The present invention pertains generally to systems and methods for creating spot patterns for ophthalmic refractive laser surgery. More particularly, the present invention pertains to systems and methods which minimize the residual effects from laser induced optical breakdown (LIOB) at earlier laser focal points, on LIOB at subsequent laser focal points. The present invention is particularly, but not exclusively, useful for systems and methods wherein LIOB at adjacent focal points in the stroma (transparent material) is performed in accordance with a predetermined spatial and temporal separation.
During an ophthalmic laser surgical procedure, wherein stromal tissue within the cornea is ablated, the ablation is caused by an effect known as Laser Induced Optical Breakdown (LIOB). Typically, LIOB in the stroma is accomplished using pulsed laser beams that may have pulse repetition rates as high as 10 KHz. In detail, the LIOB effect of successive individual laser pulses is cumulative. Each individual laser pulse, however, can be considered separately.
For an individual laser pulse, it happens during LIOB that the tissue being ablated may be subjected to several different phenomena. For one, tissue that is peripheral to the ablated tissue is subject to adverse side effects, such as tearing (mechanical damage) and scorching (thermal damage). It is known, however, that these particular adverse side effects can be avoided if the pulse energy density is minimized. On the other hand, the pulse energy density must be above the tissue threshold in order for LIOB to occur. With these countervailing considerations in mind, it has been determined that a laser pulse having the following characteristics can cause LIOB in stromal tissue, while avoiding adverse mechanical or thermal side effects on peripheral tissue.
Laser Pulse
Despite the adverse, but avoidable, side effects on peripheral tissue noted above, LIOB will still affect stromal tissue in at least three other different, identifiable ways. These are: 1) plasma formation; 2) shock wave generation; and 3) cavitation bubbles. Schematically, these three phenomena are shown in
Referring for the moment to
Perhaps, the most pronounced adverse effect from LIOB at relatively low pulse energies is the creation of a cavitation bubble 14. Stated differently, at relatively low pulse energies there is typically no mechanical or thermal damage to peripheral tissue. Instead, a laser pulse having the parameters set forth above will induce LIOB that immediately results in a cavitation bubble 14 (see
In light of the above, it is an object of the present invention to provide a system and method for performing laser induced optical breakdown (LIOB) in a substantially transparent material (i.e. the cornea of an eye) wherein a predetermined time period “τ” is interposed between adjacent laser focal spots in a spot pattern. Another object of the present invention is to provide a system and method for performing laser induced optical breakdown (LIOB) in a substantially transparent material (i.e. the cornea of an eye) wherein a pattern of successive focal spots are both spatially and temporally separated from each other. Yet another object of the present invention is to provide a system and method for performing laser induced optical breakdown (LIOB) in a substantially transparent material (i.e. the cornea of an eye) wherein LIOB is induced at a location where the residual influence of earlier LIOB is effectively avoided. Still another object of the present invention is to provide a system and method for performing laser induced optical breakdown (LIOB) in a substantially transparent material (i.e. the cornea of an eye) which is easy to use, relatively simple to manufacture, and comparatively cost effective.
In accordance with the present invention, a method and a system are presented for performing laser induced optical breakdown (LIOB) in a substantially transparent material, such as the cornea of an eye. Specifically, the method includes a first step of calculating a pattern for a succession of laser focal spots in the material. Using this pattern, a surgical procedure is then performed wherein LIOB occurs at each focal spot in the pattern, in a volume of material having a diameter “d1”. Inherently, the LIOB at each focal spot results in the generation of a cavitation bubble that expands to a maximum diameter “d2”. In this process, however, the diameter of the temporal cavitation bubble “d2” will increase to at least twice the diameter of the focal spot “d1”. It then collapses back toward the volume of the focal spot within a decay time “τ” to a substantially stationary diameter “d3”, with (d1≦d3≦d2).
With the above in mind, once a pattern for LIOB has been determined, the actual procedure begins by inducing LIOB at a first focal spot. The procedure then continues by inducing LIOB at a plurality of interim focal spots within a time period “τ”. Importantly, each of the interim spots is located at a distance greater than “d2” from every other interim focal spot that is generated within the time period of “τ”. At the end of the time period “τ”, a second focal spot in the pattern can then be generated at a distance “d3” from the first focal spot. This process is then continued, with the second focal spot becoming a first focal spot. Another plurality of interim focal spots can then be generated within another time period “τ”. Importantly, as each focal spot is generated in the pattern, it must be separated by at least the distance “d2” from every other focal spot that was generated within the immediately preceding time period “τ”.
