The present application claims priority under 35 U.S.C. §119 to Japanese Patent Application No. 2016-003383, filed Jan. 12, 2016, entitled “Time Information Display Device.” The contents of this application are incorporated herein by reference in their entirety.
The present disclosure relates to a device (time information display device) that has a function of displaying time information, and particularly relates to a time information display device that is installed in a movable body such as a vehicle, and can automatically correct the displayed time information according to the time zone of the current position of the self-device.
A device installed in a movable body such as a vehicle and displaying time should desirably display the correct standard time of the time zone of its current position, even when the self-device moves between time zones with different standard times. As a device for detecting such crossing of a time zone boundary and correcting the displayed time, a conventional time display control device has been known (Japanese Patent Application Publication No. 2010-127808) in which the current position of the self-device is detected on the basis of a GPS (Global Positioning System) signal, for example, whether or not the self-device has crossed a time zone boundary is determined by referring to map information including time zone information, and if the device crosses the time zone boundary, time information held in the self-device is corrected and displayed. Furthermore, to prevent too frequent changes in the displayed time and bothering the driver when driving on a road that frequently crosses a time zone boundary, the device sets an area at a predetermined distance from the time zone boundary, and changes the displayed time only when the vehicle goes beyond the predetermined distance-area toward the destination time zone.
However, the position of the self-device located by the GPS signal generally includes an error, and due to this error, it may sometimes be difficult to accurately detect whether or not the vehicle has crossed a time zone boundary. To improve the accuracy in locating the current position of the self-device, in the field of navigation systems, for example, a method has been known in which the position of the device is calculated by use of a GPS signal, and the calculated position is matched with a road position on a map stored in the self-device (so-called map matching).
However, generally, map information stored in an onboard device such as an onboard navigation system is rarely updated, and if the map information is updated only at the time of a vehicle inspection, there may be a certain period when the device uses map information that does not include latest information such as newly constructed roads. Accordingly, since onboard devices such as an onboard navigation system do not use latest map information, errors may occur in position location by map matching.
As a result, even if the displayed time is kept unchanged within a predetermined distance from a time zone boundary as in the conventional device described above, an error in current position location accuracy may cause frequent changes in the displayed time, depending on the value of the predetermined distance. Additionally, if the area of the predetermined distance is enlarged to avoid such frequent changes in the displayed time, the time may be displayed incorrectly over a needlessly wide area, and usefulness of the time information display device may be degraded.
Meanwhile, in recent years, some multifunction mobile terminals such as a smartphone have a GPS function or a map matching function to locate the position of the self-device and perform navigation, or determine the time zone of the current position of the self-device to correct and display time information. Such a mobile terminal communicates with a server, for example, through radio communication or the like, and can always access latest map information. However, since such a mobile terminal cannot include a large high-performance device in view of balance with required lightness, for example, generally, location accuracy of the GPS function tends to be lower than an onboard GPS device.
For this reason, in a multifunction mobile terminal, a GPS position calculation error may cause an error in position location by map matching. This may cause fluctuation in displayed time near the time zone boundary, in a manner different from the aforementioned onboard device whose map information may cause an error in position location.
In a time information display device installed in a movable body such as a vehicle, it is desirable to effectively prevent fluctuation in displayed time near a time zone boundary that may occur due to accuracy in locating the position of the self-device, for example.
An aspect of the present disclosure includes: a communications part that receives, from multiple external devices different from the self-device, information on a time zone of the current position identified by the multiple external devices; a time zone-identification part that identifies a time zone of the current position of the self-device, on the basis of the information received from the multiple external devices; and a display control part that displays time in the identified time zone of the current position on a display part. The time zone-identification part is configured to: determine whether or not the time zone received from the multiple external devices matches a time zone of the current position previously identified by the time zone-identification part; when the time zone received from at least one of the external devices does not match the time zone of the current position previously identified by the time zone-identification part, repeatedly calculate, for a first predetermined time length, an accumulated time in which time zones received from a predetermined number of the external devices match one another; and when the accumulated match time is not shorter than a predetermined time, identify the matched time zone as the time zone of the current position.
