based management system or a device management server, which might communicate with the repeater via a device management protocol such as LWM2M, OMA-DM, or MQTT. While the illustrative example of FIG. 3 depicts an LTE antenna, the reference to the start time of the radio frame can be received in other ways, for example, via Ethernet, GSM, Bluetooth, WiFi, or similar protocols; or by key-in during installation of the wireless repeater; or by in-band communication using the wireless base station channel 330 instead of a separate out-of-band wireless base station channel 381. In some approaches, the start time of the radio frame can be offset by an over-the-air time-of-flight between the repeater 300 and the wireless base station 330, and information about this time-of-flight value can be received by similar ways as discussed above.


Third, the timing control unit can determine a slot pattern for communication on the wireless network. In some approaches, the slot pattern is defined, e.g., by a wireless service provider and/or according to a wireless service standard. For example, the slot pattern might include four downlink slots followed by one uplink slot, as in the illustrative timing example of FIG. 5, as discussed below. The slot pattern can be received in various ways. In the illustrative example of FIG. 3, the repeater includes an LTE antenna 382 and LTE receiver 383, and the information is communicated by a server 380 by way of a wireless base station 381 that communicates with the LTE component, which then relays information 383I to the timing control unit 360. The server 380 could be, for example, a cloud-based management system or a device management server, which might communicate with the repeater via a device management protocol such as LWM2M, OMA-DM, or MQTT. While the illustrative example of FIG. 3 depicts an LTE antenna, the slot pattern can be received in other ways, for example, via Ethernet, GSM, Bluetooth, WiFi, or similar protocols; or by key-in during installation of the wireless repeater; or by in-band communication using the wireless base station channel 330 instead of a separate out-of-band wireless base station channel 381.


With reference now to FIG. 4, an illustrative timing diagram for switching between uplink and downlink for a TDD repeater is depicted. The DL and UL plots show that in this example, the repeater should start in uplink mode, switch to downlink mode, and then switch back to uplink mode. The start-of-frame (SoF) plot indicates the start of the radio frame for downlink as determined by the timing recovery system. The clock (CLK) plot indicates a clock output that can be used to time the switching of the various control lines 351S, 352S, 311S, and 312S in FIG. 3. For example, the CLK output can be included in the 373TH signal that is output from the PLL 373 with holdover. Thus, for example, the DL PA plot illustrates an example of a schedule for switching of the downlink amplifier 311, i.e., the control signal 311S; the UL PA plot illustrates an example of a schedule for switching of the uplink amplifier 312, i.e., the control signal 312S; and the RF signal illustrates an example of a schedule for switching of the RF switches 351, 352, i.e., the control signals 351S, 352S. As illustrated in FIG. 4, in some approaches, the schedules for switching of the uplink and downlink amplifiers can be offset from the schedule for switching of the RF switches. For example, the DL PA can switch on with a time offset t1 before the first toggle of the RF switch, and switch off with a time offset t2 after the second toggle of the RF switch; and the UL PA can switch off with a time offset t2 after the first toggle of the RF switch, and switch on with a time offset t1 before the second toggle of the RF switch. These time offsets t1 and t2 can be used to provide that the amplifiers 311 and 312 are fully turned on or fully turned off before the RF switches are switched to deliver RF energy to the relevant amplifier, therefore reducing any transients due to amplifier turn on or turn off time. In other words, offset time t1 can be a time larger than a turn-on transient time for amplifiers 311 and 312, and offset time t2 can be a time larger than a turn-off transient time for an amplifiers 311 and 312.


With reference now to FIG. 5, another illustrative example for switching between uplink and downlink for a TDD repeater is depicted. In this example, the slot pattern includes four downlink slots and one uplink slot, as indicated by the schedule for DL and UL at the wireless base station (in this example, the wireless base station is a 5G gNB). As shown in the figure, the start of frame at the repeater can be delayed to account for time of flight of communications signals between the wireless base station and the repeater. The GNSS PPS plot indicates a one pulse per second output of the PLL 373; the CLK plot indicates a clock output of the PLL 373, as in FIG. 4; and the SoF plot indicates a start of radio frame as determined by the timing control unit 360. In this illustrative example, as in FIG. 4, the amplifier switches DL PA and UL PA are advanced or retarded by times t1 and t2 to accommodate turn-on and turn-off transient times for the amplifiers.


In one or more embodiments, a computing device may include one or more embedded logic hardware devices instead of one or more central processing units (CPUs), such as Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), Programmable Array Logics (PALs), or the like, or combination thereof. The embedded logic hardware devices may directly execute embedded logic to perform actions. Also, in one or more embodiments (not shown in the figures), the computer device may include one or more hardware microcontrollers instead of a central processing unit (CPU). In one or more embodiments, the one or more microcontrollers may directly execute their own embedded logic to perform actions and access their own internal memory and their own external Input and Output Interfaces (e.g., hardware pins and/or wireless transceivers) to perform actions, such as System On a Chip (SOC), or the like.


Additionally, in one or more embodiments, the computational resources may be distributed over a cloud computing platform and the like. One or more embodiments include transitory and/or non-transitory computer readable media that can be installed on a computing device.


Embodiments of the invention are set forth in the following numbered clauses:


1. A method of operating a wireless repeater, comprising:






    • receiving a reference to absolute time for communication on a wireless network;

    • determining a reference to start time of a radio frame relative to the absolute time;

    • determining a slot pattern for communication on the wireless network; and

    • determining a schedule for switching the wireless repeater between uplink and downlink based on the received absolute time reference, the determined radio frame start time, and the determined slot pattern.


      2. The method of clause 1, wherein the determining of the start time of the radio frame includes adding a selected integer multiple of radio frame lengths to a start time of a coordinated universal time (UTC) second.


      3. The method of clause 1, wherein the determining of the start time of the radio frame includes offsetting the start time by a time of flight between the repeater and a base station.


      4. The method of clause 2, wherein the radio frame lengths are each 10 milliseconds (ms).


      5. The method of clause 1, further comprising:

    • switching the wireless repeater between uplink and downlink according to the determined schedule.


      6. The method of clause 5, wherein the wireless repeater includes one or more RF switches, amplifiers, and/or attenuators, and the switching includes adjusting the one or more RF switches, amplifiers, and/or attenuators.


      7. The method of clause 1, wherein the receiving of the reference to absolute time is a receiving from a global navigation satellite system (GNSS) such as Global Positioning System (GPS), Global Navigation Satellite System (GLONASS), or Galileo.


