Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)

Information

  • Patent Grant
  • 11792776
  • Patent Number
    11,792,776
  • Date Filed
    Thursday, March 10, 2022
    2 years ago
  • Date Issued
    Tuesday, October 17, 2023
    a year ago
Abstract
Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs) is disclosed. In one embodiment, a control circuit is provided and configured to control the TDD transmit mode of a DAS to control the allocation of time slots for uplink and downlink communications signal distribution in respective uplink path(s) and downlink path(s). The control circuit includes separate power detectors configured to detect either a transmit power level in a downlink path or a receive power level in an uplink path. If the transmit power detected in the downlink path is greater than receive power detected in the uplink path, the control circuit switches the TDD transmit mode to the downlink direction. In this manner, the control circuit does not have to control the TDD transmit mode based solely on detected power in the downlink path, where a directional coupler may leak uplink power in the downlink path.
Description
BACKGROUND

The technology of the disclosure relates to distributed antenna systems configured to provide communications signals over a communications medium to and from one or more remote units for communicating with client devices.


No admission is made that any reference cited herein constitutes prior art. Applicant expressly reserves the right to challenge the accuracy and pertinency of any cited documents.


Distributed antenna systems (DASs) are effective when deployed inside buildings or other environments where client devices may not otherwise receive radio-frequency (RF) signals from a base station or other source. DASs can be used to provide coverage for applications such as public safety, cellular telephony, wireless local access networks (LANs), location tracking, and medical telemetry inside buildings and over campuses. A typical DAS establishes a number of RF antenna coverage areas, also referred to as “antenna coverage areas.” The antenna coverage areas are formed by remotely distributed antenna units (RAUs), which are sometimes referred to as remote units (RUs). A number of remote units are arranged to create an array of relatively small antenna coverage areas, with each RAU typically accommodating a small number of wireless client device users. This arrangement thus provides a uniform high quality signal and high throughput for wireless users.


Time-division duplexing (TDD) refers to duplex communication links where uplink is separated from downlink by the allocation of different time slots in the same frequency band. In TDD, users are allocated time slots for uplink and downlink transmission. When a DAS serves TDD wireless protocols, it must identify whether a radio source is transmitting (i.e., is in TDD Tx mode) or receiving (TDD Rx mode) and toggle its transmit/receive circuits accordingly. Conventional WiFi systems using TDD, for example, determine whether to toggle to TDD transmit (Tx) mode or stay in TDD receive (Rx) mode based on the output of a power detector that senses the power level at the radio port side of the DAS.


In this regard, FIG. 1 illustrates one such conventional system coupled to a radio source 10, such as a base station or transceiver. In FIG. 1, a TDD DAS head end 12 of a DAS 14 is provided. The TDD DAS head end 12 may also be a TDD repeater. The TDD DAS head end 12 receives TDD communications signals 16 in the form of TDD downlink communications signals 16D from the radio source 10 and provides TDD uplink communication signals 16U to the radio source 10. In the TDD DAS head end 12, a power detector 18 senses the power level of TDD communications signals 16 at the radio port side of the TDD DAS head end 12 to determine whether to toggle to TDD transmit (Tx) mode or stay in TDD receive (Rx) mode. The default status of the TDD DAS head end 12 is TDD receive (Rx) mode, where the DAS 14 is set to transfer signals in the uplink direction. When the power detector 18 detects power of the TDD communication signals 16 above a certain threshold, the assumption is that the power is sourced from TDD downlink communications signals 16D received from the radio source 10. This is because the power of the TDD downlink communications signal 16D is typically lower (e.g., 30-40 dB lower) than the power of the TDD uplink communications signals 16U due to loss. In response to the power detector 18 detecting power of the TDD communications signals 16 above a certain threshold, the TDD DAS head end 12 toggles input switch 20 and antenna switch 22 to TDD transmit (Tx) mode, where its circuits are set to transfer signals in the downlink direction.


One of the drawbacks of the DAS 14 in FIG. 1 is that the power generated by a receive (Rx) Amp 24 can leak through the directional coupler 26 to the power detector 18. For example, the directional coupler 26 may only have a directivity of up to 15 or 20 dB, but the difference in power between the TDD downlink communications signals 16D and the TDD uplink communications signals 16U may be greater than the directivity capability of the directional coupler 26. If power leaking from the receive (Rx) Amp 24 is high enough, it can cause the level comparator 28 to toggle the input switch 20 and the antenna switch 22 from TDD receive (Rx) mode to TDD transmit (Tx) mode even when the radio source 10 is not transmitting.


SUMMARY

Embodiments disclosed in the detailed description include time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DAS s). Related circuits, systems, and methods are also disclosed. In one embodiment, a control circuit is provided in a TDD distributed communications system in the form of a TDD DAS, for example a TDD DAS head end. The control circuit is configured to control the TDD transmit mode of the DAS to control the allocation of time slots for uplink and downlink communications signal distribution in a respective uplink path(s) and downlink path(s). The control circuit includes separate power detectors configured to detect either a transmit power level in the downlink path or a receive power level in the uplink path. In this manner, the transmit power in the downlink path can be detected separately form the receive power in the uplink path. If the transmit power detected by a power detector in the downlink path is greater than the receive power detected by another power detector in the uplink path, the TDD transmit mode is switched to the downlink direction. In this manner, the control circuit does not have to rely on an assumption that the TDD transmit mode should be in uplink direction based solely on detected power in the downlink path, where a directional coupler may leak uplink power to the downlink path.


One embodiment of the disclosure relates to a control circuit controls switching in a system supporting time-division duplexing (TDD). The control circuit comprises a first power detector configured to determine a first power level from a radio source, a second power detector configured to determine a second power level in an uplink path, and a receive/transmit comparator. The receive/transmit comparator is coupled to the first power detector and to the second power detector, and compares the first power level to the second power level to provide an indication that the system should be switched to a TDD transmit mode when the first power level exceeds the second power level.


An additional embodiment of the disclosure relates to a distributed communication system capable of supporting time-division duplexing (TDD) comprises a central unit configured to receive a plurality of downlink signals from at least one radio source, a plurality of remote units each configured to receive downlink signals from the central unit, and to return uplink signals to the central unit, and a control circuit for controlling TDD switching in the distributed communication system. The control circuit comprises a first power detector configured to determine a first power level from the at least one radio source, a second power detector configured to determine a second power level from an uplink path, and a receive/transmit comparator. The receive/transmit comparator is coupled to the first power detector and to the second power detector, and compares the first power level to the second power level to provide an indication that the distributed communication system should be switched to a TDD transmit mode when the first power level exceeds the second power level.


The central units and remote units disclosed herein can be configured to support both RF communications services and digital data services. These communications services can be wired or wireless communications services that are typically communicated wirelessly, but may be provided over non-wireless medium (e.g., electrical conductor and/or optical fiber). The RF communications services and digital data services can be provided over any type of communications medium, including electrical conductors and optical fiber to wireless client devices, such as remote units for example. Examples of RF communications services are cellular services and radio communications services. Examples of digital data services include LAN using Ethernet, WLAN, WiMax, WiFi, Digital Subscriber Line (DSL), telephony, WCDMA, and LTE, which can support voice and data. Digital data signals can be provided over separate communications media for providing RF communications services, or over a common communications medium with RF communications signals.


Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from the description or recognized by practicing the embodiments as described in the written description and claims hereof, as well as the appended drawings.


It is to be understood that both foregoing general description and the following detailed description are merely exemplary, and are intended to provide an overview or framework to understand the nature and character of the claims.


The accompanying drawings are included to provide a further understanding, and are incorporated into and constitute a part of this specification. The drawings illustrate one or more embodiment(s), and together with the description serve to explain principles and operation of the various embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic diagram of a prior art implementation of time-division duplexing (TDD);



FIG. 2 is a schematic diagram of an exemplary point to multi-point optical fiber-based distributed antenna system configured to distribute radio-frequency (RF) communications services and management services;



FIG. 3 illustrates a control circuit for controlling TDD switching in a distributed communication system according to one embodiment; and



FIG. 4 is a schematic diagram of a generalized representation of an exemplary computer system that can be included in or interface with any of the exemplary distributed antenna systems and/or their components described herein, wherein the exemplary computer system is adapted to execute instructions from an exemplary computer-readable media.





DETAILED DESCRIPTION

Various embodiments will be further clarified by the following examples.


Before discussing a method of controlling time-division duplexing (TDD) switching in a distributed antenna system (DAS) with regard to FIG. 3, a general overview of a distributed communications system in the form of a DAS 30, in FIG. 2 is first provided. In this regard, the DAS 30 in FIG. 2 includes a central unit 32. The central unit 32 is communicatively coupled to one or more remote units 34(1)-34(N) via an optical fiber communications medium 36. Thus, in this example, the DAS 30 is an optical fiber-based distributed antenna system. However, the present disclosure is not limited to an optical fiber-based distributed antenna system. Other communications mediums including twisted pair conductors (e.g., CAT 5/6/7 cable) and coaxial cables could be employed or employed in conjunction with optical fiber. The DAS 30 is configured to distribute RF communications signals and management signals. In this regard, with regard to distribution of RF communications signals, the central unit 32 is configured to receive downlink communications signals 38D, which may be downlink RF communications signals, from a RF communications network, such as through a base station 40 as an example. In this embodiment, the downlink communications signals 38D are downlink electrical communications signals 38D(E). The downlink electrical communications signals 38D(E), which may be downlink electrical RF communications signals, can be combined and converted to downlink optical communications signals 38D(O), which may be downlink optical RF communications signals, by the central unit 32 in this embodiment. The downlink optical communications signals 38D(O) are split and distributed by the central unit 32 over at least one downlink optical fiber 36D to each of the remote units 34(1)-34(N) to provide one or more RF communications services to the client devices 42(1)-42(N) in wired and/or wireless communication with the remote units 14(1)-14(N).


With continuing reference to FIG. 2, the remote units 34(1)-34(N) convert the downlink optical communications signals 38D(O) back to downlink electrical communications signals 38D(E), and communicate the downlink electrical communications signals 38D(E) to one or more client devices 42(1)-42(N) to provide the one more RF communications services to the client devices 42(1)-42(N). The remote units 34(1)-34(N) can be configured to communicate through wired or wireless communications to the client devices 42(1)-42(N). For example, if the remote units 34(1)-34(N) are configured to be directly coupled to one client device 42(1)-42(N) each, up to ‘N’ client devices 42(1)-42(N) may be connected to the remote units 34(1)-34(N) in the DAS 30.


The remote units 34(1)-34(N) are also configured to receive uplink communications signals 38U, which may be uplink RF communications signals, from the client devices 42(1)-42(N) to be distributed to the central unit 32 and the base station(s) 40. The uplink communications signals 38U are received from the client devices 42(1)-42(N) as uplink electrical communications signals 38U(E), which may be uplink electrical RF communications signals, which are combined and converted to uplink optical communications signals 38U(O), which may be uplink optical RF communications signals. The remote units 34(1)-34(N) distribute the uplink communications signals 38U(O) over at least one uplink optical fiber 36U to the central unit 32. The central unit 32 receives and converts the uplink optical communications signals 38U(O) back to uplink electrical communications signals 38U(E). The central unit 32 provides the uplink electrical communications signals 38U(E) to the base station(s) 40 to support the one or more RF communications services from the client devices 42(1)-42(N).


With continuing reference to FIG. 2, note that one common downlink optical fiber 36D may be provided between the central unit 32 and the remote units 34(1)-34(N) to carry downlink communications signals in a point-to-multipoint communications configuration. Similarly, one common uplink optical fiber 36U may be provided between the central unit 32 and the remote units 34(1)-34(N) to carry uplink communications signals in a point-to-multipoint communications configuration. Bi-directional communications in the downlink and uplink directions are provided in this embodiment of the DAS 30 in FIG. 2 by providing separate downlink optical fiber(s) 36D and uplink optical fiber(s) 36U in a respective downlink path 37D and uplink path 37U. Further, due to the point-to-multipoint configuration of the DAS 30 in FIG. 2, the embodiments disclosed provide time-division multiplexing (TDM) of management signals distributed in the DAS 30 to ensure that the management signals do not interfere with providing bi-directional, full-duplex communications. Alternatively, individual downlink optical fibers 36D may be provided between the central unit 32 and each remote unit 34(1)-34(N) to carry downlink communications signals in a point-to-point communications configuration. The individual uplink optical fibers 36U may be provided between the central unit 32 and each remote unit 34(1)-34(N) to carry uplink communications signals in a point-to-point communications configuration.