According to another aspect of the present disclosure, the first predetermined time length is set on the basis of one or multiple factors including: speed of the self-vehicle in which the self-device is installed; an angle between a time zone boundary line nearest to the self-device and a running direction of the self-vehicle; the degree of linearity of the time zone boundary; the degree of linearity of a road on which the self-vehicle runs; and presence or absence of degradation in location accuracy of at least one of the external devices.
According to another aspect of the present disclosure, the higher the speed of the self-vehicle, the shorter the first predetermined time length is set.
According to another aspect of the present disclosure, the closer the angle between the time zone boundary line and the running direction of the self-vehicle is to a right angle, the shorter the first predetermined time length is set.
According to another aspect of the present disclosure, the higher the linearity of the time zone boundary, and/or the higher the linearity of the road on which the self-vehicle runs, the shorter the first predetermined time length is set.
According to another aspect of the present disclosure, when location accuracy of at least one of the external devices is deteriorated, the first predetermined time length is set shorter than when the location accuracy is not deteriorated.
According to another aspect of the present disclosure, the time zone-identification part is also configured to, when the time zone received from the multiple external devices does not match the time zone of the current position previously identified by the time zone-identification part, for at least one of the external devices, repeatedly calculate each of accumulated times in which the time zone received from the at least one external device matches a first time zone and a second time zone that sandwich a time zone boundary nearest to the self-device, during a latest second predetermined time length period, and also repeatedly calculate a first time ratio that is a ratio of the accumulated time that matches the first time zone to the second predetermined time length, and a second time ratio that is a ratio of the accumulated time that matches the second time zone to the second predetermined time length; and the display control part is also configured to display a time of the first time zone and a time of the second time zone on the display part, in display modes based on the first time ratio and the second time ratio, respectively.
According to another aspect of the present disclosure, the display control part is also configured to: display the time of the first time zone on the display part in a larger size for a larger first time ratio; and display the time of the second time zone on the display part in a larger size for a larger second time ratio.
The advantages of the disclosure will become apparent in the following description taken in conjunction with the following drawings.
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
First, a time information display device of a first embodiment of the present disclosure will be described. The time information display device of the embodiment is installed in a vehicle (hereinafter referred to as self-vehicle), and displays time information on an onboard display. The time information display device may be a part of a so-called DA (Display Audio) that includes a display device to display television programs, and provides audio functions such as radio broadcasting and music playback, for example.
The display 150 is a liquid crystal display with a touch panel, for example.
The onboard device 152 is an onboard navigation system, for example, and acquires information on the current position of the self-vehicle from an onboard GPS device 156, for example, determines the time zone of the current position of the self-vehicle by referring to map information included in the onboard device 152, for example, and transmits information on the determined time zone to the time information display device 100 at predetermined intervals, autonomously or in response to requests from the time information display device 100.
The external device 154 is a multifunction cellular telephone such as a smartphone, or a multifunction mobile terminal (Personal Digital Assistant) such as a portable PC, locates the current position by receiving GPS radio waves or radio waves from cellular base stations, and determines the time zone of the current position of the self-device by referring to map information acquired from a remote server, for example, by radio communication or the like. Also, the external device 154 transmits information on the determined time zone to the time information display device 100 at predetermined intervals, autonomously or in response to requests from the time information display device 100.
The above-mentioned functions of the onboard device 152 and the external device 154 may be implemented by executing an application program on a computer (not shown), included in each of the onboard device 152 and the external device 154, for example.
The communication INF 108 included in the time information display device 100 may be a wire communication-interface compliant with a communication standard such as USB, for example. Note, however, that the communications INF 108 is not limited to this, and may be a wireless communication-interface compliant with a standard such as Bluetooth communication and Wi-Fi communication, or may be a communications interface that performs both of such wireless communication and wire communication mentioned above.
The storage device 104 may be a storage device configured of a volatile or nonvolatile memory (e.g., semiconductor memory), or a hard disk, for example. A time determination unit 112 (to be described later) included in the processing device 102 stores, in the storage device 104, information on the time zone of the current position determined by the time determination unit 112.