      8. The method of clause 7, wherein the receiving from the GNSS is an intermittent receiving with one or more outage intervals, and the determining of the schedule for switching the wireless repeater includes:

    • during the one or more outage intervals, approximating the reference to absolute time with a local oscillator.


      9. The method of clause 8, wherein the local oscillator is a crystal oscillator that comprises a temperature compensated crystal oscillator (TCXO), oven controlled crystal oscillator (OXCO), voltage controlled crystal oscillator (VCXO), or digital controlled crystal oscillator (DCXO).


      10. The method of clause 8, wherein the approximating is an approximating with a phase-locked loop (PLL) in holdover mode coupled to the local oscillator.


      11. The method of clause 1, wherein the receiving of the reference to absolute time is a receiving via a non-GNSS synchronization protocol that comprises Institute of Electrical and Electronics Engineers (IEEE) 1588, Synchronous Ethernet (SyncE), or Time Sensitive Networking (TSN).


      12. The method of clause 1, wherein:

    • the wireless repeater is a repeater for communication within a selected communication frequency band; and

    • the determining of the slot pattern and/or radio frame start time is a receiving of the slot pattern and/or radio frame start time within the selected wireless frequency band.


      13. The method of clause 1, wherein:

    • the wireless repeater is a repeater for communication within a selected communication frequency band; and

    • the determining of the slot pattern and/or radio frame start time is a receiving of the slot pattern and/or radio frame start time outside of the selected wireless frequency band.


      14. The method of clause 13, wherein the selected communication frequency band is an FR1 or FR2 band for 5G wireless communications.


      15. The method of clause 13, wherein the selected communication frequency band is a millimeter wave (mmW) frequency band.


      16. The method of clause 13, wherein the receiving outside of the selected wireless frequency band includes a receiving via one or more out-of-band modes or protocols that comprises Ethernet, Global System for Mobile Communications (GSM), Long Term Evolution (LTE), Bluetooth™, or WiFi™.


      17. The method of clause 13, wherein the receiving outside of the selected wireless frequency band includes a receiving via key-in during installation of the wireless repeater.


      18. The method of clause 13, wherein the receiving outside of the selected wireless frequency band includes a receiving via a device management protocol that comprises Lightweight Machine to Machine (LWM2M), Open Mobile Alliance Device Management (OMA-DM), or Message Queues Telemetry Transport (MQTT).


      19. The method of clause 18, wherein the receiving via the device management protocol includes a receiving from a cloud-based management system or device management server.


      20. The method of clause 1, wherein the determining of the schedule for switching the wireless repeater includes:

    • determining a nominal start time for an uplink or downlink time interval within the radio frame; and

    • offsetting an actual start time for the uplink or downlink time interval to be earlier or later than the nominal start time by a selected offset amount.


      21. The method of clause 1, wherein the determining of the schedule for switching the wireless repeater includes:

    • determining a nominal end time for an uplink or downlink time interval within the radio frame; and

    • offsetting an actual end time for the uplink or downlink time interval to be earlier or later than the nominal end time by a selected offset amount.


      22. The method of clause 20 or 21, wherein the selected offset amount includes an offset for transient time for switching the wireless repeater between uplink or downlink according to the determined schedule.


      23. A wireless repeater, comprising:

    • a first antenna for communication with a wireless base station;

    • a second antenna for communication with user equipment;

    • one or more switches, amplifiers, and/or attenuators coupled to the first and second antennas for alternation between uplink and downlink modes; and

    • a timing recovery system coupled to the one or more switches, amplifiers, and/or attenuators and configured to carry out the method of any of clauses 1-22.


      24. A computer-readable medium storing instructions to cause a wireless repeater to carry out the method of any of clauses 1-22.


      25. A system, comprising: a cloud-based management system or device management server configured to transmit the received slot pattern and/or radio frame of clause 19.