As a further option, the downlink optical fiber 36D and uplink optical fiber 36U could be provided as a single optical fiber (not shown) to carry both downlink and uplink signals. Time-division multiplexing of the downlink and uplink signals may be employed to allow the downlink and uplink signals to be communicated over a single optical fiber. Wave-division multiplexing (WDM), such as discussed in U.S. patent application Ser. No. 12/892,424 entitled “Providing Digital Data Services in Optical Fiber-based Distributed Radio Frequency (RF) Communications Systems, And Related Components and Methods,” incorporated herein by reference in its entirety, may also be employed in this scenario to prevent collisions between downlink and uplink communications signals in the same or overlapping frequency bands. Further, U.S. patent application Ser. No. 12/892,424 also discloses distributed digital data communications signals in a distributed antenna system which may also be distributed in the DAS 30 either in conjunction with RF communications signals or not.


With reference back to FIG. 2, the central unit 32 of the DAS 30 is also configured to distribute management signals between one or more sources, such as between a management controller 46, and the remote units 34(1)-34(N). The management controller 46 may be a computer or console as non-limiting examples. For example, the management controller 46 may be configured to provide management signals to perform a variety of tasks or applications. Examples of management signals that may be distributed in the DAS 30 include configuration signals, control signals, gain control signals, monitoring signals, and configuration signals, fault signals, and alarm signals. The management signals are not for providing RF communications services between the base station(s) 40 and the client devices 42(1)-42(N). The management signals may be communicated according to any protocol desired, such as the Ethernet protocol.


The central unit 32 is configured to receive downlink management signals 44D from the management controller 46. The central unit 32 distributes the downlink management signals 44D to the remote units 34(1)-34(N) to be distributed to the client devices 42(1)-42(N) communicatively coupled to the remote units 34(1)-34(N). The management controller 46 provides downlink management signals 44D to be distributed by the central unit 32 to any number of remote units 34(1)-34(N). Thus, to prevent the downlink management signals 44D destined for different remote units 34(1)-34(N) from interfering with each other, the central unit 32 time-division multiplexes the downlink electrical management signals 44D(E) into individual time slots in a downlink TDM management frame signal to be distributed to the remote units 34(1)-34(N). The central unit 32 converts the downlink TDM electrical management signal to downlink TDM optical management signals 44D(O) to be distributed over the at least one downlink optical fiber 36D to the remote units 34(1)-34(N) and the client devices 42(1)-42(N) in this embodiment. The central unit 32 can be configured to either broadcast all downlink electrical management signals 44D(E) to all remote units 34(1)-34(N), or provide specific downlink electrical management signals 44D(E) to individual remote units 34(1)-34(N).


In this embodiment, as will be described in more detail below, the downlink TDM optical management signals 44D(O) are combined with the downlink optical communications signals 38D(O) in different frequency bands and distributed over the same downlink optical fiber 36D. The remote units 34(1)-34(N) are configured to receive and convert downlink TDM optical management signals 44D(O) to downlink TDM electrical management signals, which can then be parsed by each remote unit 34(1)-34(N) to receive a particular downlink electrical management signal 44D(E) destined for the remote unit 34(1)-34(N).


The remote units 34(1)-34(N) are also configured to create and provide uplink management signals 44U to be distributed to the central unit 32 and the management controller 46. For example, it may be desired for the remote units 34(1)-34(N) to have the ability to provide the same type of management signals described above to the central unit 32, which are not related to RF communications services provided to the base station(s) 40. In this regard, uplink electrical management signals 44U(E) may be provided by the client devices 42(1)-42(N) to the remote units 34(1)-34(N). The remote units 34(1)-34(N) time-division multiplex the uplink electrical management signals 44U(E) into individual time slots in an uplink TDM electrical management frame signal. Thus, the management signals received by the central unit 32 from different remote units 34(1)-34(N) do not interfere with each other. The remote units 34(1)-34(N) combine the received uplink TDM electrical management signals with uplink electrical communications signals 38U(E), and are then configured to convert the combined uplink TDM electrical management signals and uplink electrical communications signals 38U(E) to combined uplink TDM optical management signals 44U(O) and uplink optical communications signals 38U(O) to be distributed over the at least one uplink optical fiber 36U to the central unit 32.


With continuing reference to FIG. 2, the central unit 32 is configured to convert the received combined uplink TDM optical management signals 44U(O) and uplink optical communications signal 38U(O) into combined uplink TDM electrical management signals 44U(E) and uplink electrical communications signal 38U(E). The central unit 32 then splits the uplink TDM electrical management signals 44U(E) from the uplink electrical communications signals 38U(E). The central unit 32 is configured to translate the uplink TDM electrical management signals 44U(E) into individual uplink electrical management signals 48U(E) from the different remote units 34(1)-34(N) and provide the uplink electrical management signals 48U(E) to the management controller(s) 46.


With continuing reference to FIG. 2, the remote units 34(1)-34(N) in the DAS 30 are communicatively coupled to the client devices 42(1)-42(N) by a separate electrical RF communications medium 50 and an electrical management communications medium 52. In this embodiment, the electrical RF communications medium 50 includes a separate downlink electrical RF communications medium 50D and an uplink electrical RF communications medium 50U. Alternatively, the downlink electrical RF communications medium 50D and uplink electrical RF communications medium 50U may be provided as a single electrical RF communications medium that carries both downlink and uplink RF communications signals. The electrical management communications medium 52 in FIG. 2 also includes a separate downlink electrical management communications medium 52D and an uplink electrical management communications medium 52U. Alternatively, the downlink electrical management communications medium 52D and the uplink electrical management communications medium 52U may be provided as a single electrical management communications medium that carries both downlink and uplink management communications signals. The electrical management communications mediums 50, 52 may be coaxial cables, for example.


In the present embodiments, the downlink optical fiber 36D and uplink optical fiber 36U could be provided as a single optical fiber to carry combined downlink optical communications signals 38D(O), downlink electrical TDM management frame signals 44D(O), uplink TDM optical management signals 44U(O), and uplink optical communications signals 38U(O). Time-division multiplexing of the downlink and uplink signals may be employed to allow these downlink and uplink signals to be communicated over a single optical fiber. Wave-division multiplexing (WDM), such as discussed in U.S. patent application Ser. No. 12/892,424, incorporated herein by reference in its entirety, may also be employed in this scenario to prevent collisions between downlink and uplink communications signals in the same or overlapping frequency bands.



FIG. 3 illustrates a control circuit 60 used to control toggling between transmit and receive mode in a system, such as a DAS, supporting time-division duplexing (TDD). The control circuit 60 can be used with, for example, distributed antenna systems, repeaters, and other hardware and architectures that provide wireless services. The control circuit 60 can be interposed, for example, between a radio source, such as a base station, and head end equipment of a distributed antenna system. The control circuit 60 can also be integrated into one or more components of a distributed antenna system, including head end equipment. For the purposes of illustration, the control circuit 60 is described below in the context of a distributed antenna system, although other implementations will be recognized by those of skill in the art. The control circuit 60 can include, or can be coupled to, a TDD switching circuit 64.


Still referring to FIG. 3, the control circuit 60 in this example is provided in a distributed communications system in the form of a DAS 61 in this example. The control circuit 60 includes a directional coupler 76 and two power detectors 80, 82. The transmit (Tx) power detector 80 measures Tx power, in decibels (dB), arriving in the downlink direction on a downlink path 83D, such as from the radio source 10, which is an indication of the power level received in the downlink direction on a downlink path 83D. The receive (Rx) power detector 82 measures Rx power, in dBm, generated by a Receive (Rx) amplifier 86, which is an indication of the power level received in the uplink direction on an uplink path 83U. Power received ‘from the uplink direction’ on the uplink path 83U can come from a system serviced by the radio source 10, such as from a DAS or a repeater. The decision by the control circuit 60 to toggle between the TDD Tx mode and TDD Rx mode is based on a comparison of the power level received from the radio source 10 and the power level received from the DAS 61. The Tx power detector 80 and the Rx power detector 82 may be provided in the form of diodes, as a non-limiting example.


The Tx/Rx comparator 90 makes the determination of whether the Tx power from the radio source 10 in the downlink path 83D is higher than the Rx power in the uplink path 83U. A Tx power higher than Rx power is one condition for toggling the TDD transmission mode to TDD Tx mode. In this example, the default TDD transmission mode for the control circuit 60 is TDD Rx mode, and a Tx power in excess of Rx power does not necessarily toggle the TDD transmission mode from TDD Rx mode to TDD Tx mode. Tx power can also be required to exceed a minimum threshold value to effect a switching, which is determined by a Transmit (Tx) power comparator 100. The threshold value can be variable and established to a desired level by a Tx power reference 102. A digital-to-analog converter (DAC) 103 may be included to convert the Tx power reference 102 from a digital signal to an analog signal if the Tx power comparator 100 is an analog comparator.


A Tx saturation comparator 108 compares the detected Tx power to a saturation level reference 110. A digital-to-analog converter (DAC) 111 may be included to convert the saturation level reference 110 from a digital signal to an analog signal if the Tx saturation comparator 108 is an analog comparator. The Tx saturation comparator 108 addresses situations in which the Tx power detector 80 is saturated due to high Tx power, and as a result the power levels measured by Tx power detector 80 and the Rx power detector 82 might be seen as equal. This condition might cause an error in toggling from TDD Tx mode to TDD Rx mode, or vice versa. If the output of the Tx saturation comparator 108 is “1”, the assumption is that the Tx power detector 80 is saturated due to high power arriving from the radio source. In this case, the logic circuit 120 decides that the DAS should be toggled to TDD Tx mode.


The Rx amplifier 86, an input switch 130, an antenna switch 134, and a Transmit (Tx) amplifier 138 are illustrated as forming the TDD switching circuit 64 to effect the TDD Tx mode and TDD Rx mode in the system. Based on the state of the three comparators 90, 100, 108, the logic 120 decides if the switching circuit 64 will set the DAS to TDD Tx mode or TDD Rx mode. The logic circuit 120 schedules the toggling of the input switch 130 and the antenna switch 134. In order to avoid a situation where the antenna switch 134 is toggled under power when toggling from TDD Rx mode to TDD Tx mode, the logic circuit 120 first toggles the antenna switch 134 and then the input switch 130.


The logic circuit 120 can have three states based on the outputs of the comparators 90, 100, 108. A first state can correspond to when the receive/transmit comparator 90 determines that Rx power exceeds Tx power. In the first state, the switching circuit 64 receives an instruction through, for example, a digital control bit, “1” for TDD Tx mode, and “0” for TDD Rx mode, to maintain the DAS in receive mode. For example, the instruction may be provided on a Tx/Rx sense output 122 from the logic circuit 120. The logic circuit 120 may have more than one Tx/Rx sense output 122 if there is a need for other system in the DAS 61 to be switched between TDD Tx mode and TDD Rx mode. The outputs of the comparators 100, 108 are not relevant in this state. In the second state, the receive/transmit comparator 90 determines that Tx power exceeds Rx power, but the Tx power comparator 100 determines that Tx power does not exceed the Tx power reference 102. In the second state, the TDD switching circuit 64 is instructed to operate the DAS in receive mode. In the third state, if the Tx power is higher than the Rx power and the Tx power is higher than the Tx reference value, the TDD switching circuit 64 is instructed to operate the DAS in transmit mode. If the output of the Tx saturation comparator 108 is “1”, indicating that the Tx power detector 80 is saturated due to high power arriving from the radio source 10, the switching circuit 64 is instructed to operate the DAS in transmit mode.