As contemplated for the present invention, the distance “d1” will be in a range of about 1 to 10 microns, and the distance “d2” will be approximately equal to 2d1 (d2≅2d1). Further, the time period “τ” will be typically less than approximately two microseconds (τ≅2 μs). Also, as contemplated for the present invention, LIOB will be induced by a laser pulse which has a duration in a range of 1-1000 fs, an energy density in the range of 1-10 J/cm2, and a focal spot diameter of about 1-10 microns.
The novel features of this invention, as well as the invention itself, both as to its structure and its operation, will be best understood from the accompanying drawings, taken in conjunction with the accompanying description, in which similar reference characters refer to similar parts, and in which:
Referring to
Preferably, the focal spots 22 in pattern 24 are created by a laser beam 18 which includes a train of laser pulses that have a pulse repetition rate in the multi KHz region (i.e. around 10 KHz or more). Further, each pulse in the train preferably has the following characteristics: 1) a pulse length (duration) in a range of 1-1000 femtoseconds; an energy density of 1-10 J/cm2; and a focal spot size in a range of 1-10 μm diameter. As stated above, a laser pulse having these parameters will induce LIOB in a tissue volume 12 of the material 20 that has a diameter “d1”. This LIOB is then followed by the creation of a cavitation bubble 14 (see
The operation of the present invention will, perhaps, be best appreciated with reference to
In the sequence of focal spots 22 just discussed, each of the distances “x1”, “x2”, “x3”, and “x4”, though not necessarily equal to each other, are each greater than the distance “d2”. Additionally, it is to be noted that the locations 30, 34, 38 and 42 are separated by more than the distance “d2” from the locations of all of the earlier focal spots 22 that were created within the immediately preceding time period “τ”. Finally, it is also to be noted that LIOB at the location 42, at the time “τ”, is within a distance “d3” from the location 26. As contemplated by the present invention, this juxtaposition of the locations 26 and 42 is possible because a time period “τ” separates the inducement of LIOB at the respective locations 26 and 42. In this example, five different locations have been discussed. It is to be appreciated, however, the present invention envisions LIOB at many more, or fewer, such locations within a time period “τ”.
In overview, several important aspects of the present invention will be appreciated by reference to
With cross-reference to
While the particular Time-Resolved Scanning Patterns for Intrastromal Surgery as herein shown and disclosed in detail is fully capable of obtaining the objects and providing the advantages herein before stated, it is to be understood that it is merely illustrative of the presently preferred embodiments of the invention and that no limitations are intended to the details of construction or design herein shown other than as described in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3769963 | Goldman et al. | Nov 1973 | A |
4391275 | Fankhauser et al. | Jul 1983 | A |
4665913 | L'Esperance, Jr. | May 1987 | A |
4669466 | L'Esperance | Jun 1987 | A |
4732148 | L'Esperance, Jr. | Mar 1988 | A |
4770172 | L'Esperance, Jr. | Sep 1988 | A |
4773414 | L'Esperance, Jr. | Sep 1988 | A |
4941093 | Marshall et al. | Jul 1990 | A |
4988348 | Bille | Jan 1991 | A |
5549632 | Lai | Aug 1996 | A |
5984916 | Lai | Nov 1999 | A |
5993438 | Juhasz et al. | Nov 1999 | A |
6010497 | Tang et al. | Jan 2000 | A |
6231566 | Lai | May 2001 | B1 |
6322556 | Gwon et al. | Nov 2001 | B1 |
6325792 | Swinger et al. | Dec 2001 | B1 |
6610050 | Bille | Aug 2003 | B2 |
6610051 | Bille | Aug 2003 | B2 |
6805694 | Donitzky | Oct 2004 | B2 |
7131968 | Bendett et al. | Nov 2006 | B2 |
20030229339 | Bille | Dec 2003 | A1 |
20040039378 | Lin | Feb 2004 | A1 |
20040243111 | Bendett et al. | Dec 2004 | A1 |
20040243112 | Bendett et al. | Dec 2004 | A1 |
20050165386 | Kurtz et al. | Jul 2005 | A1 |
20060106371 | Muhlhoff et al. | May 2006 | A1 |
20080208104 | Bragagna et al. | Aug 2008 | A1 |
Number | Date | Country |
---|---|---|
103 34 109 | Feb 2005 | DE |
Number | Date | Country | |
---|---|---|---|
20060095023 A1 | May 2006 | US |