Hereinafter, the time zone of the current position determined by the onboard device 152 will be referred to as E-TZ, the time zone of the current position determined by the external device 154 will be referred to as D-TZ, and the time zone of the current position determined by the time determination unit 112 based on E-TZ and D-TZ will be referred to as C-TZ.
The processing device 102 is a computer having a processor such as a CPU (Central Processing Unit), a ROM (Read Only Memory) into which a program is written, and a RAM (Random Access Memory) for temporarily storing data, for example, and includes a time zone information-acquisition unit 110, the time determination unit 112, a current time-measurement unit 114, and a display control unit 116. Here, the communications INF 108 and the time zone information-acquisition unit 110 correspond to a communications part, the time determination unit 112 corresponds to a time zone-identification part, and the display control unit 116 corresponds to a display control part.
The above units included in the processing device 102 are implemented by execution of a program by the processing device 102 as the computer, and the computer program can be stored in an arbitrary computer readable storage medium. Instead, or in addition to this, all or some of the above units may each be configured of hardware including one or more electronic circuit parts.
The time zone information-acquisition unit 110 acquires, at predetermined intervals, information on the current position-time zone E-TZ determined by the onboard device 152 and information on the current position-time zone D-TZ determined by the external device 154 from the onboard device 152 and the external device 154, by transmitting request signals to the onboard device 152 and the external device 154 or simply waiting for data transmission from the onboard device 152 and the external device 154, and sends the information to the time determination unit 112.
The time determination unit 112 determines (or identifies) the current position-time zone C-TZ, on the basis of the current position-time zone E-TZ determined by the onboard device 152 and the current position-time zone D-TZ determined by the external device 154, which are received through the time zone information-acquisition unit 110.
To be more specific, the time determination unit 112 compares E-TZ and D-TZ acquired at predetermined intervals, and repeatedly measures an accumulated time tmatch in which E-TZ and D-TZ match, over a predetermined time length (determination time tdet) period (i.e., in determination time tdet cycles). Then, every time the determination time tdet elapses, the time determination unit calculates a time ratio R0 (=tmatch/tdet×100(%)) of the accumulated time tmatch to the determination time tdet, and determines whether or not the time ratio R0 exceeds a predetermined threshold Rth. If the time ratio R0 exceeds the predetermined threshold Rth, the time determination unit determines that the matched time zone is the current position-time zone C-TZ, and stores information on the current position-time zone C-TZ in the storage device 104.
The current time-measurement unit 114 measures elapsed time with a timer (not shown) included in the processing device 102, for example, and calculates and identifies the current time in the current position by referring to the time zone (C-TZ) of the current position stored in the storage device 104. Also, the current time-measurement unit 114 transmits information on the identified current time in the current position to the display control unit 116.
The display control unit 116 displays the current time in the current position received from the current time-measurement unit 114 on the display 150, through the input/output INF 106.
The time information display device 100 configured in the above manner repeatedly measures the accumulated time tmatch in which the current position-time zones E-TZ and D-TZ respectively determined by the onboard device 152 and the external device 154 match to each other, over the predetermined time length tdet period, and if the time ratio R0 of the accumulated time tmatch to the predetermined time tdet exceeds the predetermined threshold Rth, determines that the matched time zone is the time zone of the current position. Then, the time information display device displays the time corresponding to the determined time zone on the display 150.
Accordingly, instead of keeping the displayed time unchanged within a predetermined distance from a time zone boundary as in the conventional technique, the time information display device 100 repeatedly calculates the degree of coincidence (specifically, aforementioned time ratio R0) between time zone determination results depending on characteristics (e.g., current position information accuracy and map information accuracy) of the onboard device 152 and the external device 154, in cycles of the predetermined time length tdet, and determines the time zone when the degree of coincidence exceeds a predetermined level (i.e., when time ratio R0 exceeds threshold Rth). Hence, the time information display device can identify the time zone more promptly and accurately, and prevent fluctuation in displayed time that may occur near a time zone boundary.