According to one aspect of the present embodiments, a simple and robust mechanism provides a simple and robust switching of a DAS, repeater, or similar component between TDD uplink (Rx) mode and TDD downlink (Tx) mode. The exemplary control circuit 60 uses simple components without a need for an expensive high directivity directional coupler required by conventional schemes.


The digital reference 102 and the saturation level reference 110 may be, for example, digital words that can be set digitally by software commands. The exemplary comparators are shown as comparators 90, 100, 108, although other components might be used. The exemplary power detectors 80, 82 are illustrated as diodes, although other components might be used.


The RF communications services supported by the distributed antenna systems disclosed in this application, such as the DAS 14, 30, or 61 may include, but are not limited to, US FCC and Industry Canada frequencies (824-849 MHz on uplink and 869-894 MHz on downlink), US FCC and Industry Canada frequencies (1850-1915 MHz on uplink and 1930-1995 MHz on downlink), US FCC and Industry Canada frequencies (1710-1755 MHz on uplink and 2110-2155 MHz on downlink), US FCC frequencies (698-716 MHz and 776-787 MHz on uplink and 728-746 MHz on downlink), EU R & TTE frequencies (880-915 MHz on uplink and 925-960 MHz on downlink), EU R & TTE frequencies (1710-1785 MHz on uplink and 1805-1880 MHz on downlink), EU R & TTE frequencies (1920-1980 MHz on uplink and 2110-2170 MHz on downlink), US FCC frequencies (806-824 MHz on uplink and 851-869 MHz on downlink), US FCC frequencies (896-901 MHz on uplink and 929-941 MHz on downlink), US FCC frequencies (793-805 MHz on uplink and 763-775 MHz on downlink), and US FCC frequencies (2495-2690 MHz on uplink and downlink), medical telemetry frequencies, WLAN, WiMax, WiFi, Digital Subscriber Line (DSL), and LTE, etc.


Any of the distributed communications systems and/or DAS components disclosed herein, including but not limited to the control circuit 60 in FIG. 3, can include a computer system. For example, the logic circuit 120 of the control circuit 60 in FIG. 3 may be implemented in a computer system that includes a microprocessor or other controller that is configured to execute software to control the TDD transmission mode. In this regard, FIG. 4 is a schematic diagram representation of additional detail regarding an exemplary form of a computer system 140 that is adapted to execute instructions from a computer-readable medium to perform power management functions and can be included in a distributed antenna system component(s). The computer system 140 includes a set of instructions for causing the distributed antenna system component(s) to provide its designed functionality. The DAS component(s) may be connected (e.g., networked) to other machines in a LAN, an intranet, an extranet, or the Internet. The DAS component(s) may operate in a client-server network environment, or as a peer machine in a peer-to-peer (or distributed) network environment. While only a single device is illustrated, the term “device” shall also include any collection of devices that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein. The DAS component(s) may be a circuit or circuits included in an electronic board card, such as a printed circuit board (PCB) as an example, a server, a personal computer, a desktop computer, a laptop computer, a personal digital assistant (PDA), a computing pad, a mobile device, or any other device, and may represent, for example, a server or a user's computer. The exemplary computer system 140 in this embodiment includes a processing device or processor 142, a main memory 144 (e.g., read-only memory (ROM), flash memory, dynamic random access memory (DRAM) such as synchronous DRAM (SDRAM), etc.), and a static memory 146 (e.g., flash memory, static random access memory (SRAM), etc.), which may communicate with each other via the data bus 148. Alternatively, the processing device 142 may be connected to the main memory 144 and/or static memory 146 directly or via some other connectivity means. The processing device 142 may be a controller, and the main memory 144 or static memory 146 may be any type of memory.


The processing device 142 represents one or more general-purpose processing devices such as a microprocessor, central processing unit, or the like. More particularly, the processing device 142 may be a complex instruction set computing (CISC) microprocessor, a reduced instruction set computing (RISC) microprocessor, a very long instruction word (VLIW) microprocessor, a processor implementing other instruction sets, or processors implementing a combination of instruction sets. The processing device 142 is configured to execute processing logic in instructions 162 for performing the operations and steps discussed herein.


The computer system 130 may further include a network interface device 140. The computer system 130 also may or may not include an input 142 to receive input and selections to be communicated to the computer system 130 when executing instructions. The computer system 130 also may or may not include an output 144, including but not limited to a display, a video display unit (e.g., a liquid crystal display (LCD) or a cathode ray tube (CRT)), an alphanumeric input device (e.g., a keyboard), and/or a cursor control device (e.g., a mouse).


The computer system 140 may or may not include a data storage device that includes instructions 156 stored in a computer-readable medium 158. The instructions 156 may also reside, completely or at least partially, within the main memory 144 and/or within the processing device 142 during execution thereof by the computer system 140, the main memory 144 and the processing device 142 also constituting computer-readable medium. The instructions 156 may further be transmitted or received over a network 160 via the network interface device 150.


While the computer-readable medium 158 is shown in an exemplary embodiment to be a single medium, the term “computer-readable medium” should be taken to include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions. The term “computer-readable medium” shall also be taken to include any medium that is capable of storing, encoding or carrying a set of instructions for execution by the processing device and that cause the processing device to perform any one or more of the methodologies of the embodiments disclosed herein. The term “computer-readable medium” shall accordingly be taken to include, but not be limited to, solid-state memories, optical and magnetic medium, and carrier wave signals.


The embodiments disclosed herein include various steps. The steps of the embodiments disclosed herein may be performed by hardware components or may be embodied in machine-executable instructions, which may be used to cause a general-purpose or special-purpose processor programmed with the instructions to perform the steps. Alternatively, the steps may be performed by a combination of hardware and software.


The embodiments disclosed herein may be provided as a computer program product, or software, that may include a machine-readable medium (or computer-readable medium) having stored thereon instructions, which may be used to program a computer system (or other electronic devices) to perform a process according to the embodiments disclosed herein. A machine-readable medium includes any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computer). For example, a machine-readable medium includes a machine-readable storage medium (e.g., read only memory (“ROM”), random access memory (“RAM”), magnetic disk storage medium, optical storage medium, flash memory devices, etc.).


The various illustrative logical blocks, modules, and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a processor, a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A controller may be a processor. A processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.


The embodiments disclosed herein may be embodied in hardware and in instructions that are stored in hardware, and may reside, for example, in Random Access Memory (RAM), flash memory, Read Only Memory (ROM), Electrically Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), registers, a hard disk, a removable disk, a CD-ROM, or any other form of computer-readable medium known in the art. Storage media may be coupled to the processor such that the processor can read information from, and write information to, the storage medium, or integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a remote station as discrete components in a remote station, base station, or server.


As used herein, the terms “fiber optic cables” and/or “optical fibers” include all types of single mode and multi-mode light waveguides, including one or more optical fibers that may be upcoated, colored, buffered, ribbonized and/or have other organizing or protective structure in a cable such as one or more tubes, strength members, jackets or the like. The optical fibers disclosed herein can be single mode or multi-mode optical fibers.

Claims
  • 1. A control circuit for controlling switching between a time-division duplexing (TDD) transmit mode and a TDD receive mode in a wireless communications system supporting TDD, the control circuit comprising: a first power detector configured to determine a first power level in a downlink direction on a downlink optical path;a second power detector configured to determine a second power level in an uplink direction on an uplink optical path;a receive/transmit comparator coupled to the first power detector and to the second power detector, wherein the receive/transmit comparator compares the first power level to the second power level to provide a first indication that the system should be switched to TDD transmit mode when the first power level exceeds the second power level;a second power comparator configured to determine a second indication indicative of whether the first power level exceeds a value of a transmit power reference; anda logic circuit configured to determine if the system should be switched to TDD transmit mode or TDD receive mode based at least in part on a received first indication from the receive/transmit comparator and a received second indication from the second power comparator, wherein the logic circuit has a first state in which the second power level exceeds the first power level to indicate TDD receive mode, andthe logic circuit has a second state in which the first power level exceeds the second power level.
  • 2. The control circuit of claim 1, wherein the logic circuit has a third state in which the first power level exceeds the second power level and the value of the transmit power reference to indicate TDD transmit mode.
  • 3. The control circuit of claim 2, wherein the receive/transmit comparator and the second power comparator have as an input an output of the first power detector.
  • 4. The control circuit of claim 1, wherein the receive/transmit comparator and the second power comparator have as an input an output of the first power detector.
  • 5. The control circuit of claim 1, further comprising a TDD switching circuit configured to effect the TDD transmit mode and the TDD receive mode for the system, and a directional coupler configured to receive and transmit communications between the TDD switching circuit and a radio source.
  • 6. A control circuit for controlling switching between a time-division duplexing (TDD) transmit mode and a TDD receive mode in a wireless communications system, the control circuit comprising: a first power detector configured to determine a first power level in a downlink direction on a downlink optical path;a second power detector configured to determine a second power level in an uplink direction on an uplink optical path;a receive/transmit comparator coupled to the first power detector and to the second power detector, wherein the receive/transmit comparator compares the first power level to the second power level to provide a first indication that the system should be switched to TDD transmit mode when the first power level exceeds the second power level;a second power comparator configured to determine a second indication indicative of whether the first power level exceeds a value of a transmit power reference;a logic circuit coupled to the receive/transmit comparator for receiving the first indication and configured to receive the second indication, wherein the logic circuit is configured to determine if the system should be switched to TDD transmit mode or TDD receive mode based at least in part on the received first indication from the receive/transmit comparator and the received second indication from the second power comparator; anda TDD switching circuit configured to effect the TDD transmit mode and the TDD receive mode.
  • 7. The control circuit of claim 6, further comprising a saturation comparator configured to provide a third indication of saturation of the first power detector by comparing the first power level with a saturation level reference, the logic circuit coupled to the saturation comparator for receiving the third indication, wherein the logic circuit is configured to determine if the system should be switched to TDD transmit mode or TDD receive mode based at least in part on the received third indication of saturation from the saturation comparator.
  • 8. The control circuit of claim 6, wherein the logic circuit has a first state in which the second power level exceeds the first power level to indicate TDD receive mode.
  • 9. The control circuit of claim 8, wherein the logic circuit has a second state in which the first power level exceeds the second power level and the first power level does not exceed the value of the transmit power reference to indicate TDD receive mode.
  • 10. The control circuit of claim 9, wherein the logic circuit has a third state in which the first power level exceeds the second power level and the value of the transmit power reference to indicate TDD transmit mode.
  • 11. The control circuit of claim 8, further comprising a saturation comparator configured to provide a third indication of saturation of the first power detector by comparing the first power level with a saturation level reference, the logic circuit configured to receive the third indication, wherein the logic circuit is configured to determine if the system should be switched to TDD transmit mode or TDD receive mode.
  • 12. A control circuit for controlling switching between a time-division duplexing (TDD) transmit mode and a TDD receive mode in a system supporting TDD in a wireless communications system, the control circuit comprising: a first power detector configured to determine a first power level in a downlink direction on a downlink optical path;a second power detector configured to determine a second power level in an uplink direction on an uplink optical path;a receive/transmit comparator configured to compare the first power level to the second power level to provide a first indication that the system should be switched to TDD transmit mode when the first power level exceeds the second power level;a second power comparator configured to determine a second indication indicative of whether the first power level exceeds a value of a transmit power reference;a logic circuit coupled to receive the first indication, the logic circuit coupled to the second power comparator for receiving the second indication, wherein the logic circuit is configured to determine if the system should be switched to TDD transmit mode or TDD receive mode based at least in part on the received first indication from the receive/transmit comparator and the received second indication from the second power comparator; anda saturation comparator configured to provide a third indication of saturation of the first power detector.
  • 13. The control circuit of claim 12, wherein the logic circuit is coupled to the saturation comparator for receiving the third indication, wherein the logic circuit is configured to determine if the system should be switched to TDD transmit mode or TDD receive mode based at least in part on the received third indication of saturation from the saturation comparator.
  • 14. The control circuit of claim 12, wherein the receive/transmit comparator and the second power comparator have as an input an output of the first power detector.
  • 15. The control circuit of claim 12, wherein the logic circuit has a first state in which the second power level exceeds the first power level to indicate TDD receive mode.
  • 16. The control circuit of claim 13, wherein the receive/transmit comparator and the second power comparator have as an input an output of the first power detector, and the logic circuit has a first state in which the second power level exceeds the first power level to indicate TDD receive mode.
  • 17. A control circuit for controlling switching between a time-division duplexing (TDD) transmit mode and a TDD receive mode in a wireless communications system, the control circuit comprising: a first power detector configured to determine a first power level in a downlink direction on a downlink optical path;a second power detector configured to determine a second power level in an uplink direction on an uplink optical path;a receive/transmit comparator coupled to the first power detector to compare the first power level to the second power level to provide a first indication that the system should be switched to TDD transmit mode when the first power level exceeds the second power level;a second power comparator configured to determine a second indication indicative of whether the first power level exceeds a value of a transmit power reference; anda logic circuit coupled to the receive/transmit comparator for receiving the first indication, the logic circuit coupled to the second power comparator for receiving the second indication, wherein the logic circuit is configured to determine if the system should be switched to TDD transmit mode or TDD receive mode based at least in part on the received first indication from the receive/transmit comparator and the received second indication from the second power comparator, whereinthe receive/transmit comparator and the second power comparator have as an input an output of the first power detector.
  • 18. The control circuit of claim 17, further comprising a TDD switching circuit configured to effect the TDD transmit mode and the TDD receive mode for the system.
  • 19. The control circuit of claim 18, wherein the TDD switching circuit comprises an input switch and an antenna switch located upstream and downstream the downlink optical path, respectively.
  • 20. The control circuit of claim 19, wherein the TDD switching circuit comprises a transmit amplifier and a receive amplifier located between the input switch and the antenna switch.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 16/842,314, filed Apr. 7, 2020, which is a continuation of U.S. application Ser. No. 16/374,389, filed Apr. 3, 2019, now U.S. Pat. No. 10,694,519, which is a continuation of U.S. application Ser. No. 15/975,153, filed May 9, 2018, now U.S. Pat. No. 10,257,828, which is a continuation of U.S. application Ser. No. 14/962,338, filed Dec. 8, 2015, now U.S. Pat. No. 9,974,074, which is a continuation of International Application No. PCT/IL14/050526, filed Jun. 11, 2014, which claims the benefit of priority to U.S. Provisional Application No. 61/834,075, filed Jun. 12, 2013, all applications being incorporated herein by reference.