Claims
  • 1. A method of operating a wireless repeater, comprising: receiving a reference to absolute time for communication on a wireless network;determining a reference to start time of a radio frame relative to the absolute time;determining a slot pattern for communication on the wireless network;determining a schedule for switching the wireless repeater between uplink and downlink based on the received absolute time reference, the determined radio frame start time, and the determined slot pattern;wherein the wireless repeater is a repeater for communication within a selected communication frequency band; andwherein the determining of one or more of the slot pattern or the radio frame start time includes receiving one or more of the slot pattern or the radio frame start time outside of the selected communication frequency band.
  • 2. The method of claim 1, wherein the determining of the start time of the radio frame includes adding a selected integer multiple of radio frame lengths to a start time of a coordinated universal time (UTC) second.
  • 3. The method of claim 1, wherein the determining of the start time of the radio frame includes offsetting the start time by a time of flight between the repeater and a base station.
  • 4. The method of claim 1, further comprising: switching the wireless repeater between uplink and downlink according to the determined schedule.
  • 5. The method of claim 4, wherein the wireless repeater includes one or more RF switches, amplifiers, and/or attenuators, and the switching includes adjusting the one or more RF switches, amplifiers, and/or attenuators.
  • 6. The method of claim 1, wherein the receiving of the reference to absolute time is a receiving from a global navigation satellite system (GNSS) that comprises one or more of Global Positioning System (GPS), Global Navigation Satellite System (GLONASS), or Galileo.
  • 7. The method of claim 6, wherein the receiving from the GNSS is an intermittent receiving with one or more outage intervals, and the determining of the schedule for switching the wireless repeater includes: during the one or more outage intervals, approximating the reference to absolute time with a local oscillator.
  • 8. The method of claim 7, wherein the approximating is an approximating with a phase-locked loop (PLL) in holdover mode coupled to the local oscillator.
  • 9. The method of claim 1, wherein the receiving of the reference to absolute time is a receiving via a non-GNSS synchronization protocol that comprises Institute of Electrical and Electronics Engineers (IEEE) 1588, Synchronous Ethernet (SyncE), or Time Sensitive Networking (TSN).
  • 10. A method of operating a wireless repeater, comprising: receiving a reference to absolute time for communication on a wireless network;determining a reference to start time of a radio frame relative to the absolute time;determining a slot pattern for communication on the wireless network;determining a schedule for switching the wireless repeater between uplink and downlink based on the received absolute time reference, the determined radio frame start time, and the determined slot pattern;wherein the wireless repeater is a repeater for communication within a selected communication frequency band; andwherein the determining of the slot pattern and/or radio frame start time is a receiving of the slot pattern and/or radio frame start time within the selected wireless frequency band.
  • 11. The method of claim 1, wherein the selected communication frequency band is a millimeter wave (mmW) frequency band.
  • 12. The method of claim 1, wherein the receiving outside of the selected wireless frequency band includes a receiving via one or more out-of-band modes or protocols that comprises Ethernet, Global System for Mobile Communications (GSM), Long Term Evolution (LTE), Bluetooth™, or WiFi™.
  • 13. The method of claim 1, wherein the receiving outside of the selected wireless frequency band includes a receiving via key-in during installation of the wireless repeater.
  • 14. The method of claim 1, wherein the receiving outside of the selected wireless frequency band includes a receiving via a device management protocol that comprises Lightweight Machine to Machine (LWM2M), Open Mobile Alliance Device Management (OMA-DM), or Message Queues Telemetry Transport (MQTT).
  • 15. The method of claim 14, wherein the receiving via the device management protocol includes a receiving from a cloud-based management system or device management server.
  • 16. The method of claim 1, wherein the determining of the schedule for switching the wireless repeater includes: determining a nominal start time for an uplink or downlink time interval within the radio frame; andoffsetting an actual start time for the uplink or downlink time interval to be earlier or later than the nominal start time by a selected offset amount greater than or equal to a transient time for switching the wireless repeater between uplink and downlink.
  • 17. The method of claim 1, wherein the determining of the schedule for switching the wireless repeater includes: determining a nominal end time for an uplink or downlink time interval within the radio frame; andoffsetting an actual end time for the uplink or downlink time interval to be earlier or later than the nominal end time by a selected offset amount greater than or equal to a transient time for switching the wireless repeater between uplink and downlink.