Next, a procedure of processing of the time determination unit 112 of the time information display device 100 will be described according to the flowchart of
When the processing is started, the time determination unit 112 first acquires the latest data on the current position-time zone E-TZ determined by the onboard device 152, transmitted from the time zone information-acquisition unit 110 (S100). Next, the time determination unit 112 determines whether or not the time zone C-TZ identified as the time zone of the current position is stored in the storage device 104 (S102), and if it is not stored (S102, No), stores E-TZ acquired in step S100 in the storage device 104 as C-TZ (S104), and returns to step S100 to repeat the processing.
Meanwhile, if C-TZ is stored in the storage device 104 (S102, Yes), the time determination unit determines whether or not E-TZ acquired from the onboard device 152 in step S100 and C-TZ stored in the storage device 104 match to each other (S106), and if they match (S106, Yes), determines that the time information display device 100 (i.e., self-vehicle including the time information display device 100) is not crossing a time zone boundary or is not approaching a time zone boundary, and returns to step S100 to repeat the processing.
Meanwhile, if E-TZ acquired from the onboard device 152 and C-TZ stored in the storage device 104 do not match to each other (S106, No), the time determination unit determines that the time information display device 100 (or self-vehicle) has crossed a time zone boundary or is approaching a time zone boundary, and proceeds to step S108. In other words, when E-TZ acquired from the onboard device 152 changes from C-TZ stored in the storage device 104, the time determination unit determines that the time information display device 100 or the self-vehicle has crossed a time zone boundary or is approaching a time zone boundary, and performs the processing in step S108 and following steps. Instead, the time determination unit may acquire the current time zone (D-TZ) from the external device 154 in step S100, and when D-TZ changes from C-TZ stored in the storage device 104, determine that the time information display device 100 or the self-vehicle has crossed a time zone boundary or is approaching a time zone boundary. Or the time determination unit may acquire both of the current time zone E-TZ of the onboard device 152 and the current time zone D-TZ of the external device 154 in step S100, and when E-TZ or D-TZ changes from C-TZ stored in the storage device 104, determine that the time information display device 100 or the self-vehicle has crossed a time zone boundary or is approaching a time zone boundary.
In step S108, the time determination unit 112 sets the determination time tdet, which is a first predetermined time length, to a predetermined value, and starts measuring elapsed time telps. The elapsed time telps may be measured with a timer (not shown) included in the time information display device 100, for example.
Next, the time determination unit 112 measures or calculates an accumulated time (matched time) tmatch in which the time zone (E-TZ) determined by the onboard device 152 and the time zone (D-TZ) determined by the external device 154 match to each other during the determination time tdet, based on E-TZ and D-TZ acquired at predetermined intervals through the time zone information-acquisition unit 110 (S110). The matched time tmatch may be calculated by the following equation, for example.
t
match
=N×Δt
Here, N is the number of times E-TZ and D-TZ match after the start of measurement in step S108, and Δt is the interval at which E-TZ and D-TZ are determined by the onboard device 152 and the external device 154.
Then, the time determination unit 112 determines whether or not the elapsed time telps exceeds the determination time tdet (S112), and if not (S112, No), returns to step S108 to repeat the processing. Meanwhile, if the elapsed time telps exceeds the determination time tdet (S112, Yes), the time determination unit calculates the time ratio R0 of the accumulated time tmatch to the determination time tdet (S114), and then determines whether or not the time ratio R0 exceeds the predetermined threshold Rth (S116). And if R0 does not exceed Rth (S116, No), the time determination unit returns to step S108 to repeat the processing. Thus, the time determination unit repeats calculation of the matched time tmatch and the time ratio R0 periodically by using the determination time tdet as one cycle, until the time ratio R0 of the matched time tmatch of E-TZ and D-TZ within the one cycle exceeds the predetermined threshold Rth.
Note that when measuring the matched time tmatch in step S110, if E-TZ and/or D-TZ is changing between a time zone A and a time zone B that sandwich a time zone boundary near the current position, for example, the time determination unit measures each of a matched time tmatch-A in which both of E-TZ and D-TZ are the time zone A, and a matched time tmatch-B in which both of E-TZ and D-TZ are the time zone B. Also, similarly, when calculating the time ratio R0 in step S114, the time determination unit calculates each of a time ratio R0-A of the matched time tmatch-A and a time ratio R0-B of the matched time tmatch-B.
