An imaging device, such as a time-of-flight (TOF) three-dimensional (3D) camera, may include a light source for illuminating a scene containing one or more objects for imaging. The imaging device may collect light reflected from the objects on a photosensitive surface. An amount of light that the photosensitive surface receives per second per unit area (i.e., irradiance) depends in part upon the location of the objects in the scene, or in the example of a TOF 3D camera, the location of the objects in the camera's field of view. For an object having an angular displacement relative to an optical axis of the camera, the irradiance at the photosensitive surface will generally decrease as the angular displacement increases.
For TOF 3D cameras and other applications of imaging devices, it may be advantageous for objects in a scene to have a substantially equal irradiance on the photosensitive surface independent of the objects' angular displacement relative to the camera's optical axis. To compensate for a decrease in irradiance with angular displacement of an object in a scene, a camera illumination system may be configured to increase illumination of regions of the scene as a function of the region's increasing angular displacement from the optical axis. As a result, features having greater angular displacement are illuminated with more intense light.
An example illumination system that increases illumination of a region as a function of the angular displacement of the region may include a collimator that collimates light from a light source. A diffractive diffuser receives the collimated light and distributes the light across the camera field of view to compensate for the decrease in irradiance with angular displacement. However, diffractive diffusers are relatively inefficient and may deliver less than 75% of the light they receive from the light source to the camera field of view. Additionally, illumination systems are relatively expensive, and the costs and engineering difficulty associated with dissipating heat these systems generate increase with the amount of light they produce. Accordingly, the intensity of illumination produced by illumination systems is usually limited by cost considerations and heat dissipation requirements. Additionally, for applications that benefit from threshold irradiance values, such as a TOF 3D camera, the relative inefficiency of conventional camera illumination systems combined with the concomitant increase in costs and engineering difficulty associated with higher light output, may limit the operating precision capabilities of such applications.
A gaming system comprising a time-of-flight 3D camera and related method for illuminating a camera field of view and capturing return image light are disclosed herein. In one example, the gaming system comprises a game console including a first controller and the time-of-flight 3D camera which includes a light source configured to emit source light along an optical axis, and a collimator configured to receive and collimate the source light to create collimated light. A refractive diffuser is operable to be tuned to the camera field of view and configured to receive and diffuse the collimated light to create refracted light having a varying intensity profile. The varying intensity profile is characterized by an intensity (I) that becomes lower toward the optical axis and higher away from the optical axis. The refractive diffuser is further configured to guide the refracted light to illuminate only a portion of the camera field of view to reduce wasted source light, wherein the intensity (I) of the refracted light increases as an angle θ between the refracted light and the optical axis increases. The camera also includes a light collector with a photosensitive surface configured to receive the return image light to be used for calculating a distance measurement of the object.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Furthermore, the claimed subject matter is not limited to implementations that solve any or all disadvantages noted in any part of this disclosure.
To make TOF measurements using the emitted source light 28, in one example the TOF 3D camera 14 includes a light collector 38 with a photosensitive surface 42, such as a CMOS active pixel sensor. An objective lens 48 receives return image light reflected from the object 22, such as return image light rays 46 and 50, and focuses the return image light on the photosensitive surface 42. It will be appreciated that additional return image light rays (not shown) may be received by the photosensitive surface 42. It will be also be appreciated that in
The time at which the return image light rays are received at the photosensitive surface 42 is measured to estimate the distance of various features of the object from the TOF 3D camera 14. Because light is typically returned relatively sooner from a near feature than from a far feature, time-dependent measurement and quantification of the return image light may provide distance information about the object's features.
In some examples, the light collector 38 may be controlled by a light collector module 54 in mass storage 32 of the TOF 3D camera 14. The light collector module 54 may be configured to hold data and/or instructions executable by the controller 34 to control the light collector 38. The TOF measurements may be performed by a distance calculation module 36 in mass storage 32 of the TOF 3D camera 14. The distance calculation module 36 may be configured to hold data and/or instructions executable by the controller 34 to make the TOF measurements.