  • 18. A wireless repeater, comprising: a first antenna for communication with a wireless base station;a second antenna for communication with user equipment;one or more of switches, amplifiers, or attenuators coupled to the first and second antennas for alternation between uplink and downlink modes; anda timing recovery system coupled to the one or more of switches, amplifiers, or attenuators and configured to carry out a method to operate the wireless repeater, comprising:receiving a reference to absolute time for communication on a wireless network;determining a reference to start time of a radio frame relative to the absolute time;determining a slot pattern for communication on the wireless network; anddetermining a schedule for switching the wireless repeater between uplink and downlink based on the received absolute time reference, the determined radio frame start time, and the determined slot pattern.
  • 19. A system, comprising: a wireless receiver configured to perform a method of operation, comprising: receiving a reference to absolute time for communication on a wireless network;determining a reference to start time of a radio frame relative to the absolute time;determining a slot pattern for communication on the wireless network;determining a schedule for switching the wireless repeater between uplink and downlink based on the received absolute time reference, the determined radio frame start time, and the determined slot pattern; andwherein the wireless repeater is a repeater for communication within a selected communication frequency band;wherein the determining of one or more of the slot pattern or the radio frame start time includes receiving one or more of the slot pattern or the radio frame start time outside of the selected communication frequency band;wherein the receiving outside of the selected wireless frequency band includes a receiving via a device management protocol that comprises Lightweight Machine to Machine (LWM2M), Open Mobile Alliance Device Management (OMA-DM), or Message Queues Telemetry Transport (MQTT);wherein the receiving via the device management protocol includes receiving from one or more of a cloud-based management system or a device management server; andwherein the one or more of the cloud-based management system or the device management server is configured to transmit one or more of the received slot pattern or the radio frame.
US Referenced Citations (227)
Number Name Date Kind
2131108 Lindenblad Sep 1938 A
4464663 Lalezari et al. Aug 1984 A
6133880 Grangeat et al. Oct 2000 A
6150987 Sole et al. Nov 2000 A
6529745 Fukagawa et al. Mar 2003 B1
6680923 Leon Jan 2004 B1
7084815 Phillips et al. Aug 2006 B2
7205949 Turner Apr 2007 B2
8711989 Lee et al. Apr 2014 B1
9356356 Chang et al. May 2016 B2
9385435 Bily et al. Jul 2016 B2
9450310 Bily et al. Sep 2016 B2
9551785 Geer Jan 2017 B1
9608314 Kwon et al. Mar 2017 B1
9635456 Fenichel Apr 2017 B2
9711852 Chen et al. Jul 2017 B2
9806414 Chen et al. Oct 2017 B2
9806415 Chen et al. Oct 2017 B2
9806416 Chen et al. Oct 2017 B2
9812779 Chen et al. Nov 2017 B2
9813141 Marupaduga et al. Nov 2017 B1
9936365 Elam Apr 2018 B1
9955301 Markhovsky et al. Apr 2018 B2
10014948 Ashrafi Jul 2018 B2
10020891 Ashrafi Jul 2018 B2
10033109 Gummalla et al. Jul 2018 B1
10153845 Ashrafi Dec 2018 B2
10187156 Ashrafi Jan 2019 B2
10225760 Black Mar 2019 B1
10277338 Reial et al. Apr 2019 B2
10313894 Desclos et al. Jun 2019 B1
10324158 Wang et al. Jun 2019 B2
10326203 Black et al. Jun 2019 B1
10333217 Black et al. Jun 2019 B1
10374710 Ashrafi Aug 2019 B2
10425905 Black et al. Sep 2019 B1
10431899 Bily et al. Oct 2019 B2
10468767 McCandless et al. Nov 2019 B1
10491303 Ashrafi Nov 2019 B2
10505620 Ito et al. Dec 2019 B2
10522897 Katko et al. Dec 2019 B1
10524154 Black Dec 2019 B2
10524216 Black et al. Dec 2019 B1
10547386 Ashrafi Jan 2020 B2
10594033 Black et al. Mar 2020 B1
10673646 Shinar et al. Jun 2020 B1
10734736 McCandless et al. Aug 2020 B1
10862545 Deutsch et al. Dec 2020 B2
10863458 Black et al. Dec 2020 B2
10971813 McCandless et al. Apr 2021 B2
10998642 McCandless et al. May 2021 B1
11026055 Rea Jun 2021 B1
11069975 Mason et al. Jul 2021 B1
11088433 Katko et al. Aug 2021 B2
11190266 Black et al. Nov 2021 B1
11252731 Levitsky et al. Feb 2022 B1
11279480 Rezvani Mar 2022 B1
11297606 Machado et al. Apr 2022 B2
11374624 Deutsch et al. Jun 2022 B2
11424815 Black et al. Aug 2022 B2
11431382 Deutsch et al. Aug 2022 B2
11451287 Sivaprakasam et al. Sep 2022 B1
11463969 Li et al. Oct 2022 B2
11497050 Black et al. Nov 2022 B2
11563279 McCandless et al. Jan 2023 B2
11670849 Mason et al. Jun 2023 B2
11706722 Black et al. Jul 2023 B2
11757180 McCandless et al. Sep 2023 B2
20010005406 Mege et al. Jun 2001 A1
20020196185 Bloy Dec 2002 A1
20030025638 Apostolos Feb 2003 A1
20030062963 Aikawa et al. Apr 2003 A1
20040003250 Kindberg et al. Jan 2004 A1
20040038714 Rhodes et al. Feb 2004 A1
20040229651 Hulkkonen et al. Nov 2004 A1
20050237265 Durham et al. Oct 2005 A1
20050282536 McClure et al. Dec 2005 A1
20060025072 Pan Feb 2006 A1
20070024514 Phillips et al. Feb 2007 A1
20070147338 Chandra et al. Jun 2007 A1
20070184828 Majidi-Ahy Aug 2007 A1
20070202931 Lee et al. Aug 2007 A1
20080039012 McKay et al. Feb 2008 A1
20080049649 Kozisek et al. Feb 2008 A1
20080181328 Harel et al. Jul 2008 A1
20090153407 Zhang et al. Jun 2009 A1
20090176487 DeMarco Jul 2009 A1
20090207091 Anagnostou et al. Aug 2009 A1
20090231215 Taura Sep 2009 A1
20090296938 Devanand et al. Dec 2009 A1
20100197222 Scheucher Aug 2010 A1
20100207823 Sakata et al. Aug 2010 A1
20100248659 Kawabata Sep 2010 A1
20100302112 Lindenmeier et al. Dec 2010 A1
20110070824 Braithwaite Mar 2011 A1
20110199279 Shen et al. Aug 2011 A1
20110292843 Gan et al. Dec 2011 A1
20120064841 Husted et al. Mar 2012 A1
20120094630 Wisnewski et al. Apr 2012 A1
20120099856 Britz et al. Apr 2012 A1
20120194399 Bily et al. Aug 2012 A1
20130059620 Cho Mar 2013 A1