Then, if any of the time ratios R0 (i.e., any of aforementioned time ratio R0-A and time ratio R0-B) exceeds the predetermined threshold Rth (S116, Yes), the time determination unit identifies the time zone corresponding to the time ratio R0 that exceeded the predetermined threshold Rth (e.g., time zone A if time ratio R0-A exceeds predetermined threshold Rth, or time zone B if time ratio R0-B exceeds predetermined threshold Rth) as the current position-time zone C-TZ and stores it in the storage device 104 (S118), and then returns to step S100 to repeat the processing.
When the vehicle 300 approaches the time zone boundary 302 from the left in
When the vehicle 300 further approaches the time zone boundary 302 and reaches position G, the time determination unit 112 calculates the time ratio R0-A and the time ratio R0-B in a procedure similar to that described above. Although position G is closer to the time zone boundary 302 than position F, it is still within the time zone A, and therefore the time determination unit obtains numeric values R0-A=50%, R0-B=30% where R0-A>R0-B, for example, as in
The vehicle 300 continues to run on the road 304, and reaches position H on the time zone boundary. The time determination unit 112 calculates the time ratios R0-A=30%, R0-B=30%, as in
Next, the vehicle 300 crosses the time zone boundary 302 and enters the time zone B, and reaches position J. The time determination unit 112 calculates the time ratios R0-A=30%, R0-B=40%, as in
Then, when the vehicle 300 moves away from the time zone boundary 302 and further into the time zone B to position K, the time determination unit 112 calculates the time ratios R0-A=10%, R0-B=80%, as in
As described above, in the time information display device 100, the current time zone C-TZ stored in the storage device 104 (i.e., current time zone C-TZ used for displaying time) does not change from the time zone A, in positions G to J near the time zone boundary 302 where R0-A and R0-B are not larger than Rth, and the current time zone C-TZ is only changed to the time zone B in position K where R0-B takes a value that exceeds Rth. Hence, fluctuation in displayed time that may occur near the time zone boundary 302 can be suppressed, as compared to a conventional configuration where the time zone is determined by using only one of the onboard device 152 and the external device 154 to change the displayed time.
Also, in the time information display device 100, the current time zone C-TZ is changed to the time zone B in position K where R0-B takes a value that exceeds Rth (i.e., position of changing current time zone C-TZ is determined based on value of R0-B), as described above. Hence, if the value of R0-B exceeds Rth in position J that is closer to the time zone boundary 302 depending on the individual difference of the location accuracy (or time zone determination accuracy) of the onboard device 152 and the external device 154, the current time zone C-TZ is changed to the time zone B in the position J (i.e., earlier, before vehicle 300 reaches position K), and the standard time of the time zone B is displayed on the display 150. Accordingly, the time information display device 100 can prevent a problem that incorrect time is displayed over a needlessly wide area, so that excellent usefulness of the time information display device can be maintained.
Note that although in the embodiment, the determination time tdet as the cycle of measuring the matched time tmatch of E-TZ and D-TZ is set to a predetermined time (step S108), the invention is not limited to this. Instead, the determination time tdet may be adaptively shortened or extended relative to the predetermined time, on the basis of one or multiple factors including: speed of the self-vehicle including the time information display device 100; an angle between a time zone boundary line and the running direction of the self-vehicle; the degree of linearity of the time zone boundary; the degree of linearity of the road on which the self-vehicle runs; and presence or absence of degradation in location accuracy of the GPS device 156 used by the onboard device 152 and/or the external device 154 (e.g., presence or absence of degradation in location accuracy (e.g., reception quality of GPS radio waves), assumed from geographic features (periphery of cliff, street canyon, surroundings of avenue, for example) of current position indicated by map information).
More specifically, the determination time tdet may be set in the following manner.
