Time-sensitive cube

Information

  • Patent Grant
  • 9852205
  • Patent Number
    9,852,205
  • Date Filed
    Thursday, October 16, 2014
    9 years ago
  • Date Issued
    Tuesday, December 26, 2017
    6 years ago
Abstract
A time-sensitive cube data system is disclosed in which time-sensitive and/or time-series data objects are output in response to a user's operations on a time-sensitive OLAP cube. The time-sensitive and/or time-series data objects output by the time-sensitive cube data system may be displayed to the user in any way that may be advantageous to the user's understanding. The time-series objects output by the time-sensitive cube data system are more helpful than a single snapshot, as a user is able to see data trends over time.
Description
TECHNICAL FIELD

The present disclosure relates to systems and techniques for data integration, analysis, and visualization. More specifically, the present disclosure relates to integration, analysis, and visualization of time-series and/or time-sensitive data objects.


BACKGROUND

Relational database management systems (RDBMSs) have typically been used with databases having traditional data types that are easily structured into tables storing transactional information. RDBMSs, however, have significant limitations when it comes to processing and querying multidimensional data. Comparatively, Online Analytical Processing (OLAP) systems enable fast querying of multidimensional data. OLAP system functionality may be characterized by dynamic multi-dimensional analysis of data. Some OLAP systems may support end user analytical and navigational activities. OLAP systems provide snapshots of data values in response to multi-dimensional queries.


SUMMARY

The systems, methods, and devices described herein each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this disclosure, several non-limiting features will now be discussed briefly.


According to an embodiment, a computer-implemented method of providing multi-dimensional time series objects to a user is disclosed that may comprise: providing an electronic database configured to store a plurality of time-series objects including one or more time-series metric objects and a plurality of dimension objects; generating, by a computing system including one or more hardware computer processors, based at least in part on the plurality of time-series objects, a time-sensitive OLAP cube; receiving, via an input device of the computing system, an operation from a user comprising a selection of at least two of the plurality of dimension objects; determining, by the computing system, based on the received operation, one or more relevant time-series metric objects; and providing, on an electronic display of the computing system, the relevant time-series metric objects to the user.


According to another aspect, providing the relevant time-series metric objects to the user may comprise: outputting, on the electronic display of the computing system, a user interface including the relevant time-series metric objects in at least one of a two-dimensional way and a three-dimensional way.


According to yet another aspect, each of the plurality of dimension objects may include one or more characteristics.


According to another aspect, the one or more characteristics may be structured hierarchically.


According to yet another aspect, the received operation may further comprise a selection of at least one of the one or more characteristics.


According to another aspect, the computer-implemented method may further comprise: providing, on the electronic display of the computing system, an interface configured to allow the user to manipulate the time-sensitive OLAP cube and provide operations.


According to yet another aspect, the computer-implemented method may further comprise: receiving an expression from the user; and applying the received expression to the relevant time-series metric objects.


According to another embodiment, a computer system is disclosed that may comprise: one or more hardware processors in communication with a computer readable medium storing software modules including instructions that are executable by the one or more hardware processors in order to cause the computer system to: access, from an electronic data store, a plurality of time-sensitive objects including measures and dimensions; generate, based at least in part on the accessed plurality of time-sensitive objects, a time-sensitive OLAP cube; receive one or more OLAP operations; and apply the received one or more OLAP operations to the time-sensitive OLAP cube and output calculated time-sensitive objects based at least in part on the OLAP operations.


According to an aspect, the software modules may be further executable by the one or more hardware processors in order to cause the computer system to: output, on an electronic display, a user interface including the calculated time-sensitive objects in at least one of a two-dimensional way and a three-dimensional way.


According to another aspect, at least one of the measures may be time-sensitive.


According to yet another aspect, the one or more OLAP operations may include a selection of at least one dimension.


According to another aspect, each dimension may include one or more characteristics.


According to yet another aspect, the one or more characteristics may be structured hierarchically.


According to another aspect, the one or more OLAP operations may include a selection of at least one of the one or more characteristics.


According to yet another aspect, the software modules may be further executable by the one or more hardware processors in order to cause the computer system to: provide a computer interface configured to allow a user to manipulate the time-sensitive OLAP cube and provide OLAP operations.


According to another aspect, the software modules may be further executable by the one or more hardware processors in order to cause the computer system to: apply one or more mathematical expressions to the calculated time-sensitive objects.


According to yet another aspect, the one or more OLAP operations may include at least one of drill up, drill down, roll up, pivot, slice, or dice.


According to yet another embodiment, a computer system is disclosed that may comprise: an electronic database configured to store a plurality of time-series objects and a time-series OLAP cube based at least in part on one or more of the plurality of time-series objects; and one or more hardware processors in communication with the electronic database and a computer readable medium storing software modules including instructions that are executable by the one or more hardware processors in order to cause the computer system to: access the stored time-series OLAP cube; present, on an electronic display, the time-series OLAP cube; receive user-provided indications of operations to be applied to the presented time-series OLAP cube; apply operations corresponding to the user-provided indications to the time-series OLAP cube; and present, on the electronic display, determined time-series objects based at least in part on the applied operations.


According to an aspect, the time-series objects may include one or more time-series metric objects and a plurality of dimension objects.


According to another aspect, the operations may include at least one of drill up, drill down, roll up, pivot, slice, or dice.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a user interface of a time-sensitive cube data system, according to an embodiment of the present disclosure.