In one example, and with reference also to
A more detailed description of one example of the gaming system 10 and the components and operation of the TOF 3D camera 14 will now be provided. With reference to
The refractive diffuser 74 receives and diffuses the collimated light 72 to create refracted light 80. In one example, the refractive diffuser 74 comprises a first array of lenslets 76 that are positioned substantially opposite to a second array of lenslets 78. The first array of lenslets 76 and second array of lenslets 78 are collectively configured to diffuse the collimated light 72 and create refracted light 80. As described in more detail below, the refracted light 80 created by the refractive diffuser 74 has a varying intensity profile 82, schematically illustrated as a curve in
The varying intensity profile 82 of the refracted light 80 is characterized by the intensity (I) of the refracted light increasing as an angle θ between the refracted light and the optical axis 60 increases. In one example, the intensity (I) may be related to the angle θ according to I=1/cos4 θ. It will be appreciated that the intensity (I) may also be related to the angle θ according to any other power of cosine, such as I=1/cos θ, I=1/cos2 θ, I=1/cos2.5 θ, or any other inverse function of a certain objective lens irradiance profile.
As illustrated in
First feature 86 and second feature 90 are both in a planar field of view imaging surface 92 which extends perpendicular to the optical axis 60. With reference to
With reference now to
In the present example where both the first feature 86 and the second feature 90 of the object 22 have a shared reflectance value, the varying intensity profile 82 of the refracted light 80 results in the first return image light ray 46 and the second return image light ray 50 each impinging upon the photosensitive surface 42 with an irradiance magnitude that is substantially equivalent. In this manner, it will be appreciated that two or more features of the object 22 that share a substantially equivalent reflectance value and are in a common planar field of view will each have a substantially equal irradiance magnitude at the photosensitive surface 42, via the return image light rays reflected by the features. Additionally, such substantially equal irradiance magnitude is independent of each feature's angular displacement relative to the optical axis 60. In TOF 3D cameras, creating such substantially equal irradiance magnitudes for multiple features sharing a common planar field of view enables the camera or associated imaging system to calculate distance measurements of objects with greater precision.
As further illustrated in
It will also be appreciated that the refracted light 80 may impinge upon and be reflected by other features on the object 22 that lie in other spherical field of view imaging surfaces that are located different distances from the TOF 3D camera 14. Alternatively expressed, other spherical field of view imaging surfaces containing other features on the object 22 are located closer to and further away from the TOF 3D camera 14 than the illustrated spherical field of view imaging surface 104.
With reference now to
In an example where the object 22 is a person, the gaming system 10 and/or TOF 3D camera 14 may be configured to build a three-dimensional model of the person being imaged by the camera based on one or more predetermined positions and orientations of the camera with respect to the person and the anticipated environments and surroundings in which the camera and person will be located.
In the above example, and with reference also to
In another example, the refractive diffuser 74 may be tuned to guide the refracted light 80 to illuminate only a portion of the camera field of view 24. With reference to
With reference to
Turning now to
Method 300 comprises, at 302, emitting source light 28 from the light source 26 along optical axis 60. At 304, the method includes collimating the source light 28 to create collimated light 72. At 306, the method includes diffusing the collimated light 72 to create refracted light 80 having a varying intensity profile 82 that is characterized by an intensity (I) that becomes lower toward the optical axis 60 and higher away from the optical axis. As noted above, the varying intensity profile 82 of the refracted light 80 is characterized by the intensity (I) of the refracted light increasing as an angle θ between the refracted light and the optical axis 60 increases. In one example, the intensity (I) may be related to the angle θ according to I=1/cos4 θ. As noted above, the refractive diffuser 74 may be used to diffuse the collimated light 72. The refractive diffuser 74 may comprise a first array of lenslets 76 that are positioned substantially opposite to a second array of lenslets 78, with the first and second arrays of lenslets collectively configured to guide the refracted light in a manner that produces the varying intensity profile 82.