At high speed, the self-vehicle, after passing a time zone boundary, is assumed to move away quickly from the boundary area where time zone identification tends to fluctuate. Hence, the determination time tdet may be set shorter than the predetermined time, by multiplying the predetermined time by a predetermined coefficient K1 smaller than 1, for example. Note that the value of K1 may be a continuous value that decreases with increase in speed (e.g., value inversely proportional to speed).
The closer an angle between a time zone boundary line and the running direction of the self-vehicle is to a right angle, the quicker the self-vehicle is assumed to move away from the time zone boundary area where time zone identification tends to fluctuate, after passing the boundary. Hence, the determination time tdet may be set shorter than the predetermined time, by multiplying the predetermined time by a predetermined coefficient K2 smaller than 1, for example. Note that the value of K2 may be a continuous value that decreases with decrease in an angle of deviation from a right angle (90 degrees), of the angle between the time zone boundary line and the running direction of the self-vehicle (e.g., value proportional to angle of deviation).
(3) Linearity of Time Zone Boundary or Road on which Self-Vehicle Runs
When a time zone boundary or the road on which the self-vehicle runs has low linearity and is winding, the vehicle is assumed to stay longer within the boundary area where time zone identification tends to fluctuate. Hence, the determination time tdet may be set longer than the predetermined time, by multiplying the predetermined time by a coefficient K3 larger than 1, for example, to prevent fluctuation in the displayed time caused by fluctuation in time zone identification. Note that the value of K3 may be a continuous value that increases with increase in a meander width per predetermined distance along the time zone boundary or the road on which the self-vehicle runs (e.g., value proportional to deviation distance (maximum value of distance deviation in direction perpendicular to approximate straight line of the time zone boundary or road) of the time zone boundary or road from the approximate straight line, within predetermined distance).
When it is assumed that location accuracy of the GPS device 156 used by the onboard device 152 and/or the external device 154 is deteriorated (e.g., when deterioration of GPS location accuracy is assumed from geographic features (periphery of cliff, street canyon, surroundings of avenue, for example) of current position indicated by map information), the determination time tdet may be set longer than the predetermined time when the deterioration is not assumed, by multiplying the predetermined time by a coefficient K4 larger than 1, for example, to prevent fluctuation in the displayed time caused by fluctuation in time zone identification.
When at least two of the above (1) to (4) conditions are applicable, the determination time tdet may be set in view of the respective conditions, by successively multiplying the predetermined time by the coefficients K1 to K4 set for the respective conditions.
Also, although in the embodiment, the time information display device 100 acquires the determination result of the time zone of the current position from two external devices (i.e., onboard device 152 and external device 154), the invention is not limited to this. Instead, the determination result of the time zone of the current position may be acquired from three or more external devices. In this case, instead of steps S100 to S102 and S103 of
Next, a time information display device of a second embodiment of the present disclosure will be described. In addition to the functions of the time information display device 100 of the first embodiment, when determining that the vehicle has crossed a time zone boundary between a first time zone and a second time zone or is approaching the time zone boundary, the time information display device of the embodiment measures an accumulated time t1 in which a time zone E-TZ determined by an onboard device 152 is the first time zone, and an accumulated time t2 in which the time zone E-TZ is the second time zone, for each measurement time tmes, which is the latest second predetermined time length. Then, the information display device displays both of the current time of the first time zone and the current time of the second time zone on a display 150, in display modes respectively based on a ratio R1 of the accumulated time t1 to the measurement time tmes and a ratio R2 of the accumulated time t2 to the measurement time tmes.
Thus, the time information display device of the second embodiment allows the user to intuitively grasp the likelihood that the current position belongs to the first time zone and that the current position belongs to the second time zone, from the display modes of the two times displayed on the display 150.
Also, the time information display device repeatedly calculates times t1 and t2 for the latest measurement time tmes period. In other words, every time the time zone E-TZ determined by the onboard device 152 is acquired at the predetermined interval, the time information display device repeats calculation of the times t1 and t2 as well as R1 and R2 for the latest measurement time tmes period, and updates the modes of time display. Hence, the user can know, in real time, changes in the likelihood that the current position belongs to the first time zone and that the current position belongs to the second time zone. As a result, the user can know from the above-described changes that the self-vehicle is approaching or moving away from a time zone boundary, for example, or that the road is meandering relative to the time zone boundary and therefore the distance to the time zone boundary from the vehicle is varying, for example.