US Referenced Citations (811)
Number Name Date Kind
4365865 Stiles Dec 1982 A
4449246 Seiler et al. May 1984 A
4573212 Lipsky Feb 1986 A
4665560 Lange May 1987 A
4867527 Dotti et al. Sep 1989 A
4889977 Haydon Dec 1989 A
4896939 O'Brien Jan 1990 A
4916460 Powell Apr 1990 A
4939852 Brenner Jul 1990 A
4972346 Kawano et al. Nov 1990 A
5039195 Jenkins et al. Aug 1991 A
5042086 Cole et al. Aug 1991 A
5056109 Gilhousen et al. Oct 1991 A
5059927 Cohen Oct 1991 A
5125060 Edmundson Jun 1992 A
5187803 Sohner et al. Feb 1993 A
5189718 Barrett et al. Feb 1993 A
5189719 Coleman et al. Feb 1993 A
5206655 Caille et al. Apr 1993 A
5208812 Dudek et al. May 1993 A
5210812 Nilsson et al. May 1993 A
5260957 Hakimi et al. Nov 1993 A
5263108 Kurokawa et al. Nov 1993 A
5267122 Glover et al. Nov 1993 A
5268971 Nilsson et al. Dec 1993 A
5278690 Vella-Coleiro Jan 1994 A
5278989 Burke et al. Jan 1994 A
5280472 Gilhousen et al. Jan 1994 A
5299947 Barnard Apr 1994 A
5301056 O'Neill Apr 1994 A
5325223 Bears Jun 1994 A
5339058 Lique Aug 1994 A
5339184 Tang Aug 1994 A
5343320 Anderson Aug 1994 A
5377035 Wang et al. Dec 1994 A
5379455 Koschek Jan 1995 A
5381459 Lappington Jan 1995 A
5396224 Dukes et al. Mar 1995 A
5400391 Emura et al. Mar 1995 A
5420863 Taketsugu et al. May 1995 A
5424864 Emura Jun 1995 A
5444564 Newberg Aug 1995 A
5457557 Zarem et al. Oct 1995 A
5459727 Vannucci Oct 1995 A
5469523 Blew et al. Nov 1995 A
5519830 Opoczynski May 1996 A
5543000 Lique Aug 1996 A
5546443 Raith Aug 1996 A
5557698 Gareis et al. Sep 1996 A
5574815 Kneeland Nov 1996 A
5598288 Collar Jan 1997 A
5606725 Hart Feb 1997 A
5615034 Hori Mar 1997 A
5627879 Russell et al. May 1997 A
5640678 Ishikawa et al. Jun 1997 A
5642405 Fischer et al. Jun 1997 A
5644622 Russell et al. Jul 1997 A
5648961 Ebihara Jul 1997 A
5651081 Blew et al. Jul 1997 A
5657374 Russell et al. Aug 1997 A
5668562 Cutrer et al. Sep 1997 A
5677974 Elms et al. Oct 1997 A
5682256 Motley et al. Oct 1997 A
5694232 Parsay et al. Dec 1997 A
5703602 Casebolt Dec 1997 A
5708681 Malkemes et al. Jan 1998 A
5726984 Kubler et al. Mar 1998 A
5765099 Georges et al. Jun 1998 A
5790536 Mahany et al. Aug 1998 A
5790606 Dent Aug 1998 A
5793772 Burke et al. Aug 1998 A
5802173 Hamilton-Piercy et al. Sep 1998 A
5802473 Rutledge et al. Sep 1998 A
5805975 Green et al. Sep 1998 A
5805983 Naidu et al. Sep 1998 A
5809395 Hamilton-Piercy et al. Sep 1998 A
5809431 Bustamante et al. Sep 1998 A
5812296 Tarusawa et al. Sep 1998 A
5818619 Medved et al. Oct 1998 A
5818883 Smith et al. Oct 1998 A
5821510 Cohen et al. Oct 1998 A
5825651 Gupta et al. Oct 1998 A
5838474 Stilling Nov 1998 A
5839052 Dean et al. Nov 1998 A
5852651 Fischer et al. Dec 1998 A
5854986 Dorren et al. Dec 1998 A
5859719 Dentai et al. Jan 1999 A
5862460 Rich Jan 1999 A
5867485 Chambers et al. Feb 1999 A
5867763 Dean et al. Feb 1999 A
5881200 Burt Mar 1999 A
5883882 Schwartz Mar 1999 A
5896568 Tseng et al. Apr 1999 A
5903834 Wallstedt et al. May 1999 A
5910776 Black Jun 1999 A
5913003 Arroyo et al. Jun 1999 A
5917636 Wake et al. Jun 1999 A
5930682 Schwartz et al. Jul 1999 A
5936754 Ariyavisitakul et al. Aug 1999 A
5943372 Gans et al. Aug 1999 A
5946622 Bojeryd Aug 1999 A
5949564 Wake Sep 1999 A
5953670 Newson Sep 1999 A
5959531 Gallagher et al. Sep 1999 A
5960344 Mahany Sep 1999 A
5969837 Farber et al. Oct 1999 A
5983070 Georges et al. Nov 1999 A
5987303 Dutta et al. Nov 1999 A
6005884 Cook et al. Dec 1999 A
6006069 Langston Dec 1999 A
6006105 Rostoker et al. Dec 1999 A
6011980 Nagano et al. Jan 2000 A
6014546 Georges et al. Jan 2000 A
6016426 Bodell Jan 2000 A
6023625 Myers, Jr. Feb 2000 A
6037898 Parish et al. Mar 2000 A
6061161 Yang et al. May 2000 A
6069721 Oh et al. May 2000 A
6088381 Myers, Jr. Jul 2000 A
6118767 Shen et al. Sep 2000 A
6122529 Sabat et al. Sep 2000 A
6127917 Tuttle Oct 2000 A
6128470 Naidu et al. Oct 2000 A
6128477 Freed Oct 2000 A
6148041 Dent Nov 2000 A
6150921 Werb et al. Nov 2000 A
6157810 Georges et al. Dec 2000 A
6192216 Sabat et al. Feb 2001 B1
6194968 Winslow Feb 2001 B1
6212397 Langston et al. Apr 2001 B1
6222503 Gietema et al. Apr 2001 B1
6223201 Reznak Apr 2001 B1
6232870 Garber et al. May 2001 B1
6236789 Fitz May 2001 B1
6236863 Waldroup et al. May 2001 B1
6240274 Izadpanah May 2001 B1
6246500 Ackerman Jun 2001 B1
6268946 Larkin et al. Jul 2001 B1
6275990 Dapper et al. Aug 2001 B1
6279158 Geile et al. Aug 2001 B1
6286163 Trimble Sep 2001 B1
6292673 Maeda et al. Sep 2001 B1
6295451 Mimura Sep 2001 B1
6301240 Slabinski et al. Oct 2001 B1
6307869 Pawelski Oct 2001 B1
6314163 Acampora Nov 2001 B1
6317599 Rappaport et al. Nov 2001 B1
6323980 Bloom Nov 2001 B1
6324391 Bodell Nov 2001 B1
6330241 Fort Dec 2001 B1
6330244 Swartz et al. Dec 2001 B1
6334219 Roberts et al. Dec 2001 B1
6336021 Nukada Jan 2002 B1
6336042 Dawson et al. Jan 2002 B1
6337754 Imajo Jan 2002 B1
6340932 Rodgers et al. Jan 2002 B1
6353406 Lanzl et al. Mar 2002 B1
6353600 Schwartz et al. Mar 2002 B1
6359714 Imajo Mar 2002 B1
6370203 Boesch et al. Apr 2002 B1
6374078 Williams et al. Apr 2002 B1
6374124 Slabinski Apr 2002 B1
6389010 Kubler et al. May 2002 B1
6400318 Kasami et al. Jun 2002 B1
6400418 Wakabayashi Jun 2002 B1
6404775 Leslie et al. Jun 2002 B1
6405018 Reudink et al. Jun 2002 B1
6405058 Bobier Jun 2002 B2
6405308 Gupta et al. Jun 2002 B1
6414624 Endo et al. Jul 2002 B2
6415132 Sabat, Jr. Jul 2002 B1
6421327 Lundby et al. Jul 2002 B1
6438301 Johnson et al. Aug 2002 B1
6438371 Fujise et al. Aug 2002 B1
6448558 Greene Sep 2002 B1
6452915 Jorgensen Sep 2002 B1
6459519 Sasai et al. Oct 2002 B1
6459989 Kirkpatrick et al. Oct 2002 B1
6477154 Cheong et al. Nov 2002 B1
6480702 Sabat, Jr. Nov 2002 B1
6486907 Farber et al. Nov 2002 B1
6496290 Lee Dec 2002 B1
6501965 Lucidarme Dec 2002 B1
6504636 Seto et al. Jan 2003 B1
6504831 Greenwood et al. Jan 2003 B1
6512478 Chien Jan 2003 B1
6519395 Bevan et al. Feb 2003 B1
6519449 Zhang et al. Feb 2003 B1
6525855 Westbrook et al. Feb 2003 B1
6535330 Lelic et al. Mar 2003 B1
6535720 Kintis et al. Mar 2003 B1
6549772 Chavez et al. Apr 2003 B1
6556551 Schwartz Apr 2003 B1
6577794 Currie et al. Jun 2003 B1
6577801 Broderick et al. Jun 2003 B2
6580402 Navarro et al. Jun 2003 B2
6580905 Naidu et al. Jun 2003 B1
6580918 Leickel et al. Jun 2003 B1
6583763 Judd Jun 2003 B2
6587514 Wright et al. Jul 2003 B1
6594496 Schwartz Jul 2003 B2
6597325 Judd et al. Jul 2003 B2
6598009 Yang Jul 2003 B2
6606430 Bartur et al. Aug 2003 B2
6615074 Mickle et al. Sep 2003 B2
6628732 Takaki Sep 2003 B1
6634811 Gertel et al. Oct 2003 B1
6636747 Harada et al. Oct 2003 B2
6640103 Inman et al. Oct 2003 B1
6643437 Park Nov 2003 B1
6652158 Bartur et al. Nov 2003 B2
6654590 Boros et al. Nov 2003 B2
6654616 Pope et al. Nov 2003 B1
6657535 Magbie et al. Dec 2003 B1
6658269 Golemon et al. Dec 2003 B1
6665308 Rakib et al. Dec 2003 B1
6670930 Navarro Dec 2003 B2
6674966 Koonen Jan 2004 B1
6675294 Gupta et al. Jan 2004 B1
6678509 Skarman et al. Jan 2004 B2
6687437 Starnes et al. Feb 2004 B1
6690328 Judd Feb 2004 B2
6701137 Judd et al. Mar 2004 B1
6704298 Matsumiya et al. Mar 2004 B1
6704545 Wala Mar 2004 B1
6710366 Lee et al. Mar 2004 B1
6714800 Johnson et al. Mar 2004 B2
6731880 Westbrook et al. May 2004 B2
6745013 Porter et al. Jun 2004 B1
6758913 Tunney et al. Jul 2004 B1
6763226 McZeal, Jr. Jul 2004 B1
6771862 Karnik et al. Aug 2004 B2
6771933 Eng et al. Aug 2004 B1
6784802 Stanescu Aug 2004 B1
6785558 Stratford et al. Aug 2004 B1
6788666 Linebarger et al. Sep 2004 B1
6801767 Schwartz et al. Oct 2004 B1
6807374 Imajo et al. Oct 2004 B1
6812824 Goldinger et al. Nov 2004 B1
6812905 Thomas et al. Nov 2004 B2
6823174 Masenten et al. Nov 2004 B1
6826163 Mani et al. Nov 2004 B2
6826164 Mani et al. Nov 2004 B2
6826337 Linnell Nov 2004 B2
6836660 Wala Dec 2004 B1
6836673 Trott Dec 2004 B1
6842433 West et al. Jan 2005 B2
6847856 Bohannon Jan 2005 B1
6850510 Kubler et al. Feb 2005 B2
6865390 Goss et al. Mar 2005 B2
6873823 Hasarchi et al. Mar 2005 B2
6876056 Tilmans et al. Apr 2005 B2
6879290 Toutain et al. Apr 2005 B1
6882311 Walker et al. Apr 2005 B2
6883710 Chung Apr 2005 B2
6885344 Mohamadi Apr 2005 B2
6885846 Panasik et al. Apr 2005 B1