At 308, the method includes guiding the refracted light 80 to illuminate the camera field of view 24 and reduce wasted source light 28. At 310, the method optionally includes guiding the refracted light to illuminate only a portion of the camera field of view. As noted above, where the object 22 is located in a predetermined orientation relative to a floor 112, the portion of the camera field of view 24 illuminated by the refracted light 80 may not include the floor.
At 312, the method includes receiving the return image light on the photosensitive surface 42 of the light collector 38 for calculating a distance measurement of the object 22. As noted above, the return image light at the photosensitive surface 42 may have an irradiance of at least a threshold magnitude for calculating the distance measurement of the object 22. Additionally, where at least two features of the object are both in a planar field of view imaging surface, such as first feature 86 and second feature 90 in planar field of view imaging surface 92, or both features are in a spherical field of view imaging surface, such as third feature 100 and fourth feature 102 in spherical field of view imaging surface 104, and both features of the object are characterized by a shared reflectance value, a magnitude of the irradiance at the photosensitive surface 42 is substantially equivalent for both features of the object 22.
At 314, the method also includes delivering an amount of the refracted light 80 to the camera field of view 24 that is at least 95% of an amount of the source light 28 emitted by the light source 26.
At 316, the method includes processing an input signal from the photosensitive surface 42 to generate an output signal based thereon that indicates a depth of the object 22 in the camera field of view 24 based on a time difference between emitting the source light 28 and receiving at the photosensitive surface the return image light reflected by the object 22. At 318, the method includes outputting the output signal to the game console 130.
In another example, the refractive diffuser 74 may be tuned to illuminate the full camera field of view while also reducing the intensity (I) of the refracted light as a function of an instant range (R) compared to a maximum range (L).
If the illumination system 18 of camera 14 is designed to produce the threshold intensity (I1) equally on a hemisphere or a planar surface, then any other point along the front wall 404 or side walls 408, 412 except point (A) would be closer to the camera 14 than point (A). Consequently, at such other point there would be a higher intensity than the minimum intensity needed for depth detection at such point. In other words, source light that is emitted from the refractive diffuser 74 towards a certain point, such as point (C) on side wall 408, would contain enough energy to cover maximum range (L) to hypothetical point (D), while the space to be illuminated is actually bounded by the side wall 408 to a closer instant range (R). At instant range (R) a minimum intensity needed for depth detection is an intensity (h) but the range relative to the maximum (L) in this case is shorter by a factor of (R/L). Accordingly, the emitted intensity (I0) towards point (C) can be reduced by a factor of (R/L)2.
It will be appreciated that varying the intensity profile produced by the refractive diffuser as a function of an instant range (R) and a maximum range (L) may be combined with varying the intensity profile according to the angle θ between the refracted light and the optical axis 60 as described above.
Using the TOF 3D cameras, systems and methods described above, a camera field of view may be illuminated with efficiencies greater than those generally provided by conventional illumination systems. Such improved illumination efficiencies can reduce material costs and heat dissipation constraints associated with conventional illumination systems, while also providing enhanced homogeneity of irradiance from features in the camera field of view.
It will be appreciated that, while some of the example embodiments described herein make reference to game consoles and gaming systems, these example embodiments are provided only for descriptive purposes, and the TOF 3D cameras and methods for illuminating a camera field of view described herein may be used in any suitable context and/or operating environment within the scope of the present disclosure. Other non-limiting example operating environments include mobile wireless devices, client computing devices, and server computing devices.
Aspects of this disclosure are described by example and with reference to the illustrated embodiments listed above. Components, process steps, and other elements that may be substantially the same in one or more embodiments are identified coordinately and are described with minimal repetition. It will be noted, however, that elements identified coordinately may also differ to some degree. It will be further noted that the drawing figures included herein are schematic and generally not drawn to scale. Rather, the various drawing scales, aspect ratios, and numbers of components shown in the figures may be purposely distorted to make certain features or relationships easier to see.