A time information display device 400 of the embodiment has a similar configuration as the time information display device 100 of the first embodiment shown in
The above units included in the processing device 402 are implemented by execution of a program by the processing device 402 as a computer, and the computer program can be stored in an arbitrary computer readable storage medium. Instead, or in addition to this, all or some of the above units may each be configured of hardware including one or more electronic circuit parts.
As in the case of the time determination unit 112 of the first embodiment, the time determination unit 412 determines a current position-time zone (current time zone) C-TZ, on the basis of the current position-time zone E-TZ determined by the onboard device 152 and a current position-time zone D-TZ determined by an external device 154, through a time zone information-acquisition unit 110, and stores information on the time zone C-TZ in a storage device 104.
Moreover, when determining that the vehicle has crossed a time zone boundary between the first time zone and the second time zone or is approaching the time zone boundary, the time determination unit 412 measures the accumulated time t1 in which the time zone E-TZ determined by the onboard device 152 is the first time zone, and the accumulated time t2 in which the time zone E-TZ is the second time zone, for each measurement time tmes, which is the latest second predetermined time length. The time determination unit also calculates the ratio (first time ratio) R1 of the accumulated time t1 to the measurement time tmes, and the ratio (second time ratio) R2 of the accumulated time t2 to the measurement time tmes. Then, the time determination unit 412 stores the information identifying the first time zone and the first time ratio R1 in the storage device 104 as first time zone information, and stores the information identifying the second time zone and the second time ratio R2 in the storage device 104 as second time zone information. Note that every time the time zone E-TZ determined by the onboard device 152 is acquired at the predetermined interval from the onboard device 152, the time determination unit 412 repeats calculation of the accumulated time t1 and accumulated time t2 as well as R1 and R2, for the latest measurement time tc, period.
When the current time reaches time T10, for example, a period 1 in
t
1
=N
E-TZ=TZ1(T1:T10)×Δt
t
2
=N
E-TZ=TZ2(T1:T10)×Δt
R1=t1/tmes×100(%)
R2=t2/tmes×100(%)
Here, NE-TZ=TZ1(T1:T10) is the number of E-TZs in which E-TZ=time zone 1 (i.e., the number of times when E-TZ=time zone 1), among E-TZs acquired during time T1 to T10, and NE-TZ=TZ2(T1:T10) is the number of E-TZs in which E-TZ=time zone 2 (i.e., the number of times when E-TZ=time zone 2), among E-TZs acquired during time T1 to T10.
Then, when the current time reaches time T11, a period 2 in
Thereafter, similarly, when the current time reaches T12, T13, . . . , periods 3, 4, . . . shown in
Referring back to
Similarly, the second time measurement unit 418 measures elapsed time by use of a timer (not shown) included in the processing device 402, for example, and refers to the second time zone information stored in the storage device 104 to identify the current time of the second time zone indicated by the second time zone information. Also, the second time measurement unit 418 transmits information on the identified current time in the current position and the second time ratio R2 included in the second time zone information, to the display control unit 420.
As in the case of the display control unit 116 of the first embodiment, the display control unit 420 displays the current time in the current position received from a current time-measurement unit 114 on the display 150, through an input/output INF 106.
The display control unit 420 also refers to the first time zone information and the second time zone information stored in the storage device 104, and displays the current time of the first time zone and the current time of the second time zone on the display 150, in display modes based on the first and second time ratios R1, R2, respectively.
For example, the display control unit 420 displays the current time of the first time zone in a larger size for a larger first time ratio R1, and displays the current time of the second time zone in a larger size for a larger second time ratio R2, on a display screen of the display 150. More specifically, the display control unit displays the current time of the first time zone within an area S×R1/(R1+R2), and the current time of the second time zone within an area S×R2/(R1+R2), relative to a predetermined size area S on the display 150, for example.