20130069834 Duerksen Mar 2013 A1
20130141190 Kitaoka et al. Jun 2013 A1
20130231066 Zander et al. Sep 2013 A1
20130303145 Harrang et al. Nov 2013 A1
20130324076 Harrang Dec 2013 A1
20140094217 Stafford Apr 2014 A1
20140171811 Lin et al. Jun 2014 A1
20140198684 Gravely et al. Jul 2014 A1
20140266946 Bily et al. Sep 2014 A1
20140269417 Yu et al. Sep 2014 A1
20140293904 Dai et al. Oct 2014 A1
20140308962 Zhang et al. Oct 2014 A1
20140349696 Hyde et al. Nov 2014 A1
20150109178 Hyde et al. Apr 2015 A1
20150109181 Hyde et al. Apr 2015 A1
20150116153 Chen et al. Apr 2015 A1
20150131618 Chen May 2015 A1
20150162658 Bowers et al. Jun 2015 A1
20150222021 Stevenson et al. Aug 2015 A1
20150229028 Bily et al. Aug 2015 A1
20150236777 Akhtar et al. Aug 2015 A1
20150276926 Bowers et al. Oct 2015 A1
20150276928 Bowers et al. Oct 2015 A1
20150288063 Johnson et al. Oct 2015 A1
20150318618 Chen et al. Nov 2015 A1
20150372389 Chen et al. Dec 2015 A1
20160037508 Sun Feb 2016 A1
20160079672 Cerreno Mar 2016 A1
20160087334 Sayama et al. Mar 2016 A1
20160149308 Chen et al. May 2016 A1
20160149309 Chen et al. May 2016 A1
20160149310 Chen et al. May 2016 A1
20160164175 Chen et al. Jun 2016 A1
20160174241 Ansari et al. Jun 2016 A1
20160198334 Bakshi et al. Jul 2016 A1
20160219539 Kim et al. Jul 2016 A1
20160241367 Irmer et al. Aug 2016 A1
20160269964 Murray Sep 2016 A1
20160302208 Sturkovich et al. Oct 2016 A1
20160345221 Axmon et al. Nov 2016 A1
20160365754 Zeine et al. Dec 2016 A1
20160373181 Black et al. Dec 2016 A1
20170085357 Shahar Mar 2017 A1
20170118750 Kikuma et al. Apr 2017 A1
20170127295 Black et al. May 2017 A1
20170127296 Gustafsson et al. May 2017 A1
20170127332 Axmon et al. May 2017 A1
20170155192 Black et al. Jun 2017 A1
20170155193 Black et al. Jun 2017 A1
20170187123 Black et al. Jun 2017 A1
20170187426 Su et al. Jun 2017 A1
20170194704 Chawgo et al. Jul 2017 A1
20170195054 Ashrafi Jul 2017 A1
20170238141 Lindoff et al. Aug 2017 A1
20170310017 Howard Oct 2017 A1
20170339575 Kim et al. Nov 2017 A1
20170367053 Noh et al. Dec 2017 A1
20170373403 Watson Dec 2017 A1
20180013193 Olsen et al. Jan 2018 A1
20180019798 Khan et al. Jan 2018 A1
20180027555 Kim et al. Jan 2018 A1
20180066991 Mueller et al. Mar 2018 A1
20180097286 Black et al. Apr 2018 A1
20180123692 Leiba May 2018 A1
20180177461 Bell et al. Jun 2018 A1
20180219283 Wilkins et al. Aug 2018 A1
20180227035 Cheng et al. Aug 2018 A1
20180227445 Minegishi Aug 2018 A1
20180233821 Pham et al. Aug 2018 A1
20180270729 Ramachandra et al. Sep 2018 A1
20180301821 Black et al. Oct 2018 A1
20180337445 Sullivan et al. Nov 2018 A1
20180368389 Adams Dec 2018 A1
20190020107 Polehn et al. Jan 2019 A1
20190052428 Chu et al. Feb 2019 A1
20190053013 Markhovsky et al. Feb 2019 A1
20190067813 Igura Feb 2019 A1
20190219982 Klassen et al. Jul 2019 A1
20190221931 Black et al. Jul 2019 A1
20190289482 Black Sep 2019 A1
20190289560 Black et al. Sep 2019 A1
20190336107 Hope Simpson et al. Nov 2019 A1
20190372671 Ashrafi Dec 2019 A1
20200008163 Black et al. Jan 2020 A1
20200036413 Deutsch et al. Jan 2020 A1
20200083605 Quarfoth et al. Mar 2020 A1
20200083960 Ashrafi Mar 2020 A1
20200091607 Black et al. Mar 2020 A1
20200137698 Black et al. Apr 2020 A1
20200186227 Reider et al. Jun 2020 A1
20200205012 Bengtsson et al. Jun 2020 A1
20200251802 Katko et al. Aug 2020 A1
20200259552 Ashworth Aug 2020 A1
20200266533 McCandless et al. Aug 2020 A1
20200313741 Zhu et al. Oct 2020 A1
20200366363 Li et al. Nov 2020 A1
20200403689 Rofougaran et al. Dec 2020 A1
20210036437 Zhang et al. Feb 2021 A1
20210067237 Sampath et al. Mar 2021 A1
20210159945 Deutsch et al. May 2021 A1
20210167819 Deutsch et al. Jun 2021 A1
20210176719 Black et al. Jun 2021 A1
20210185623 Black et al. Jun 2021 A1
20210234591 Eleftheriadis et al. Jul 2021 A1
20210313677 McCandless et al. Oct 2021 A1
20210328366 McCandless et al. Oct 2021 A1
20210328664 Schwab et al. Oct 2021 A1
20210367684 Bendinelli et al. Nov 2021 A1
20210368355 Liu et al. Nov 2021 A1
20210376912 Black et al. Dec 2021 A1
20220014933 Moon et al. Jan 2022 A1
20220038858 Rea Feb 2022 A1
20220053433 Abedini et al. Feb 2022 A1
20220078762 Machado et al. Mar 2022 A1
20220085498 Mason et al. Mar 2022 A1
20220085869 Black et al. Mar 2022 A1
20220102828 Katko et al. Mar 2022 A1
20220232396 Cavcic et al. Jul 2022 A1
20220240305 Black et al. Jul 2022 A1
20220302992 Sivaprakasam et al. Sep 2022 A1
20220369295 Machado et al. Nov 2022 A1
20230011531 Black Jan 2023 A1
20230126395 McCandless et al. Apr 2023 A1
20230155666 Black et al. May 2023 A1
20230164796 Black et al. May 2023 A1
Foreign Referenced Citations (102)
Number Date Country
2019239864 Sep 2020 AU
2020226298 Feb 2023 AU
3092509 Sep 2019 CA
102948089 Feb 2013 CN
103700951 Apr 2014 CN
106572622 Apr 2017 CN
106664124 May 2017 CN
106797074 May 2017 CN
109478900 Mar 2019 CN
110034416 Jul 2019 CN
110521277 Nov 2019 CN
111903063 Nov 2020 CN
3440778 Oct 2017 EP
3273629 Jan 2018 EP
3603329 Sep 2018 EP
3769429 Sep 2019 EP
3831115 Feb 2020 EP
3928380 Aug 2020 EP
4085494 Jul 2021 EP
4136759 Oct 2021 EP
4158796 Dec 2021 EP
S61-1102 Jan 1986 JP
H09-36656 Feb 1997 JP
H09-214418 Aug 1997 JP
2000-111630 Apr 2000 JP
3307146 Jul 2002 JP
2004-270143 Sep 2004 JP
3600459 Dec 2004 JP
2007-81648 Mar 2007 JP
2007-306273 Nov 2007 JP
2008-153798 Jul 2008 JP
2009-514329 Apr 2009 JP
2010-226457 Oct 2010 JP
2011-507367 Mar 2011 JP
2011-508994 Mar 2011 JP
2012-175189 Sep 2012 JP
2013-539949 Oct 2013 JP
2014-075788 Apr 2014 JP
2014-207626 Oct 2014 JP
2014-531826 Nov 2014 JP
2016-139965 Aug 2016 JP
2017-220825 Dec 2017 JP
2018-14713 Jan 2018 JP
2018-173921 Nov 2018 JP
2019-518355 Jun 2019 JP
2020-515162 May 2020 JP
2020-523863 Aug 2020 JP
2020-145614 Sep 2020 JP