The term “module” may be used to describe an aspect of the TOF 3D camera 14 that is implemented to perform one or more particular functions. In some cases, such a module may be instantiated via controller 34 executing instructions held in mass storage 32 and loaded into memory 150 in the TOF 3D camera 14, or via controller 134 executing instructions held in mass storage 142 and loaded into memory 138 in the game console 130. It is to be understood that different modules may be instantiated from the same application, service, code block, object, library, routine, API, function, etc. Likewise, the same module may be instantiated by different applications, services, code blocks, objects, routines, APIs, functions, etc. The term module” is meant to encompass individual or groups of executable files, data files, libraries, drivers, scripts, database records, etc.
It is to be understood that the examples, configurations and/or approaches described herein are exemplary in nature, and that these specific embodiments or examples are not to be considered in a limiting sense, because numerous variations are possible. The specific routines or methods described herein may represent one or more of any number of processing strategies. As such, various acts illustrated may be performed in the sequence illustrated, in other sequences, in parallel, or in some cases omitted. Likewise, the order of the above-described processes may be changed.
The subject matter of the present disclosure includes all novel and nonobvious combinations and subcombinations of the various processes, systems and configurations, and other features, functions, acts, and/or properties disclosed herein, as well as any and all equivalents thereof.
This application is a divisional of U.S. patent application Ser. No. 13/290,902, filed on Nov. 7, 2011, and titled “TIME-OF-FLIGHT CAMERA WITH GUIDED LIGHT” the entire disclosure of which is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4627620 | Yang | Dec 1986 | A |
4630910 | Ross et al. | Dec 1986 | A |
4641964 | Mitani et al. | Feb 1987 | A |
4645458 | Williams | Feb 1987 | A |
4695953 | Blair et al. | Sep 1987 | A |
4702475 | Elstein et al. | Oct 1987 | A |
4711543 | Blair et al. | Dec 1987 | A |
4751642 | Silva et al. | Jun 1988 | A |
4796997 | Svetkoff et al. | Jan 1989 | A |
4809065 | Harris et al. | Feb 1989 | A |
4817950 | Goo | Apr 1989 | A |
4843568 | Krueger et al. | Jun 1989 | A |
4893183 | Nayar | Jan 1990 | A |
4901362 | Terzian | Feb 1990 | A |
4925189 | Braeunig | May 1990 | A |
5098184 | van den Brandt et al. | Mar 1992 | A |
5101444 | Wilson et al. | Mar 1992 | A |
5148154 | MacKay et al. | Sep 1992 | A |
5184295 | Mann | Feb 1993 | A |
5229754 | Aoki et al. | Jul 1993 | A |
5229756 | Kosugi et al. | Jul 1993 | A |
5239463 | Blair et al. | Aug 1993 | A |
5239464 | Blair et al. | Aug 1993 | A |
5288078 | Capper et al. | Feb 1994 | A |
5295491 | Gevins | Mar 1994 | A |
5320538 | Baum | Jun 1994 | A |