6889060 Fernando et al. May 2005 B2
6909399 Zegelin et al. Jun 2005 B1
6915058 Pons Jul 2005 B2
6915529 Suematsu et al. Jul 2005 B1
6919858 Rofougaran Jul 2005 B2
6920330 Caronni et al. Jul 2005 B2
6924997 Chen et al. Aug 2005 B2
6930987 Fukuda et al. Aug 2005 B1
6931183 Panak et al. Aug 2005 B2
6931659 Kinemura Aug 2005 B1
6933849 Sawyer Aug 2005 B2
6934511 Lovinggood et al. Aug 2005 B1
6934541 Miyatani Aug 2005 B2
6941112 Hasegawa Sep 2005 B2
6946989 Vavik Sep 2005 B2
6961312 Kubler et al. Nov 2005 B2
6963289 Aljadeff et al. Nov 2005 B2
6963552 Sabat et al. Nov 2005 B2
6965718 Koertel Nov 2005 B2
6967347 Estes et al. Nov 2005 B2
6968107 Belardi et al. Nov 2005 B2
6970652 Zhang et al. Nov 2005 B2
6973243 Koyasu et al. Dec 2005 B2
6974262 Rickenbach Dec 2005 B1
6977502 Hertz Dec 2005 B1
7002511 Ammar et al. Feb 2006 B1
7006465 Toshimitsu et al. Feb 2006 B2
7013087 Suzuki et al. Mar 2006 B2
7015826 Chan et al. Mar 2006 B1
7020473 Splett Mar 2006 B2
7020488 Bleile et al. Mar 2006 B1
7024166 Wallace et al. Apr 2006 B2
7035512 Van Bijsterveld Apr 2006 B2
7039399 Fischer May 2006 B2
7043271 Seto et al. May 2006 B1
7047028 Cagenius May 2006 B2
7050017 King et al. May 2006 B2
7053838 Judd May 2006 B2
7054513 Herz et al. May 2006 B2
7069577 Geile et al. Jun 2006 B2
7072586 Aburakawa et al. Jul 2006 B2
7082320 Kattukaran et al. Jul 2006 B2
7084769 Bauer et al. Aug 2006 B2
7093985 Lord et al. Aug 2006 B2
7103119 Matsuoka et al. Sep 2006 B2
7103377 Bauman et al. Sep 2006 B2
7106252 Smith et al. Sep 2006 B2
7106931 Sutehall et al. Sep 2006 B2
7110795 Doi Sep 2006 B2
7114859 Tuohimaa et al. Oct 2006 B1
7127175 Mani et al. Oct 2006 B2
7127176 Sasaki Oct 2006 B2
7142503 Grant et al. Nov 2006 B1
7142535 Kubler et al. Nov 2006 B2
7142619 Sommer et al. Nov 2006 B2
7146506 Hannah et al. Dec 2006 B1
7160032 Nagashima et al. Jan 2007 B2
7171244 Bauman Jan 2007 B2
7184728 Solum Feb 2007 B2
7190748 Kim et al. Mar 2007 B2
7194023 Norrell et al. Mar 2007 B2
7199443 Elsharawy Apr 2007 B2
7200305 Dion et al. Apr 2007 B2
7200391 Chung et al. Apr 2007 B2
7228072 Mickelsson et al. Jun 2007 B2
7263293 Ommodt et al. Aug 2007 B2
7269311 Kim et al. Sep 2007 B2
7280011 Bayar et al. Oct 2007 B2
7286843 Scheck Oct 2007 B2
7286854 Ferrato et al. Oct 2007 B2
7295119 Rappaport et al. Nov 2007 B2
7310430 Mallya et al. Dec 2007 B1
7313415 Wake et al. Dec 2007 B2
7315735 Graham Jan 2008 B2
7324730 Varkey et al. Jan 2008 B2
7343164 Kallstenius Mar 2008 B2
7348843 Qiu et al. Mar 2008 B1
7349633 Lee et al. Mar 2008 B2
7359408 Kim Apr 2008 B2
7359674 Markki et al. Apr 2008 B2
7366150 Lee et al. Apr 2008 B2
7366151 Kubler et al. Apr 2008 B2
7369526 Lechleider et al. May 2008 B2
7379669 Kim May 2008 B2
7388892 Nishiyama et al. Jun 2008 B2
7392025 Rooyen et al. Jun 2008 B2
7392029 Pronkine Jun 2008 B2
7394883 Funakubo et al. Jul 2008 B2
7403156 Coppi et al. Jul 2008 B2
7409159 Izadpanah Aug 2008 B2
7412224 Kotola et al. Aug 2008 B2
7424228 Williams et al. Sep 2008 B1
7444051 Tatat et al. Oct 2008 B2
7450853 Kim et al. Nov 2008 B2
7450854 Lee et al. Nov 2008 B2
7451365 Wang et al. Nov 2008 B2
7454222 Huang et al. Nov 2008 B2
7460507 Kubler et al. Dec 2008 B2
7460829 Utsumi et al. Dec 2008 B2
7460831 Hasarchi Dec 2008 B2
7466925 Iannelli Dec 2008 B2
7469105 Wake et al. Dec 2008 B2
7477597 Segel Jan 2009 B2
7483504 Shapira et al. Jan 2009 B2
7483711 Burchfiel Jan 2009 B2
7496070 Vesuna Feb 2009 B2
7496384 Seto et al. Feb 2009 B2
7505747 Solum Mar 2009 B2
7512419 Solum Mar 2009 B2
7522552 Fein et al. Apr 2009 B2
7539509 Bauman et al. May 2009 B2
7542452 Penumetsa Jun 2009 B2
7546138 Bauman Jun 2009 B2
7548138 Kamgaing Jun 2009 B2
7548695 Wake Jun 2009 B2
7551641 Pirzada et al. Jun 2009 B2
7557758 Rofougaran Jul 2009 B2
7580384 Kubler et al. Aug 2009 B2
7586861 Kubler et al. Sep 2009 B2
7590354 Sauer et al. Sep 2009 B2
7593704 Pinel et al. Sep 2009 B2
7599420 Forenza et al. Oct 2009 B2
7599672 Shoji et al. Oct 2009 B2
7610046 Wala Oct 2009 B2
7630690 Kaewell et al. Dec 2009 B2
7633934 Kubler et al. Dec 2009 B2
7639982 Wala Dec 2009 B2
7646743 Kubler et al. Jan 2010 B2
7646777 Hicks et al. Jan 2010 B2
7653397 Pernu et al. Jan 2010 B2
7668565 Ylaenen et al. Feb 2010 B2
7675936 Mizutani et al. Mar 2010 B2
7688811 Kubler et al. Mar 2010 B2
7693486 Kasslin et al. Apr 2010 B2
7697467 Kubler et al. Apr 2010 B2
7697574 Suematsu et al. Apr 2010 B2
7715375 Kubler et al. May 2010 B2
7720510 Pescod et al. May 2010 B2
7751374 Donovan Jul 2010 B2
7751838 Ramesh et al. Jul 2010 B2
7760703 Kubler et al. Jul 2010 B2
7761093 Sabat et al. Jul 2010 B2
7768951 Kubler et al. Aug 2010 B2
7773573 Chung et al. Aug 2010 B2
7778603 Palin et al. Aug 2010 B2
7787823 George et al. Aug 2010 B2
7805073 Sabat et al. Sep 2010 B2
7809012 Ruuska et al. Oct 2010 B2
7812766 Leblanc et al. Oct 2010 B2
7812775 Babakhani et al. Oct 2010 B2
7817969 Castaneda et al. Oct 2010 B2
7835328 Stephens et al. Nov 2010 B2
7844182 Mostert et al. Nov 2010 B2
7848316 Kubler et al. Dec 2010 B2
7848770 Scheinert Dec 2010 B2
7853234 Afsahi Dec 2010 B2
7870321 Rofougaran Jan 2011 B2
7880677 Rofougaran et al. Feb 2011 B2
7881755 Mishra et al. Feb 2011 B1
7894423 Kubler et al. Feb 2011 B2
7899007 Kubler et al. Mar 2011 B2
7907972 Walton et al. Mar 2011 B2
7912043 Kubler et al. Mar 2011 B2
7912506 Lovberg et al. Mar 2011 B2
7916706 Kubler et al. Mar 2011 B2
7917177 Bauman Mar 2011 B2
7920553 Kubler et al. Apr 2011 B2
7920858 Sabat et al. Apr 2011 B2
7924783 Mahany et al. Apr 2011 B1
7936713 Kubler et al. May 2011 B2
7949364 Kasslin et al. May 2011 B2
7957777 Vu et al. Jun 2011 B1
7962111 Solum Jun 2011 B2
7969009 Chandrasekaran Jun 2011 B2
7969911 Mahany et al. Jun 2011 B2
7990925 Tinnakornsrisuphap et al. Aug 2011 B2
7996020 Chhabra Aug 2011 B1
8018907 Kubler et al. Sep 2011 B2
8023886 Rofougaran Sep 2011 B2
8027656 Rofougaran et al. Sep 2011 B2
8036308 Rofougaran Oct 2011 B2
8082353 Huber et al. Dec 2011 B2
8086192 Rofougaran et al. Dec 2011 B2
8135102 Wiwel et al. Mar 2012 B2
8213401 Fischer et al. Jul 2012 B2
8223795 Cox et al. Jul 2012 B2
8238463 Arslan et al. Aug 2012 B1
8270387 Cannon et al. Sep 2012 B2
8290483 Sabat et al. Oct 2012 B2
8306563 Zavadsky et al. Nov 2012 B2
8346278 Wala et al. Jan 2013 B2
8428201 McHann et al. Apr 2013 B1
8428510 Stratford et al. Apr 2013 B2
8462683 Uyehara et al. Jun 2013 B2
8472579 Uyehara et al. Jun 2013 B2
8509215 Stuart Aug 2013 B2
8509850 Zavadsky et al. Aug 2013 B2
8526970 Wala et al. Sep 2013 B2
8532242 Fischer et al. Sep 2013 B2
8626245 Zavadsky et al. Jan 2014 B2
8737454 Wala et al. May 2014 B2
8743718 Grenier et al. Jun 2014 B2
8743756 Uyehara et al. Jun 2014 B2
8837659 Uyehara et al. Sep 2014 B2
8837940 Smith et al. Sep 2014 B2
8873585 Oren et al. Oct 2014 B2
8929288 Stewart et al. Jan 2015 B2
9621293 Hazani et al. Apr 2017 B2
20010036163 Sabat et al. Nov 2001 A1
20010036199 Terry Nov 2001 A1
20020003645 Kim et al. Jan 2002 A1
20020009070 Lindsay et al. Jan 2002 A1
20020012336 Hughes et al. Jan 2002 A1
20020012495 Sasai et al. Jan 2002 A1
20020016827 McCabe et al. Feb 2002 A1
20020045519 Watterson et al. Apr 2002 A1
20020048071 Suzuki et al. Apr 2002 A1
20020051434 Ozluturk et al. May 2002 A1
20020075906 Cole et al. Jun 2002 A1
20020092347 Niekerk et al. Jul 2002 A1
20020097564 Struhsaker et al. Jul 2002 A1
20020103012 Kim et al. Aug 2002 A1
20020111149 Shoki Aug 2002 A1
20020111192 Thomas et al. Aug 2002 A1
20020114038 Arnon et al. Aug 2002 A1
20020123365 Thorson et al. Sep 2002 A1
20020126967 Panak et al. Sep 2002 A1
20020128009 Boch et al. Sep 2002 A1
20020130778 Nicholson Sep 2002 A1
20020181668 Masoian et al. Dec 2002 A1
20020190845 Moore Dec 2002 A1
20020197984 Monin et al. Dec 2002 A1
20030002604 Fifield et al. Jan 2003 A1
20030007214 Aburakawa et al. Jan 2003 A1
20030016418 Westbrook et al. Jan 2003 A1
20030045284 Copley et al. Mar 2003 A1
20030069922 Arunachalam Apr 2003 A1
20030078074 Sesay et al. Apr 2003 A1
20030112826 Ashwood et al. Jun 2003 A1
20030141962 Barink Jul 2003 A1
20030161637 Yamamoto et al. Aug 2003 A1
20030165287 Krill et al. Sep 2003 A1
20030174099 Bauer et al. Sep 2003 A1
20030209601 Chung Nov 2003 A1