Part (a) of
Part (b) of
Part (c) of
Part (d) of
Note that the inside of the display parts indicated by reference numerals 600 to 610 may be in a different color from the background color, for example. Also, although the numbers showing the time are displayed in a fixed size inside the display parts indicated by the reference numerals 600 to 610 in
Moreover, instead of or in addition to displaying the times in display parts of sizes corresponding to the first and second time ratios R1, R2 as in
Next, a procedure of processing of the time determination unit 412 of the time information display device 400 will be described.
In addition to the same processing as in the time determination unit 112 of
Hereinbelow, the detailed display processing performed by the time determination unit 412 will be described, according to the flowchart shown in
When the processing starts, the time determination unit 412 first sets C-TZ stored in the storage device 104 as the first time zone, and a time zone E-TZ most recently received from the onboard device 152 as the second time zone (S200). Next, the time determination unit 412 sets the measurement time tmes to a predetermined value (S202), and acquires the latest data on the current time zone (E-TZ) determined by the onboard device 152 (S204).
Next, the time determination unit 412 calculates the ratio (first time ratio) R1 of the accumulated time t1 in which E-TZ is the first time zone, to the measurement time tmes, and the ratio (second time ratio) R2 of the accumulated time t2 in which E-TZ is the second time zone, to the measurement time tmes, in the latest measurement time tmes (S206).
Then, the time determination unit 412 stores the first time zone information including information identifying the first time zone and the first time ratio R1 in the storage device 104, and stores the second time zone information including information identifying the second time zone and the second time ratio R2 in the storage device 104 (S208), and then returns to step S204 to repeat the processing.
Note that although in the embodiment, the first and second time ratios are obtained by use of the current position-time zone E-TZ determined by the onboard device 152, the invention is not limited to this. Instead, the first and second time ratios R1, R2 may be obtained by use of the current position-time zone D-TZ determined by the external device 154.
Additionally, although in the embodiment, the time information display device 400 acquires the determination result of the time zone of the current position from two external devices (i.e., onboard device 152 and external device 154), the invention is not limited to this. Instead, the determination result of the time zone of the current position may be acquired from three or more external devices, and the first and second time ratios may be obtained by use of the time zone of the current position determined by any one of the external devices.
Instead, the first and second time ratios R1, R2 may be obtained by using t1 as the accumulated time in which both of the time zone E-TZ determined by the onboard device 152 and the time zone D-TZ determined by the external device 154 are the first time zone, and t2 as the accumulated time in which both of E-TZ and D-TZ are the second time zone.
As has been described, the time information display devices 100 and 400 according to the first and second embodiments of the present disclosure repeatedly acquire, at predetermined intervals, the current position-time zones E-TZ and D-TZ respectively determined by the onboard device 152 and the external device 154 that locate the current position and determine the time zone of the current position, from the onboard device 152 and the external device 154; repeatedly measure the accumulated time in which E-TZ and D-TZ match, for a predetermined time length; and when the accumulated time exceeds a predetermined threshold, identify the matched time zone as the time zone of the current position. Then, the time information display devices display the time corresponding to the identified time zone on the display 150.
With this configuration, instead of keeping the displayed time unchanged within a predetermined distance from a time zone boundary as in the conventional technique, the time zone information display devices 100 and 400 of the first and second embodiments collect time zone determination results depending on characteristics (e.g., current position information accuracy and map information accuracy) of the onboard device 152 and the external device 154 for a predetermined time length. Hence, the time information display devices can identify the time zone more promptly and accurately, and prevent fluctuation in displayed time that may occur near a time zone boundary. Although a specific form of embodiment has been described above and illustrated in the accompanying drawings in order to be more clearly understood, the above description is made by way of example and not as limiting the scope of the invention defined by the accompanying claims. The scope of the invention is to be determined by the accompanying claims. Various modifications apparent to one of ordinary skill in the art could be made without departing from the scope of the invention. The accompanying claims cover such modifications.
Number | Date | Country | Kind |
---|---|---|---|
2016-003383 | Jan 2016 | JP | national |