5347306 | Nitta | Sep 1994 | A |
5385519 | Hsu et al. | Jan 1995 | A |
5405152 | Katanics et al. | Apr 1995 | A |
5417210 | Funda et al. | May 1995 | A |
5423554 | Davis | Jun 1995 | A |
5454043 | Freeman | Sep 1995 | A |
5469740 | French et al. | Nov 1995 | A |
5495576 | Ritchey | Feb 1996 | A |
5516105 | Eisenbrey et al. | May 1996 | A |
5524637 | Erickson | Jun 1996 | A |
5534917 | MacDougall | Jul 1996 | A |
5563988 | Maes et al. | Oct 1996 | A |
5577981 | Jarvik | Nov 1996 | A |
5580249 | Jacobsen et al. | Dec 1996 | A |
5594469 | Freeman et al. | Jan 1997 | A |
5597309 | Riess | Jan 1997 | A |
5613751 | Parker et al. | Mar 1997 | A |
5616078 | Oh | Apr 1997 | A |
5617312 | Iura et al. | Apr 1997 | A |
5638300 | Johnson | Jun 1997 | A |
5641288 | Zaenglein, Jr. | Jun 1997 | A |
5682196 | Freeman | Oct 1997 | A |
5682229 | Wangler | Oct 1997 | A |
5690582 | Ulrich et al. | Nov 1997 | A |
5703367 | Hashimoto et al. | Dec 1997 | A |
5704837 | Iwasaki et al. | Jan 1998 | A |
5715834 | Bergamasco et al. | Feb 1998 | A |
5875108 | Hoffberg et al. | Feb 1999 | A |
5877803 | Wee et al. | Mar 1999 | A |
5913727 | Ahdoot | Jun 1999 | A |
5933125 | Fernie et al. | Aug 1999 | A |
5980256 | Carmein | Nov 1999 | A |
5989157 | Walton | Nov 1999 | A |
5995649 | Marugame | Nov 1999 | A |
6005548 | Latypov et al. | Dec 1999 | A |
6009210 | Kang | Dec 1999 | A |
6024449 | Smith | Feb 2000 | A |
6054991 | Crane et al. | Apr 2000 | A |
6066075 | Poulton | May 2000 | A |
6072494 | Nguyen | Jun 2000 | A |
6073489 | French et al. | Jun 2000 | A |
6077201 | Cheng | Jun 2000 | A |
6098458 | French et al. | Aug 2000 | A |
6100896 | Strohecker et al. | Aug 2000 | A |
6101289 | Kellner | Aug 2000 | A |
6105869 | Scharf et al. | Aug 2000 | A |
6128003 | Smith et al. | Oct 2000 | A |
6130677 | Kunz | Oct 2000 | A |
6133986 | Johnson | Oct 2000 | A |
6141463 | Covell et al. | Oct 2000 | A |
6147678 | Kumar et al. | Nov 2000 | A |
6152856 | Studor et al. | Nov 2000 | A |
6159100 | Smith | Dec 2000 | A |
6173066 | Peurach et al. | Jan 2001 | B1 |
6181343 | Lyons | Jan 2001 | B1 |
6188777 | Darrell et al. | Feb 2001 | B1 |
6215890 | Mastuo et al. | Apr 2001 | B1 |
6215898 | Woodfill et al. | Apr 2001 | B1 |
6226396 | Marugame | May 2001 | B1 |
6229913 | Nayar et al. | May 2001 | B1 |
6256033 | Nguyen | Jul 2001 | B1 |
6256400 | Takata et al. | Jul 2001 | B1 |
6283860 | Lyons et al. | Sep 2001 | B1 |
6289112 | Jain et al. | Sep 2001 | B1 |
6299308 | Voronka et al. | Oct 2001 | B1 |
6308565 | French et al. | Oct 2001 | B1 |
6316934 | Amorai-Moriya et al. | Nov 2001 | B1 |
6363160 | Bradski et al. | Mar 2002 | B1 |
6384819 | Hunter | May 2002 | B1 |
6411744 | Edwards | Jun 2002 | B1 |
6430997 | French et al. | Aug 2002 | B1 |
6476834 | Doval et al. | Nov 2002 | B1 |
6496598 | Harman | Dec 2002 | B1 |
6503195 | Keller et al. | Jan 2003 | B1 |
6539931 | Trajkovic et al. | Apr 2003 | B2 |
6570555 | Prevost et al. | May 2003 | B1 |