20040001719 Sasaki Jan 2004 A1
20040008114 Sawyer Jan 2004 A1
20040017785 Zelst Jan 2004 A1
20040037565 Young et al. Feb 2004 A1
20040041714 Forster Mar 2004 A1
20040043764 Bigham et al. Mar 2004 A1
20040047313 Rumpf et al. Mar 2004 A1
20040078151 Aljadeff et al. Apr 2004 A1
20040095907 Agee et al. May 2004 A1
20040100930 Shapira et al. May 2004 A1
20040106435 Bauman et al. Jun 2004 A1
20040126068 Van Bijsterveld Jul 2004 A1
20040126107 Jay et al. Jul 2004 A1
20040139477 Russell et al. Jul 2004 A1
20040146020 Kubler et al. Jul 2004 A1
20040149736 Clothier Aug 2004 A1
20040151164 Kubler et al. Aug 2004 A1
20040151503 Kashima et al. Aug 2004 A1
20040157623 Splett Aug 2004 A1
20040160912 Kubler et al. Aug 2004 A1
20040160913 Kubler et al. Aug 2004 A1
20040162084 Wang Aug 2004 A1
20040162115 Smith et al. Aug 2004 A1
20040162116 Han et al. Aug 2004 A1
20040165573 Kubler et al. Aug 2004 A1
20040175173 Deas Sep 2004 A1
20040196404 Loheit et al. Oct 2004 A1
20040202257 Mehta et al. Oct 2004 A1
20040203703 Fischer Oct 2004 A1
20040203704 Ommodt et al. Oct 2004 A1
20040203846 Caronni et al. Oct 2004 A1
20040204109 Hoppenstein Oct 2004 A1
20040208526 Mibu Oct 2004 A1
20040208643 Roberts et al. Oct 2004 A1
20040215723 Chadha Oct 2004 A1
20040218873 Nagashima et al. Nov 2004 A1
20040233877 Lee et al. Nov 2004 A1
20040258105 Spathas et al. Dec 2004 A1
20040267971 Seshadri Dec 2004 A1
20050052287 Whitesmith et al. Mar 2005 A1
20050058451 Ross Mar 2005 A1
20050059437 Son et al. Mar 2005 A1
20050068179 Roesner Mar 2005 A1
20050076982 Metcalf et al. Apr 2005 A1
20050078006 Hutchins et al. Apr 2005 A1
20050093679 Zai et al. May 2005 A1
20050099343 Asrani et al. May 2005 A1
20050116821 Wilsey et al. Jun 2005 A1
20050123232 Piede et al. Jun 2005 A1
20050141545 Fein et al. Jun 2005 A1
20050143077 Charbonneau Jun 2005 A1
20050147067 Mani et al. Jul 2005 A1
20050147071 Karaoguz et al. Jul 2005 A1
20050148306 Hiddink Jul 2005 A1
20050159108 Fletcher et al. Jul 2005 A1
20050174236 Brookner Aug 2005 A1
20050176458 Shklarsky et al. Aug 2005 A1
20050201323 Mani et al. Sep 2005 A1
20050201761 Bartur et al. Sep 2005 A1
20050219050 Martin Oct 2005 A1
20050224585 Durrant et al. Oct 2005 A1
20050226625 Wake et al. Oct 2005 A1
20050232636 Durrant et al. Oct 2005 A1
20050242188 Vesuna Nov 2005 A1
20050252971 Howarth et al. Nov 2005 A1
20050266797 Utsumi et al. Dec 2005 A1
20050266854 Niiho et al. Dec 2005 A1
20050269930 Shimizu et al. Dec 2005 A1
20050271396 Iannelli Dec 2005 A1
20050272439 Picciriello et al. Dec 2005 A1
20060002326 Vesuna Jan 2006 A1
20060014548 Bolin et al. Jan 2006 A1
20060017633 Pronkine Jan 2006 A1
20060028352 McNamara et al. Feb 2006 A1
20060045054 Utsumi et al. Mar 2006 A1
20060045524 Lee et al. Mar 2006 A1
20060045525 Lee et al. Mar 2006 A1
20060053324 Giat et al. Mar 2006 A1
20060056327 Coersmeier Mar 2006 A1
20060062579 Kim et al. Mar 2006 A1
20060083520 Healey et al. Apr 2006 A1
20060094470 Wake et al. May 2006 A1
20060104643 Lee et al. May 2006 A1
20060159388 Kawase et al. Jul 2006 A1
20060172775 Conyers et al. Aug 2006 A1
20060182446 Kim et al. Aug 2006 A1
20060182449 Iannelli et al. Aug 2006 A1
20060189354 Lee et al. Aug 2006 A1
20060209745 MacMullan et al. Sep 2006 A1
20060223439 Pinel et al. Oct 2006 A1
20060233506 Noonan et al. Oct 2006 A1
20060239630 Hase et al. Oct 2006 A1
20060268738 Goerke et al. Nov 2006 A1
20060274704 Desai et al. Dec 2006 A1
20070009266 Bothwell et al. Jan 2007 A1
20070050451 Caspi et al. Mar 2007 A1
20070054682 Fanning et al. Mar 2007 A1
20070058978 Lee et al. Mar 2007 A1
20070060045 Prautzsch Mar 2007 A1
20070060055 Desai et al. Mar 2007 A1
20070071128 Meir et al. Mar 2007 A1
20070076649 Lin et al. Apr 2007 A1
20070093273 Cai Apr 2007 A1
20070149250 Crozzoli et al. Jun 2007 A1
20070166042 Seeds et al. Jul 2007 A1
20070173288 Skarby et al. Jul 2007 A1
20070174889 Kim et al. Jul 2007 A1
20070224954 Gopi Sep 2007 A1
20070230328 Saitou Oct 2007 A1
20070243899 Hermel et al. Oct 2007 A1
20070248358 Sauer Oct 2007 A1
20070253714 Seeds et al. Nov 2007 A1
20070257796 Easton et al. Nov 2007 A1
20070264009 Sabat et al. Nov 2007 A1
20070264011 Sone et al. Nov 2007 A1
20070268846 Proctor et al. Nov 2007 A1
20070274279 Wood et al. Nov 2007 A1
20070292143 Yu et al. Dec 2007 A1
20070297005 Montierth et al. Dec 2007 A1
20080002652 Gupta et al. Jan 2008 A1
20080007453 Vassilakis et al. Jan 2008 A1
20080013909 Kostet et al. Jan 2008 A1
20080013956 Ware et al. Jan 2008 A1
20080013957 Akers et al. Jan 2008 A1
20080014948 Scheinert Jan 2008 A1
20080026765 Charbonneau Jan 2008 A1
20080031628 Dragas et al. Feb 2008 A1
20080043714 Pernu Feb 2008 A1
20080056167 Kim et al. Mar 2008 A1
20080058018 Scheinert Mar 2008 A1
20080063397 Hu et al. Mar 2008 A1
20080070502 George et al. Mar 2008 A1
20080080863 Sauer et al. Apr 2008 A1
20080098203 Master et al. Apr 2008 A1
20080118014 Reunamaki et al. May 2008 A1
20080119198 Hettstedt et al. May 2008 A1
20080124086 Matthews May 2008 A1
20080124087 Hartmann et al. May 2008 A1
20080129634 Pera et al. Jun 2008 A1
20080134194 Liu Jun 2008 A1
20080144543 Hunton Jun 2008 A1
20080145061 Lee et al. Jun 2008 A1
20080150514 Codreanu et al. Jun 2008 A1
20080166094 Bookbinder et al. Jul 2008 A1
20080194226 Rivas et al. Aug 2008 A1
20080207253 Jaakkola et al. Aug 2008 A1
20080212969 Fasshauer et al. Sep 2008 A1
20080219670 Kim et al. Sep 2008 A1
20080232305 Oren et al. Sep 2008 A1
20080232799 Kim Sep 2008 A1
20080247716 Thomas et al. Oct 2008 A1
20080253280 Tang et al. Oct 2008 A1
20080253351 Pernu et al. Oct 2008 A1
20080253773 Zheng Oct 2008 A1
20080260388 Kim et al. Oct 2008 A1
20080261656 Bella et al. Oct 2008 A1
20080268766 Narkmon et al. Oct 2008 A1
20080268833 Huang et al. Oct 2008 A1
20080273844 Kewitsch Nov 2008 A1
20080279137 Pernu et al. Nov 2008 A1
20080280569 Hazani et al. Nov 2008 A1
20080291830 Pernu et al. Nov 2008 A1
20080292322 Daghighian et al. Nov 2008 A1
20080298813 Song et al. Dec 2008 A1
20080304831 Miller et al. Dec 2008 A1
20080310464 Schneider Dec 2008 A1
20080310848 Yasuda et al. Dec 2008 A1
20080311876 Leenaerts et al. Dec 2008 A1
20080311944 Hansen et al. Dec 2008 A1
20090022304 Kubler et al. Jan 2009 A1
20090028087 Nguyen et al. Jan 2009 A1
20090028317 Ling et al. Jan 2009 A1
20090041413 Hurley Feb 2009 A1
20090047023 Pescod et al. Feb 2009 A1
20090059903 Kubler et al. Mar 2009 A1
20090061796 Arkko et al. Mar 2009 A1
20090061939 Andersson et al. Mar 2009 A1
20090073916 Zhang et al. Mar 2009 A1
20090081985 Rofougaran et al. Mar 2009 A1
20090087179 Underwood et al. Apr 2009 A1
20090088071 Rofougaran Apr 2009 A1
20090088072 Rofougaran et al. Apr 2009 A1
20090135078 Lindmark et al. May 2009 A1
20090141780 Cruz-Albrecht et al. Jun 2009 A1
20090149221 Liu et al. Jun 2009 A1
20090154621 Shapira et al. Jun 2009 A1
20090169163 Abbott et al. Jul 2009 A1
20090175214 Sfar et al. Jul 2009 A1
20090180407 Sabat et al. Jul 2009 A1
20090180426 Sabat et al. Jul 2009 A1
20090218407 Rofougaran Sep 2009 A1
20090218657 Rofougaran Sep 2009 A1
20090237317 Rofougaran Sep 2009 A1
20090245084 Moffatt et al. Oct 2009 A1
20090245153 Li et al. Oct 2009 A1
20090245221 Piipponen Oct 2009 A1
20090247109 Rofougaran Oct 2009 A1
20090252136 Mahany et al. Oct 2009 A1
20090252139 Ludovico et al. Oct 2009 A1
20090252205 Rheinfelder et al. Oct 2009 A1
20090258652 Lambert et al. Oct 2009 A1
20090278596 Rofougaran et al. Nov 2009 A1
20090279593 Rofougaran et al. Nov 2009 A1
20090285147 Subasic et al. Nov 2009 A1
20090316608 Singh et al. Dec 2009 A1
20090316609 Singh Dec 2009 A1
20090316611 Stratford et al. Dec 2009 A1
20090319909 Hsueh et al. Dec 2009 A1
20100002626 Schmidt et al. Jan 2010 A1
20100002661 Schmidt et al. Jan 2010 A1
20100002662 Schmidt et al. Jan 2010 A1
20100014494 Schmidt et al. Jan 2010 A1
20100027443 Logalbo et al. Feb 2010 A1
20100041341 Stratford Feb 2010 A1
20100056200 Tolonen Mar 2010 A1
20100080154 Noh et al. Apr 2010 A1
20100080182 Kubler et al. Apr 2010 A1
20100091475 Toms et al. Apr 2010 A1
20100118864 Kubler et al. May 2010 A1
20100127937 Chandrasekaran et al. May 2010 A1
20100134257 Puleston et al. Jun 2010 A1