2021-517406 Jul 2021 JP
2021-532683 Nov 2021 JP
2022-521286 Apr 2022 JP
2023-519067 May 2023 JP
2023-522640 May 2023 JP
2023-527384 Jun 2023 JP
10-2006-0031895 Apr 2006 KR
10-2008-0093257 Oct 2008 KR
10-2016-0072062 Jun 2016 KR
10-2016-0113100 Sep 2016 KR
10 2016 0113100 Sep 2016 KR
10-2019-0010545 Jan 2019 KR
10-2019-0133194 Dec 2019 KR
10-2020-0123254 Oct 2020 KR
10-2021-0048499 May 2021 KR
10-2021-0125579 Oct 2021 KR
10-2022-0129570 Sep 2022 KR
10-2023-0009895 Jan 2023 KR
10-2023-0017280 Feb 2023 KR
02037208 Oct 2020 TW
2007001134 Jan 2007 WO
2010104435 Sep 2010 WO
2012050614 Apr 2012 WO
2012096611 Jul 2012 WO
2012161612 Nov 2012 WO
2013023171 Feb 2013 WO
2015196044 Dec 2015 WO
2016044069 Mar 2016 WO
2017008851 Jan 2017 WO
2017014842 Jan 2017 WO
2017176746 Oct 2017 WO
2017193056 Nov 2017 WO
2018144940 Aug 2018 WO
2018175615 Sep 2018 WO
2018179870 Oct 2018 WO
2019139745 Jul 2019 WO
2019183072 Sep 2019 WO
2019183107 Sep 2019 WO
2020027990 Feb 2020 WO
2020060705 Mar 2020 WO
2020076350 Apr 2020 WO
2020095597 May 2020 WO
2020163052 Aug 2020 WO
2020171947 Aug 2020 WO
2021003112 Jan 2021 WO
2021137898 Jul 2021 WO
2021211354 Oct 2021 WO
2021242996 Dec 2021 WO
2022031477 Feb 2022 WO
2022056024 Mar 2022 WO
2022155529 Jul 2022 WO
2022164930 Aug 2022 WO
2023283352 Jan 2023 WO
2023076405 May 2023 WO
Non-Patent Literature Citations (157)
Entry
Office Communication for Japanese Patent Application No. JP 2021-505304 dated May 9, 2023, pp. 1-6.
Office Communication for U.S. Appl. No. 17/891,970 dated Jun. 16, 2023, pp. 1-11.
Office Communication for U.S. Appl. No. 17/397,442 dated Jun. 23, 2023, pp. 1-15.
Office Communication for U.S. Appl. No. 17/980,391 dated Jul. 3, 2023, pp. 1-9.
Office Communication for Japanese Patent Application No. JP 2020-548724 dated Jun. 15, 2023, pp. 1-5.
International Search Report and Written Opinion for International Patent Application No. PCT/US2023/018993 dated Jun. 27, 2023, pp. 1-9.
Office Communication for U.S. Appl. No. 17/576,832 dated Jul. 13, 2023, pp. 1-4.
Cheng et al., “Real-time two-dimensional beam steering with gate-tunable materials: a theoretical investigation”, Applied Optics, vol. 55, No. 22, Aug. 1, 2016, pp. 6137-6144.
Wolf et al., “Phased-Array Sources Based on Nonlinear Metamaterial Nanocavities”, Nature Communications, vol. 6, 7667, 2015 Macmillan Publishers Limited, pp. 1-6.
Examination Report for European Patent Application No. 19772471.9 dated Jul. 28, 2023, pp. 1-4.
Examination Report No. 1 for Australian Patent Application No. 2019239864, dated Jul. 7, 2022, pp. 1-3.
Intention to Grant for European Patent Application No. 20759272.6 dated Sep. 19, 2023, 11 pages.
Intemational Preliminary Report on Patentability Chapter 1 for International Patent Application No. PCT/US2018/066329 dated Jul. 23, 2020, pp. 1-7.
International Preliminary Report on Patentability Chapter I for International Patent Application No. PCT/US2019/022987 dated Oct. 1, 2020, pp. 1-9.
International Preliminary Report on Patentability Chapter I for International Patent Application No. PCT/US2019/041053 dated Feb. 11, 2021, pp. 1-6.
International Preliminary Report on Patentability Chapter I for International Patent Application No. PCT/US2019/047093 dated Apr. 1, 2021, pp. 1-5.
International Preliminary Report on Patentability Chapter I for International Patent Application No. PCT/US2020/013713 dated Aug. 19, 2021, pp. 1-6.
International Preliminary Report on Patentability Chapter I for International Patent Application No. PCT/US2020/016641 dated Sep. 2, 2021, pp. 1-5.
International Preliminary Report on Patentability Chapter I for International Patent Application No. PCT/US2020/048806 dated Jul. 14, 2022, pp. 1-7.
International Preliminary Report on Patentability Chapter I for International Patent Application No. PCT/US2021/034479 dated Dec. 8, 2022, pp. 1-5.
International Preliminary Report on Patentability Chapter I for International Patent Application No. PCT/US2021/043308 dated Feb. 16, 2023, pp. 1-6.
International Preliminary Report on Patentability Chapter I for International Patent Application No. PCT/US2021/049502 dated Mar. 23, 2023, pp. 1-6.
Intemational Preliminary Report on Patentability Chapter I for International Patent Application No. PCT/US2022/012613 dated Jul. 27, 2023, pp. 1-6.
International Preliminary Report on Patentability Chapter I for International Patent Application No. PCT/US2022/013942 dated Aug. 10, 2023, pp. 1-6.
International Preliminary Report on Patentability Chapter I for International Patent Application No. PCT/US2021/026400 dated Oct. 27, 2022, pp. 1-5.
International Preliminary Report on Patentability for International Patent Application No. PCT/US2019/022942 dated Oct. 1, 2020, pp. 1-8.
International Search Report and Written Opinion for International Patent Application No. PCT/US2018/066329 dated May 31, 2019, pp. 1-8.
Notice of Acceptance for Australian Patent Application No. 2019239864 dated Jan. 16, 2023, pp. 1-3.
Office Action for Korean Patent Application No. KR 10-2020-7029161 dated Jul. 19, 2023, pp. 1-16 including English translation.
Office Communication for U.S. Appl. No. 15/870,758 dated Apr. 16, 2019, pp. 1-10.
Office Communication for U.S. Appl. No. 15/925,612 dated Dec. 19, 2018, pp. 1-12.
Office Communication for U.S. Appl. No. 16/049,630 dated Feb. 18, 2020, pp. 1-5.
Office Communication for U.S. Appl. No. 16/730,690 dated Apr. 21, 2021, pp. 1-2.
Office Communication for U.S. Appl. No. 16/846,670 dated Apr. 21, 2021, pp. 1-2.
Office Communication for U.S. Appl. No. 17/203,255 dated May 5, 2022, pp. 1-2.
Office Communication for U.S. Appl. No. 17/334,105 dated Aug. 11, 2023, pp. 1-16.
Office Communication for U.S. Appl. No. 17/397,442 dated Sep. 8, 2023, pp. 1-16.