6601768 | McCall et al. | Aug 2003 | B2 |
6606173 | Kappel et al. | Aug 2003 | B2 |
6633294 | Rosenthal et al. | Oct 2003 | B1 |
6640202 | Dietz et al. | Oct 2003 | B1 |
6661918 | Gordon et al. | Dec 2003 | B1 |
6681031 | Cohen et al. | Jan 2004 | B2 |
6714665 | Hanna et al. | Mar 2004 | B1 |
6731799 | Sun et al. | May 2004 | B1 |
6738066 | Nguyen | May 2004 | B1 |
6765726 | French et al. | Jul 2004 | B2 |
6788809 | Grzeszczuk et al. | Sep 2004 | B1 |
6801637 | Voronka et al. | Oct 2004 | B2 |
6873723 | Aucsmith et al. | Mar 2005 | B1 |
6876496 | French et al. | Apr 2005 | B2 |
6937742 | Roberts et al. | Aug 2005 | B2 |
6950534 | Cohen et al. | Sep 2005 | B2 |
7003134 | Covell et al. | Feb 2006 | B1 |
7036094 | Cohen et al. | Apr 2006 | B1 |
7038855 | French et al. | May 2006 | B2 |
7039676 | Day et al. | May 2006 | B1 |
7042440 | Pryor et al. | May 2006 | B2 |
7050606 | Paul et al. | May 2006 | B2 |
7058204 | Hildreth et al. | Jun 2006 | B2 |
7060957 | Lange et al. | Jun 2006 | B2 |
7113918 | Ahmad et al. | Sep 2006 | B1 |
7121946 | Paul et al. | Oct 2006 | B2 |
7170492 | Bell | Jan 2007 | B2 |
7184048 | Hunter | Feb 2007 | B2 |
7202898 | Braun et al. | Apr 2007 | B1 |
7222078 | Abelow | May 2007 | B2 |
7227526 | Hildreth et al. | Jun 2007 | B2 |
7259747 | Bell | Aug 2007 | B2 |
7308112 | Fujimura et al. | Dec 2007 | B2 |
7317836 | Fujimura et al. | Jan 2008 | B2 |
7348963 | Bell | Mar 2008 | B2 |
7359121 | French et al. | Apr 2008 | B2 |
7367887 | Watabe et al. | May 2008 | B2 |
7379563 | Shamaie | May 2008 | B2 |
7379566 | Hildreth | May 2008 | B2 |
7389591 | Jaiswal et al. | Jun 2008 | B2 |
7412077 | Li et al. | Aug 2008 | B2 |
7421093 | Hildreth et al. | Sep 2008 | B2 |
7430312 | Gu | Sep 2008 | B2 |
7431480 | Godo | Oct 2008 | B2 |
7436496 | Kawahito | Oct 2008 | B2 |
7450736 | Yang et al. | Nov 2008 | B2 |
7452275 | Kuraishi | Nov 2008 | B2 |
7460690 | Cohen et al. | Dec 2008 | B2 |
7489812 | Fox et al. | Feb 2009 | B2 |
7536032 | Bell | May 2009 | B2 |
7555142 | Hildreth et al. | Jun 2009 | B2 |
7560701 | Oggier et al. | Jul 2009 | B2 |
7570805 | Gu | Aug 2009 | B2 |
7574020 | Shamaie | Aug 2009 | B2 |
7576727 | Bell | Aug 2009 | B2 |
7590262 | Fujimura et al. | Sep 2009 | B2 |
7593552 | Higaki et al. | Sep 2009 | B2 |
7598942 | Underkoffler et al. | Oct 2009 | B2 |
7607509 | Schmiz et al. | Oct 2009 | B2 |
7620202 | Fujimura et al. | Nov 2009 | B2 |
7635200 | Atsushi | Dec 2009 | B2 |
7668340 | Cohen et al. | Feb 2010 | B2 |
7680298 | Roberts et al. | Mar 2010 | B2 |
7683954 | Ichikawa et al. | Mar 2010 | B2 |
7684592 | Paul et al. | Mar 2010 | B2 |
7701439 | Hillis et al. | Apr 2010 | B2 |
7702130 | Im et al. | Apr 2010 | B2 |
7704135 | Harrison, Jr. | Apr 2010 | B2 |
7710391 | Bell et al. | May 2010 | B2 |
7729530 | Antonov et al. | Jun 2010 | B2 |
7746345 | Hunter | Jun 2010 | B2 |
7760182 | Ahmad et al. | Jul 2010 | B2 |
7809167 | Bell | Oct 2010 | B2 |
7834846 | Bell | Nov 2010 | B1 |