20100142598 Murray et al. Jun 2010 A1
20100142955 Yu et al. Jun 2010 A1
20100144285 Behzad et al. Jun 2010 A1
20100148373 Chandrasekaran Jun 2010 A1
20100156721 Alamouti et al. Jun 2010 A1
20100159859 Rofougaran Jun 2010 A1
20100188998 Pernu et al. Jul 2010 A1
20100189439 Novak et al. Jul 2010 A1
20100190509 Davis Jul 2010 A1
20100202326 Rofougaran et al. Aug 2010 A1
20100225413 Rofougaran et al. Sep 2010 A1
20100225520 Mohamadi et al. Sep 2010 A1
20100225556 Rofougaran et al. Sep 2010 A1
20100225557 Rofougaran et al. Sep 2010 A1
20100232323 Kubler et al. Sep 2010 A1
20100246558 Harel Sep 2010 A1
20100255774 Kenington Oct 2010 A1
20100258949 Henderson et al. Oct 2010 A1
20100260063 Kubler et al. Oct 2010 A1
20100261501 Behzad et al. Oct 2010 A1
20100266287 Adhikari et al. Oct 2010 A1
20100278530 Kummetz et al. Nov 2010 A1
20100284323 Tang et al. Nov 2010 A1
20100290355 Roy et al. Nov 2010 A1
20100309049 Reunamaeki et al. Dec 2010 A1
20100311472 Rofougaran et al. Dec 2010 A1
20100311480 Raines et al. Dec 2010 A1
20100329161 Ylanen et al. Dec 2010 A1
20100329166 Mahany et al. Dec 2010 A1
20100329680 Presi et al. Dec 2010 A1
20110002687 Sabat et al. Jan 2011 A1
20110007724 Mahany et al. Jan 2011 A1
20110007733 Kubler et al. Jan 2011 A1
20110008042 Stewart Jan 2011 A1
20110019999 George et al. Jan 2011 A1
20110021146 Pernu Jan 2011 A1
20110021224 Koskinen et al. Jan 2011 A1
20110026932 Yeh et al. Feb 2011 A1
20110045767 Rofougaran et al. Feb 2011 A1
20110065450 Kazmi Mar 2011 A1
20110066774 Rofougaran Mar 2011 A1
20110069668 Chion et al. Mar 2011 A1
20110071734 Van et al. Mar 2011 A1
20110086614 Brisebois et al. Apr 2011 A1
20110116393 Hong et al. May 2011 A1
20110116572 Lee et al. May 2011 A1
20110122912 Benjamin et al. May 2011 A1
20110126071 Han et al. May 2011 A1
20110149879 Noriega et al. Jun 2011 A1
20110158298 Djadi et al. Jun 2011 A1
20110182230 Ohm et al. Jul 2011 A1
20110194475 Kim et al. Aug 2011 A1
20110200328 In et al. Aug 2011 A1
20110201368 Faccin et al. Aug 2011 A1
20110204504 Henderson et al. Aug 2011 A1
20110206383 Chien et al. Aug 2011 A1
20110211439 Manpuria et al. Sep 2011 A1
20110215901 Van et al. Sep 2011 A1
20110222415 Ramamurthi et al. Sep 2011 A1
20110222434 Chen Sep 2011 A1
20110222619 Ramamurthi et al. Sep 2011 A1
20110227795 Lopez et al. Sep 2011 A1
20110244887 Dupray et al. Oct 2011 A1
20110256878 Zhu et al. Oct 2011 A1
20110268033 Boldi et al. Nov 2011 A1
20110268446 Cune et al. Nov 2011 A1
20110274021 He et al. Nov 2011 A1
20110281536 Lee et al. Nov 2011 A1
20120052892 Braithwaite Mar 2012 A1
20120177026 Uyehara et al. Jul 2012 A1
20130012195 Sabat et al. Jan 2013 A1
20130070816 Aoki et al. Mar 2013 A1
20130071112 Melester et al. Mar 2013 A1
20130089332 Sauer et al. Apr 2013 A1
20130095870 Phillips et al. Apr 2013 A1
20130107763 Uyehara May 2013 A1
20130165067 DeVries Jun 2013 A1
20130210490 Fischer et al. Aug 2013 A1
20130252651 Zavadsky et al. Sep 2013 A1
20130260705 Stratford Oct 2013 A1
20130272170 Chatterjee et al. Oct 2013 A1
20140016583 Smith Jan 2014 A1
20140140225 Wala May 2014 A1
20140146797 Zavadsky et al. May 2014 A1
20140146905 Zavadsky et al. May 2014 A1
20140146906 Zavadsky et al. May 2014 A1
20140219140 Uyehara et al. Aug 2014 A1
20150131632 Hazani et al. May 2015 A1
20170094679 Lupescu et al. Mar 2017 A1
Foreign Referenced Citations (122)
Number Date Country
0645192 Jan 1994 AU
0731180 Mar 2001 AU
2065090 Oct 1992 CA
2242707 Jan 1999 CA
101389148 Mar 2009 CN
101547447 Sep 2009 CN
201869169 Jun 2011 CN
20104862 Aug 2001 DE
10249414 May 2004 DE
0461583 Dec 1991 EP
0477952 Apr 1992 EP
0851618 Jul 1998 EP
0687400 Nov 1998 EP
0993124 Apr 2000 EP
1037411 Sep 2000 EP
1056226 Nov 2000 EP
1179895 Feb 2002 EP
1227605 Jul 2002 EP
1267447 Dec 2002 EP
1347584 Sep 2003 EP
1357683 Oct 2003 EP
1363352 Nov 2003 EP
1391897 Feb 2004 EP
1443687 Aug 2004 EP
1455550 Sep 2004 EP
1501206 Jan 2005 EP
1503451 Feb 2005 EP
1511203 Mar 2005 EP
1530316 May 2005 EP
1570626 Sep 2005 EP
1693974 Aug 2006 EP
1742388 Jan 2007 EP
1942598 Jul 2008 EP
1954019 Aug 2008 EP
1968250 Sep 2008 EP
2276298 Jan 2011 EP
2323252 Sep 1998 GB
2370170 Jun 2002 GB
2399963 Sep 2004 GB
2428149 Jan 2007 GB
04-189036 Jul 1992 JP
05-260018 Oct 1993 JP
09-083450 Mar 1997 JP
09-162810 Jun 1997 JP
09-200840 Jul 1997 JP
11-068675 Mar 1999 JP
2000-152300 May 2000 JP
2000-341744 Dec 2000 JP
2002-264617 Sep 2002 JP
2002-353813 Dec 2002 JP
2003-148653 May 2003 JP
2003-172827 Jun 2003 JP
2004-172734 Jun 2004 JP
2004-245963 Sep 2004 JP
2004-247090 Sep 2004 JP
2004-264901 Sep 2004 JP
2004-265624 Sep 2004 JP
2004-317737 Nov 2004 JP
2004-349184 Dec 2004 JP
2005-018175 Jan 2005 JP
2005-087135 Apr 2005 JP
2005-134125 May 2005 JP
2007-228603 Sep 2007 JP
2008-172597 Jul 2008 JP
10-2001-0055088 Jul 2001 KR
9603823 Feb 1996 WO
9810600 Mar 1998 WO
0042721 Jul 2000 WO
0072475 Nov 2000 WO
0178434 Oct 2001 WO
0184760 Nov 2001 WO
0221183 Mar 2002 WO
0230141 Apr 2002 WO
2002102102 Dec 2002 WO
0324027 Mar 2003 WO
0398175 Nov 2003 WO
2004030154 Apr 2004 WO
2004047472 Jun 2004 WO
2004051322 Jun 2004 WO
2004056019 Jul 2004 WO
2004059934 Jul 2004 WO
2004086795 Oct 2004 WO
2004093471 Oct 2004 WO
2005062505 Jul 2005 WO
2005069203 Jul 2005 WO
2005073897 Aug 2005 WO
2005079386 Sep 2005 WO
2005101701 Oct 2005 WO
2005111959 Nov 2005 WO
2006011778 Feb 2006 WO
2006018592 Feb 2006 WO
2006019392 Feb 2006 WO
2006039941 Apr 2006 WO
2006046088 May 2006 WO
2006051262 May 2006 WO
2006060754 Jun 2006 WO
2006077569 Jul 2006 WO
2006105185 Oct 2006 WO
2006133609 Dec 2006 WO
2006136811 Dec 2006 WO
2007048427 May 2007 WO
2007077451 Jul 2007 WO
2007088561 Aug 2007 WO
2007091026 Aug 2007 WO
2008008249 Jan 2008 WO
2008027213 Mar 2008 WO
2008033298 Mar 2008 WO
2008039830 Apr 2008 WO
2008076248 Jun 2008 WO
2008116014 Sep 2008 WO
2009012614 Jan 2009 WO
WO 2009012614 Jan 2009 WO
2010090999 Aug 2010 WO
2010132739 Nov 2010 WO
2011023592 Mar 2011 WO
2011100095 Aug 2011 WO
2011139939 Nov 2011 WO
2012148938 Nov 2012 WO
2012148940 Nov 2012 WO
2012151650 Nov 2012 WO
2013122915 Aug 2013 WO
2015029021 Mar 2015 WO
Non-Patent Literature Citations (53)
Entry
Winters, J., et al., “The Impact of Antenna Diversity on the Capacity of Wireless Communications Systems,” IEEE Transcations on Communications, vol. 42, No. 2/3/4, Feb./Mar./Apr. 1994, pp. 1740-1751.
Yu et al., “A Novel Scheme to Generate Single-Sideband Millimeter-Wave Signals by Using Low-Frequency Local Oscillator Signal,” IEEE Photonics Technology Letters, vol. 20, No. 7, Apr. 1, 2008, pp. 478-480.
Zhao, “Optical Injection Locking on Vertical-Cavity Surface-Emitting Lasers (VCSELs): Physics and Applications,” Fall 2008, PhD dissertation University of California at Berkeley, pp. 1-209.
Arredondo, Albedo et al., “Techniques for Improving In-Building Radio Coverage Using Fiber-Fed Distributed Antenna Networks,” IEEE 46th Vehicular Technology Conference, Atlanta, Georgia, Apr. 28-May 1, 1996, pp. 1540-1543, vol. 3.
Attygalle et al., “Extending Optical Transmission Distance in Fiber Wireless Links Using Passive Filtering in Conjunction with Optimized Modulation,” Journal of Lightwave Technology, vol. 24, No. 4, Apr. 2006, 7 pages.
Author Unknown, “Fiber Optic Distributed Antenna System,” Installation and Users Guide, ERAU Version 1.5, May 2002, Andrews Corporation, 53 pages.
Author Unknown, “ITU-T G.652, Telecommunication Standardization Sector of ITU, Series G: Transmission Systems and Media, Digital Systems and Networks, Transmission Media and Optical Systems Characteristics—Optical Fibre Cables, Characteristics of a Single-Mode Optical Fiber and Cable,” ITU-T Recommendation G.652, International Telecommunication Union, Jun. 2005, 22 pages.
Author Unknown, “Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (Release 12),” Technical Specification 36.211, Version 12.7.0, 3GPP Organizational Partners, Sep. 2015, 136 pages.
Author Unknown, “VCSEL Chaotic Synchronization and Modulation Characteristics,” Master's Thesis, Southwest Jiatong University, Professor Pan Wei, Apr. 2006, 8 pages (machine translation).
Bakaul, M., et al., “Efficient Multiplexing Scheme for Wavelength-Interleaved DWDM Millimeter-Wave Fiber-Radio Systems,” IEEE Photonics Technology Letters, Dec. 2005, vol. 17, No. 12, pp. 2718-2720.