Office Communication for U.S. Appl. No. 17/576,832 dated Aug. 16, 2023, pp. 1-7.
Office Communication for U.S. Appl. No. 17/576,832 dated Aug. 24, 2023, pp. 1-4.
Office Communication for U.S. Appl. No. 17/708,757 dated Aug. 4, 2023, pp. 1-8.
Office Communication for U.S. Appl. No. 17/859,632 dated Aug. 8, 2023, pp. 1-14.
Office Communication for U.S. Appl. No. 17/891,970 dated Sep. 25, 2023, pp. 1-8.
Search Report for Chinese Patent Application No. 201980019925.1 dated Sep. 19, 2021, pp. 1-2.
U.S. Appl. No. 62/743,672, filed Oct. 10, 2018, pp. 1-278.
Office Communication for U.S. Appl. No. 15/925,612 dated Jun. 15, 2018, pp. 1-9.
U.S. Appl. No. 14/510,947, filed Oct. 9, 2014, pp. 1-76.
Office Communication for U.S. Appl. No. 16/049,630 dated Oct. 4, 2018, pp. 1-13.
Office Communication for U.S. Appl. No. 15/870,758 dated Oct. 1, 2018, pp. 1-12.
Office Communication for U.S. Appl. No. 16/136,119 dated Nov. 23, 2018, pp. 1-12.
Office Communication for U.S. Appl. No. 16/136,119 dated Mar. 15, 2019, pp. 1-8.
Office Communication for U.S. Appl. No. 16/292,022 dated Jun. 7, 2019, pp. 1-13.
Office Communication for U.S. Appl. No. 16/049,630 dated Apr. 12, 2019, pp. 1-13.
Office Communication for U.S. Appl. No. 16/268,469 dated May 16, 2019, pp. 1-16.
Office Communication for U.S. Appl. No. 16/280,939 dated May 13, 2019, pp. 1-22.
Office Communication for U.S. Appl. No. 16/440,815 dated Jul. 17, 2019, pp. 1-16.
Office Communication for U.S. Appl. No. 16/358,112 dated May 15, 2019, pp. 1-17.
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/022942 dated Jul. 4, 2019, pp. 1-12.
Yurduseven, Okan et al., “Dual-Polarization Printed Holographic Multibeam Metasurface Antenna” Aug. 7, 2017, IEEE Antennas and Wireless Propagation Letters. pp. 10.1109/LAWP.2017, pp. 1-4.
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/022987 dated Jul. 2, 2019, pp. 1-13.
Office Communication for U.S. Appl. No. 16/049,630 dated Jun. 24, 2019, pp. 1-5.
Office Communication for U.S. Appl. No. 16/280,939 dated Jul. 18, 2019, pp. 1-7.
Office Communication for U.S. Appl. No. 16/049,630 dated Aug. 7, 2019, pp. 1-13.
Office Communication for U.S. Appl. No. 16/292,022 dated Sep. 23, 2019, pp. 1-9.
Office Communication for U.S. Appl. No. 16/440,815 dated Oct. 7, 2019, pp. 1-5.
Office Communication for U.S. Appl. No. 16/268,469 dated Sep. 10, 2019, pp. 1-11.
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/041053 dated Aug. 27, 2019, pp. 1-8.
Office Communication for U.S. Appl. No. 16/568,096 dated Oct. 24, 2019, pp. 1-10.
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/047093 dated Oct. 21, 2019, pp. 1-7.
Office Communication for U.S. Appl. No. 16/049,630 dated Dec. 9, 2019, pp. 1-13.
Office Communication for U.S. Appl. No. 16/440,815 dated Jan. 8, 2020, pp. 1-8.
Office Communication for U.S. Appl. No. 16/730,932 dated Mar. 6, 2020, pp. 1-13.
Office Communication for U.S. Appl. No. 16/049,630 dated Mar. 31, 2020, pp. 1-15.
Office Communication for U.S. Appl. No. 16/734,195 dated Mar. 20, 2020, pp. 1-8.
Office Communication for U.S. Appl. No. 16/846,670 dated Jun. 11, 2020, pp. 1-12.
Office Communication for U.S. Appl. No. 16/673,852 dated Jun. 24, 2020, pp. 1-11.
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/016641 dated Apr. 14, 2020, pp. 1-7.
Gao, S.S. et al., “Holographic Artificial Impedance Surface Antenna Based on Circular Patch”, 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2018, pp. 1-3.
Nishiyama, Eisuke et al., “Polarization Controllable Microstrip Antenna using Beam Lead PIN Diodes”, 2006 Asia-Pacific Microwave Conference, 2006, pp. 1-4.
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/013713 dated Apr. 21, 2020, pp. 1-8.
Office Communication for U.S. Appl. No. 16/049,630 dated Aug. 19, 2020, pp. 1-18.
Office Communication for U.S. Appl. No. 16/730,932 dated Aug. 25, 2020, pp. 1-5.
Office Communication for U.S. Appl. No. 16/983,927 dated Aug. 31, 2020, pp. 1-7.
Office Communication for U.S. Appl. No. 16/983,978 dated Sep. 16, 2020, pp. 1-7.
Office Communication for U.S. Appl. No. 16/049,630 dated Oct. 15, 2020, pp. 1-16.
Office Communication for U.S. Appl. No. 16/983,978 dated Oct. 27, 2020, pp. 1-13.
International Search Report and Written Opinion for International Patent Application No. PCT/US2020/048806 dated Nov. 17, 2020, pp. 1-9.
Office Communication for U.S. Appl. No. 16/673,852 dated Nov. 25, 2020, pp. 1-8.
Office Communication for U.S. Appl. No. 16/846,670 dated Nov. 25, 2020, pp. 1-13.
Office Communication for U.S. Appl. No. 16/983,927 dated Jan. 6, 2021, pp. 1-8.
Office Communication for U.S. Appl. No. 16/846,670 dated Feb. 8, 2021, pp. 1-4.
Office Communication for U.S. Appl. No. 16/983,978 dated Feb. 10, 2021, pp. 1-11.
Office Communication for U.S. Appl. No. 16/846,670 dated Apr. 2, 2021, pp. 1-9.
Office Communication for U.S. Appl. No. 16/730,690 dated Apr. 8, 2021, pp. 1-11.
Office Communication for U.S. Appl. No. 17/177,131 dated Apr. 9, 2021, pp. 1-17.
Vu, Trung Kien et al., “Joint Load Balancing and Interference Mitigation in 5G Heterogeneous Networks,” IEEE Transactions on Wireless Communications, 2017, vol. 16, No. 9, pp. 6032-6046.
Office Communication for U.S. Appl. No. 17/177,145 dated Apr. 19, 2021, pp. 1-11.
Office Communication for U.S. Appl. No. 17/112,940 dated Jul. 21, 2021, pp. 1-22.
International Search Report and Written Opinion for International Patent Application No. PCT/US2021/026400 dated Jul. 20, 2021, pp. 1-7.
Office Communication for U.S. Appl. No. 17/177,145 dated Aug. 3, 2021, pp. 1-16.
Office Communication for U.S. Appl. No. 17/177,131 dated Aug. 6, 2021, pp. 1-16.
Office Communication for U.S. Appl. No. 17/112,940 dated Aug. 9, 2021, pp. 1-20.