7852262 | Namineni et al. | Dec 2010 | B2 |
7884985 | Amitai et al. | Feb 2011 | B2 |
7891812 | Larichev et al. | Feb 2011 | B2 |
RE42256 | Edwards | Mar 2011 | E |
7898522 | Hildreth et al. | Mar 2011 | B2 |
7959294 | Balogh | Jun 2011 | B2 |
8035612 | Bell et al. | Oct 2011 | B2 |
8035614 | Bell et al. | Oct 2011 | B2 |
8035624 | Bell et al. | Oct 2011 | B2 |
8072470 | Marks | Dec 2011 | B2 |
20030002296 | Steiner et al. | Jan 2003 | A1 |
20040085544 | De Groot | May 2004 | A1 |
20080026838 | Dunstan et al. | Jan 2008 | A1 |
20080062424 | Shires et al. | Mar 2008 | A1 |
20100114265 | Lechthaler | May 2010 | A1 |
20110058167 | Knox et al. | Mar 2011 | A1 |
Number | Date | Country |
---|---|---|
101254344 | Sep 2008 | CN |
0583061 | Feb 1994 | EP |
08044490 | Feb 1996 | JP |
9310708 | Jun 1993 | WO |
9717598 | May 1997 | WO |
9944698 | Sep 1999 | WO |
2011012913 | Feb 2011 | WO |
Entry |
---|
Fisher, S. et al., “Virtual Environment Display System,” ACM 1986 Workshop on Interactive 3D Graphics, Oct. 23-24, 1986, 12 pages. |
Azarbayejani, A. et al., “Visually Controlled Graphics,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, No. 6, pp. 602-605, Jun. 1993, 4 pages. |
Sheridan, T. et al., “Virtual Reality Check,” Technology Review, vol. 96, No. 7, pp. 20-28, Oct. 1993, 9 pages. |
“Simulation and Training,” Division Interactive, 1994, 6 pages. |
Granieri, J. et al., “Simulating Humans in VR,” Center for Human Modeling and Simulation, University of Pennsylvania, Oct. 12, 1994, 15 pages. |
Freeman, W. et al., “Television Control by Hand Gestures,” Mitsubishi Electric Research Laboratories Tech. Rep. TR94-24, Dec. 1994, 7 pages. |
Breen, D. et al., “Interactive Occlusion and Collision of Real and Virtual Objects in Augmented Reality,” European Computer-Industry Research Centre GmbH Tech. Rep. ECRC-95-02, 1995, 22 pages. |
Stevens, J., “Flights Into Virtual Reality Treating Real World Disorders,” Washington Post, Science Psychology Section, Mar. 27, 1995, 2 pages. |
“Virtual High Anxiety,” Popular Mechanics, vol. 172, No. 8, p. 22, Aug. 1995, 1 page. |
Kanade, T. et al., “A Stereo Machine for Video-Rate Dense Depth Mapping and Its New Applications,” 1996 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 196-202, Jun. 1996, 7 pages. |
Kohler, M., “Vision Based Remote Control in Intelligent Home Environments,” University of Dortmund, Informatik VII (Computer Graphics), Nov. 1996, 8 pages. |
Aggarwal, J. et al., “Human Motion Analysis: A Review,” IEEE Nonrigid and Articulated Motion Workshop, pp. 90-102, Jun. 16, 1997, 13 pages. |
Kohler, M., “Technical Details and Ergonomical Aspects of Gesture Recognition applied in Intelligent Home Environments,” University of Dortmund, Informatik VII (Computer Graphics), Jul. 1997, 35 pages. |
Pavlovic, V. et al., “Visual Interpretation of Hand Gestures for Human-Computer Interaction: A Review,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, No. 7, pp. 677-695, Jul. 1997, 19 pages. |