Biton et al., “Challenge: CeTV and Ca-Fi—Cellular and Wi-Fi over CATV,” Proceedings of the Eleventh Annual International Conference on Mobile Computing and Networking, Aug. 28-Sep. 2, 2005, Cologne, Germany, Association for Computing Machinery, 8 pages.
Bo Zhang et al., “Reconfigurable Multifunctional Operation Using Optical Injection-Locked Vertical-Cavity Surface-Emitting Lasers,” Journal of Lightwave Technology, vol. 27, No. 15, Aug. 2009, 6 pages.
Chang-Hasnain, et al., “Ultrahigh-speed laser modulation by injection locking,” Chapter 6, Optical Fiber Telecommunication V A: Components and Subsystems, Elsevier Inc., 2008, 20 pages.
Cheng Zhang et al., “60 GHz Millimeter-wave Generation by Two-mode Injection-locked Fabry-Perot Laser Using Second-Order Sideband Injection in Radio-over-Fiber System,” Conference on Lasers and Electro-Optics and Quantum Electronics, Optical Society of America, May 2008, 2 pages.
Cho, Bong Youl et al. “The Forward Link Performance of a PCS System with an AGC,” 4th CDMA International Conference and Exhibition, “The Realization of IMT-2000,” 1999, 10 pages.
Chowdhury et al., “Multi-service Multi-carrier Broadband MIMO Distributed Antenna Systems for In-building Optical Nireless Access,” Presented at the 2010 Conference on Optical Fiber Communication and National Fiber Optic Engineers Conference, Mar. 21-25, 2010, San Diego, California, IEEE, pp. 1-3.
Chrostowski, “Optical Injection Locking of Vertical Cavity Surface Emitting Lasers,” Fall 2003, PhD dissertation University of California at Berkely, 122 pages.
Chu, Ta-Shing et al. “Fiber optic microcellular radio”, IEEE Transactions on Vehicular Technology, Aug. 1991, pp. 599-606, vol. 40, Issue 3.
Cooper, A.J., “Fiber/Radio for the Provision of Cordless/Mobile Telephony Services in the Access Network,” Electronics Letters, 1990, pp. 2054-2056, vol. 26.
Cutrer, David M. et al., “Dynamic Range Requirements for Optical Transmitters in Fiber-Fed Microcellular Networks,” IEEE Photonics Technology Letters, May 1995, pp. 564-566, vol. 7, No. 5.
Dang et al., “Radio-over-Fiber based architecture for seamless wireless indoor communication in the 60GHz band,” Computer Communications, Elsevier B.V., Amsterdam, NL, vol. 30, Sep. 8, 2007, pp. 3598-3613.
Dolmans, G. et al. “Performance study of an adaptive dual antenna handset for indoor communications”, IEE Proceedings: Microwaves, Antennas and Propagation, Apr. 1999, pp. 138-144, vol. 146, Issue 2.
Ellinger, Frank et al., “A 5.2 GHz variable gain LNA MMIC for adaptive antenna combining”, IEEE MTT-S International Microwave Symposium Digest, Anaheim, California, Jun. 13-19, 1999, pp. 501-504, vol. 2.
Fan, J.C. et al., “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links”, IEEE Transactions on Microwave Theory and Techniques, Aug. 1997, pp. 1390-1397, vol. 45, Issue 8.
Gibson, B.C., et al., “Evanescent Field Analysis of Air-Silica Microstructure Waveguides,” The 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 1-7803-7104-4/01, Nov. 12-13, 2001, vol. 2, pp. 709-710.
Huang, C., et al., “A WLAN-Used Helical Antenna Fully Integrated with the PCMCIA Carrier,” IEEE Transactions on Antennas and Propagation, Dec. 2005, vol. 53, No. 12, pp. 4164-4168.
Hyuk-Kee Sung et al., “Optical Single Sideband Modulation Using Strong Optical Injection-Locked Semiconductor Lasers,” IEEE Photonics Technology Letters, vol. 19, No. 13, Jul. 1, 2007, 4 pages.
International Preliminary Report on Patentability for PCT/IL2013/050671 dated Feb. 10, 2015, 6 pages.
International Search Report for PCT/IL2013/050671 dated Jan. 30, 2014, 3 pages.
International Search Report of the Internaitonal Searching Authority: PCT/IL2014/050526; dated Sep. 2, 2014; 3 Pages; European Patent Office.
Kojucharow, K., et al., “Millimeter-Wave Signal Properties Resulting from Electrooptical Upconversion,” IEEE Transaction on Microwave Theory and Techniques, Oct. 2001, vol. 49, No. 10, pp. 1977-1985.
Lim et al., “Analysis of Optical Carrier-to-Sideband Ratio for Improving Transmission Performance in Fiber-Radio Links,” IEEE Transactions of Microwave Theory and Techniques, vol. 54, No. 5, May 2006, 7 pages.
Lu H H et al., “Improvement of radio-on-multimode fiber systems based on light injection and optoelectronic feedback techniques,” Optics Communications, vol. 266, No. 2, Elsevier B.V., Oct. 15, 2006, 4 pages.
Monro, T.M., et al., “Holey Fibers with Random Cladding Distributions,” Optics Letters, Feb. 15, 2000, vol. 25, No. 4, pp. 206-208.
Moreira, J.D., et al., “Diversity Techniques for OFDM Based WLAN Systems,” The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Sep. 15-18, 2002, vol. 3, pp. 1008-1011.
Niiho, T., et al., “Multi-Channel Wireless LAN Distributed Antenna System Based on Radio-Over-Fiber Techniques,” The 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society, Nov. 2004, vol. 1, pp. 57-58.
Non-Final Office Action and Examiner-Initiated Interview Summary for U.S. Appl. No. 15/447,580, dated Aug. 2, 2017, 10 pages.
Non-final Office Action for U.S. Appl. No. 14/599,710, dated Jun. 20, 2016, 14 pages.
Non-Final Office Action for U.S. Appl. No. 15/049,663, dated Aug. 7, 2017, 20 pages.
Notice of Allowance and Examiner-Initiated Interview Summary for U.S. Appl. No. 14/599,710, dated Jan. 23, 2017, 9 pages.
Opatic, D., “Radio over Fiber Technology for Wireless Access,” Ericsson, Oct. 17, 2009, 6 pages.
Patent Cooperation Treaty International Search Report for application No. PCT/IL2014/050526, dated Sep. 2, 2014, 3 pages.
Paulraj, A.J., et al., “An Overview of MIMO Communications—A Key to Gigabit Wireless,” Proceedings of the IEEE, Feb. 2004, vol. 92, No. 2, 34 pages.
Pickrell, G.R., et al., “Novel Techniques for the Fabrication of Holey Optical Fibers,” Proceedings of SPIE, Oct. 28-Nov. 2, 2001, vol. 4578, 2001, pp. 271-282.
Pieros et al., “A 60 GHz Radio-Over-Fiber Network Architecture for Seamless Communication With High Mobility,” Journal of Lightwave Technology, vol. 27, No. 12, IEEE, Jun. 15, 2009, pp. 1957-1967.
Reza et al., “Degree-of-Polarization-Based PMD Monitoring for Subcarrier-Multiplexed Signals via Equalized Carrier/Sideband Filtering,” Journal of Lightwave Technology, vol. 22, No. 4, IEEE, Apr. 2004, 8 pages.
Roh, W., et al., “MIMO Channel Capacity for the Distributed Antenna Systems,” Proceedings of the 56th IEEE Vehicular Technology Conference, Sep. 2002, vol. 2, pp. 706-709.
Schweber, Bill, “Maintaining cellular connectivity indoors demands sophisticated design,” EDN Network, Dec. 21, 2000, 2 pages, http://www.edn.com/design/integrated-circuit-design/4362776/Maintaining-c-ellular-connectivity-indoors-demands-sophisticated-design.
Seto et al., “Optical Subcarrier Multiplexing Transmission for Base Station With Adaptive Array Antenna,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, No. 10, Oct. 2001, pp. 2036-2041.
Seto, I., et al., “Antenna-Selective Transmit Diversity Technique for OFDM-Based WLANs with Dual-Band Printed Antennas,” 2005 IEEE Wireless Communications and Networking Conference, Mar. 13-17, 2005, vol. 1, pp. 51-56.
Shen, C., et al., “Comparison of Channel Capacity for MIMO-DAS versus MIMO-CAS,” The 9th Asia-Pacific Conference on Communications, Sep. 21-24, 2003, vol. 1, pp. 113-118.
Wake, D. et al., “Passive Picocell: A New Concept n Wireless Network Infrastructure,” Electronics Letters, Feb. 27, 1997, vol. 33, No. 5, pp. 404-406.
Windyka, John et al., “System-Level Integrated Circuit (SLIC) Technology Development for Phased Array Antenna Applications,” Contractor Report 204132, National Aeronautics and Space Administration, Jul. 1997, 94 pages.
Related Publications (1)
Number Date Country
20220201683 A1 Jun 2022 US
Provisional Applications (1)
Number Date Country
61834075 Jun 2013 US
Continuations (5)
Number Date Country
Parent 16842314 Apr 2020 US
Child 17691900 US
Parent 16374389 Apr 2019 US
Child 16842314 US
Parent 15975153 May 2018 US
Child 16374389 US
Parent 14962338 Dec 2015 US
Child 15975153 US
Parent PCT/IL2014/050526 Jun 2014 US
Child 14962338 US