International Search Report and Written Opinion for International Patent Application No. PCT/US2021/034479 dated Aug. 10, 2021, pp. 1-7.
Office Communication for U.S. Appl. No. 17/332,136 dated Sep. 2, 2021, pp. 1-9.
Office Communication for Chinese Patent Application No. 201980019925.1 dated Sep. 27, 2021, pp. 1-25.
Office Communication for U.S. Appl. No. 17/177,145 dated Oct. 14, 2021, pp. 1-5.
International Search Report and Written Opinion for International Patent Application No. PCT/US2021/043308 dated Nov. 2, 2021, pp. 1-8.
Office Communication for U.S. Appl. No. 17/177,131 dated Nov. 12, 2021, pp. 1-5.
Extended European Search Report for European Patent Application No. 19772471.9 dated Nov. 8, 2021, pp. 1-8.
Office Communication for U.S. Appl. No. 17/177,145 dated Nov. 16, 2021, pp. 1-16.
Office Communication for U.S. Appl. No. 17/177,131 dated Dec. 17, 2021, pp. 1-14.
Black, Eric J., “Holographic Beam Forming and MIMO,” Pivotal Commware, 2017, pp. 1-8.
Björn, Ekman, “Machine Learning for Beam Based Mobility Optimization in NR,” Master of Science Thesis in Communication Systems, Department of Electrical Engineering, Linköping University, 2017, pp. 1-85.
Office Communication for U.S. Appl. No. 17/112,940 dated Dec. 22, 2021, pp. 1-15.
International Search Report and Written Opinion for International Patent Application No. PCT/US2021/049502 dated Dec. 14, 2021, pp. 1-8.
Office Communication for U.S. Appl. No. 17/469,694 dated Jan. 20, 2022, pp. 1-9.
Office Communication for U.S. Appl. No. 17/537,233 dated Feb. 4, 2022, pp. 1-9.
Office Communication for U.S. Appl. No. 17/112,940 dated Mar. 17, 2022, pp. 1-16.
Office Communication for U.S. Appl. No. 17/576,832 dated Mar. 18, 2022, pp. 1-15.
Office Communication for U.S. Appl. No. 17/177,145 dated Mar. 24, 2022, pp. 1-18.
Office Communication for U.S. Appl. No. 17/306,361 dated Mar. 28, 2022, pp. 1-7.
Extended European Search Report for European Patent Application No. 19844867.2 dated Mar. 30, 2022, pp. 1-16.
Office Communication for U.S. Appl. No. 17/576,832 dated Apr. 1, 2022, pp. 1-14.
Office Communication for U.S. Appl. No. 17/585,418 dated Apr. 8, 2022, pp. 1-9.
Office Communication for U.S. Appl. No. 17/537,233 dated Apr. 20, 2022, pp. 1-9.
Office Communication for U.S. Appl. No. 17/203,255 dated Apr. 26, 2022, pp. 1-17.
Office Communication for U.S. Appl. No. 17/177,131 dated Apr. 27, 2022, pp. 1-14.
International Search Report and Written Opinion for International Patent Application No. PCT/US2022/012613 dated May 10, 2022, pp. 1-8.
International Search Report and Written Opinion for international Patent Application No. PCT/US2022/013942 dated May 10, 2022, pp. 1-8.
Qualcomm Incorporated, “Common understanding of repeaters,” 3GPP TSG RAN WG4 #98_e R4-2102829, 2021, https://www.3gpp.org/ftp/tsg_ran/WG4_Radio/TSGR4_98_e/Docs/R4-2102829.zip, Accessed: May 25, 2022, pp. 1-2.
MediaTek Inc., “General views on NR repeater,” 3GPP TSG RAN WG4 #98_e R4-2101156, 2021, https://www.3gpp.org/ftp/tsg_ran/WG4_Radio/TSGR4_98_e/Docs/R4-2101156.zip, Accessed: May 25, 2022, pp. 1-4.
Office Communication for U.S. Appl. No. 17/177,145 dated Jun. 3, 2022, pp. 1-5.
Office Communication for U.S. Appl. No. 17/576,832 dated Jul. 13, 2022, pp. 1-15.
Office Communication for U.S. Appl. No. 17/585,418 dated Jul. 22, 2022, pp. 1-6.
Office Communication for U.S. Appl. No. 17/585,418 dated Aug. 4, 2022, pp. 1-2.
Office Communication for U.S. Appl. No. 17/306,361 dated Sep. 9, 2022, pp. 1-7.
Office Communication for U.S. Appl. No. 17/576,832 dated Sep. 23, 2022, pp. 1-5.
Office Communication for U.S. Appl. No. 17/306,361 dated Sep. 27, 2022, pp. 1-7.
Office Communication for U.S. Appl. No. 17/379,813 dated Oct. 5, 2022, pp. 1-11.
Office Communication for U.S. Appl. No. 17/217,882 dated Oct. 13, 2022, pp. 1-14.
Office Communication for U.S. Appl. No. 17/397,442 dated Oct. 27, 2022, pp. 1-8.
Office Communication for U.S. Appl. No. 17/859,632 dated Oct. 27, 2022, pp. 1-12.
International Search Report and Written Opinion for International Patent Application No. PCT/US2022/036381 dated Oct. 25, 2022, pp. 1-8.
Extended European Search Report for European Patent Application No. 20759272.6 dated Nov. 3, 2022, pp. 1-9.
Office Communication for U.S. Appl. No. 17/334,105 dated Nov. 30, 2022, pp. 1-7.
Office Communication for U.S. Appl. No. 17/576,832 dated Dec. 15, 2022, pp. 1-15.
Falconer, David D. et al., “Coverage Enhancement Methods for LMDS,” IEEE Communications Magazine, Jul. 2003, vol. 41, Iss. 7, pp. 86-92.
Office Communication for U.S. Appl. No. 17/708,757 dated Jan. 20, 2023, pp. 1-5.
Office Communication for U.S. Appl. No. 17/379,813 dated Feb. 3, 2023, pp. 1-10.
Office Communication for U.S. Appl. No. 17/112,895 dated Feb. 6, 2023, pp. 1-8.
Office Communication for U.S. Appl. No. 17/379,813 dated Feb. 15, 2023, pp. 1-3.
Office Communication for U.S. Appl. No. 17/859,632 dated Feb. 28, 2023, pp. 1-13.
International Search Report and Written Opinion for International Patent Application No. PCT/US2022/047909 dated Feb. 21, 2023, pp. 1-7.
Office Communication for Japanese Patent Application No. JP 2020-548724 dated Mar. 8, 2023, pp. 1-9.
Shimura, Tatsuhiro et al., “A study of indoor area expansion by quasi-millimeter wave repeater,” The Collection of Lecture Articles of the 2018 IEICE General Conference, Mar. 2018, pp. 1-5.
Office Communication for U.S. Appl. No. 17/576,832 dated Apr. 28, 2023, pp. 1-15.
Office Communication for U.S. Appl. No. 17/217,882 dated May 15, 2023, pp. 1-6.
Office Communication for U.S. Appl. No. 17/859,632 dated May 16, 2023, pp. 1-4.
Related Publications (1)
Number Date Country
20230337162 A1 Oct 2023 US
Provisional Applications (1)
Number Date Country
63332118 Apr 2022 US