Wren, C. et al., “Pfinder: Real-Time Tracking of the Human Body,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, No. 7, pp. 780-785, Jul. 1997, 6 pages. |
Kohler, M., “Special Topics of Gesture Recognition Applied in Intelligent Home Environments,” International Gesture Workshop on Gesture and Sign Language in Human-Computer Interaction, pp. 285-296, Sep. 17-19, 1997, 12 pages. |
Miyagawa, R. et al., “CCD-Based Range-Finding Sensor,” IEEE Transactions on Electron Devices, vol. 44, No. 10, pp. 1648-1652, Oct. 1997, 5 pages. |
Isard, M. et al., “Condensation—Conditional Density Propagation for Visual Tracking,” International Journal of Computer Vision, vol. 29, No. 1, pp. 5-28, Aug. 1998, 24 pages. |
Shao, J. et al., “An Open System Architecture for a Multimedia and Multimodal User Interface,” TIDE 1998 Conference, Japanese Society for Rehabilitation of Persons with Disabilities, Aug. 24, 1998, 8 pages. |
Brogan, D. et al., “Dynamically Simulated Characters in Virtual Environments,” IEEE Computer Graphics and Applications, vol. 18, No. 5, pp. 58-69, Sep./Oct. 1998, 12 pages. |
Livingston, M., “Vision-Based Tracking With Dynamic Structured Light for Video See-Through Augmented Reality,” Doctoral Dissertation, University North Carolina at Chapel Hill, Oct. 1998, 145 pages. |
Hongo, H. et al., “Focus of Attention for Face and Hand Gesture Recognition Using Multiple Cameras,” Fourth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 156-161, Mar. 28-30, 2000, 6 pages. |
Zhao, L. “Dressed Human Modeling, Detection, and Parts Localization,” Doctoral Dissertation, The Robotics Institute Carnegie Mellon University, Tech. Rep. CMU-RI-TR-01-19, Jul. 26, 2001, 121 pages. |
Qian, G. et al., “A Gesture-Driven Multimodal Interactive Dance System,” 2004 IEEE International Conference on Multimedia and Expo, vol. 3, pp. 1579-1582, Jun. 30, 2004, 4 pages. |
He, L., “Generation of Human Body Models,” Masters Thesis in Computer Science, University of Auckland, Apr. 2005, 111 pages. |
Rosenhahn, B. et al., “Automatic Human Model Generation,” 11th International Conference on Computer Analysis of Images and Patterns, pp. 41-48, Sep. 5, 2005, 8 pages. |
Hasegawa, S. et al., “Human-Scale Haptic Interaction with a Reactive Virtual Human in a Real-Time Physics Simulator,” ACM Computers in Entertainment, vol. 4, No. 3, Article 6C, Jul. 2006, 12 pages. |
Lecklider, T., “Shedding Some Light on Machine Vision,” http://www.evaluationengineering.com/articlesl200710/shedding-some-light-on-machine-vision.php, Accessed Aug. 5, 2011, Available as Early as Oct. 2007, 2 pages. |
Chemisana, D. et al., “Characterization of Fresnal Lens Optical Performances Using and Opal Diffuser,” Energy Conversion and Management, vol. 52, No. 1, pp. 658-663, Sep. 2010, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20150024847 A1 | Jan 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13290902 | Nov 2011 | US |
Child | 14507172 | US |