FIG. 2 illustrates one embodiment of a database system using an ontology.



FIGS. 3 and 4 illustrate an example multidimensional database structure of the time-sensitive cube data system, according to an embodiment of the present disclosure.



FIG. 5 illustrates an example visual representation of the multidimensional database of the time-sensitive cube data system, according to an embodiment of the present disclosure.



FIG. 6 is a flowchart depicting an illustrative operation of the time-sensitive cube data system, according to an embodiment of the present disclosure.



FIG. 7 illustrates another user interface of a time-sensitive cube data system, according to an embodiment of the present disclosure.



FIG. 8 illustrates a computer system with which certain methods discussed herein may be implemented.





DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

Overview


In general, a time-sensitive cube data system is disclosed in which time-sensitive and/or time-series data objects are output in response to a user's operations on a time-sensitive OLAP cube. The time-sensitive and/or time-series data objects output by the time-sensitive cube data system may be displayed to the user in any way that may be advantageous to the user's understanding. Advantageously, the time-series objects output by the time-sensitive cube data system are more helpful than a single snapshot, as a user is able to see data trends over time. An example of one possible display is shown in FIG. 1, which is described in detail below.


In an embodiment, the time-sensitive cube data system accesses time series objects and/or other types of data stored in a multidimensional database. Examples of such a database may be found in FIGS. 3 and 4. The multidimensional database may comprise a time-sensitive OLAP cube, or a time-sensitive OLAP cube may be generated from the dataset of the multidimensional database. An example visual representation of a time-sensitive OLAP cube generated from the dataset of FIG. 4 is shown in FIG. 5. A time-sensitive OLAP cube may include any number of data dimensions and data metrics. A user of the time-sensitive cube data system may perform operations on the time-sensitive OLAP cube, such as slicing. The operations performed on the time-sensitive OLAP cube result in the output of time-series data objects. The information contained in the time-series data objects may be displayed to the user in any way that is helpful to the user in conceptualizing and understanding the data. The output may, for example, be presented to the user via a computer user interface.



FIG. 1 illustrates an example user interface 102 of the time-sensitive cube data system, according to an embodiment of the present disclosure. FIG. 1, as well as certain other figures, illustrate data related to loan statuses and servicers; however, this particular data type is used for illustration only. The features discussed with references to loan data are also applicable and usable with any other type of data.


The user interface 102 of FIG. 1 may be shown when, for example, the user of the time-sensitive cube data system selects the California slice 554 of the time-sensitive OLAP cube 550 of FIG. 5. The user interface 102 includes a time-series object display 104, which displays the results of the slice operation on the time-sensitive OLAP cube 550. The time-series object display 104 includes two dimensions of data, loan status (shown in a status rows 106) and loan servicer (shown in servicer columns 108). The loan statuses shown in the time-series object display 104 include current, PD30 (past due 30 days), PD60 (past due 60 days), and PD90+(past due 90 days or more). The loan servicers shown in the time-series object display 104 include servicers A, B, and C. For each combination of dimensions (loan statuses and loan servicers), a time-series object has been returned and/or outputted by the time-sensitive cube data system. The returned time-series objects include loan amount metrics. The loan amount metrics shown include, as indicted by the applied formula of indicator 109 (e.g., sum(Loan Amounts)), aggregated or summed loan amounts over all loans in each of the various combinations of dimensions. Further, indication 109 shows that the time period displayed includes the past 4 months. Thus, the user may view, for example, time-series object 110 which indicates the aggregated loans amounts (total value of loans) that are (or were current), serviced by servicer A, over time.


As indicated by the time-series object 110 of the time-series object display 104 of FIG. 1, the total value of loans that are or were current, serviced by servicer A, have increased over time. In contrast, the total value of loans that are past due 30 days or past due 90 days for servicer A have decreased overtime. The total value of loans that are past due 90 days or more for servicer A have remained relatively constant. Similar types of observations may be made with respect to servicers B and C.


In an embodiment, the various time series shown in time-series object display 104 have a common or proportionate scale, such that the magnitude of the data displayed may be accurately compared. For example, in time-series object display 104, at the beginning of the displayed 4 month period, for servicer A, the total value of current loans serviced was approximately twice the total value of PD30 loans serviced. In another embodiment, each of the various time series may be scaled individually.


In an embodiment of the user interface 102 of FIG. 1, the user may select and/or rollover the displayed time-series objects to view more detailed information. For example, when the user rolls over and/or selects the time-series object at rollover location 112, a popup is displayed indicating detailed information related to that point in the time-series object. In this example, the popup indicates that in June, the total value of loans serviced by servicer B and PD90+ was $500,000. In other embodiments, detailed information may be provided in other ways. For example, the information provided may be more or less detailed, may be shown in a separate display and/or in a different location on the display, among others.


In an embodiment, the user may select a time-series object and view an expanded view of object, as shown in time-series object expanded view 114. The time-series object expanded view 114 shows a larger version of the time-series object outputted for PD30 loans of servicer C. In the time-series object expanded view 114 the user may view, for example, tick marks on the graph indicating months and total loan value. In an embodiment, the user may rollover and/or select various items of the time-series object expanded view 114 to view additional and/or more detailed information. In an embodiment, each of the outputted time-series objects of time-series object display 104 may display and/or include additional details and/or information as indicated in the time-series object expanded view 114.


Definitions


In order to facilitate an understanding of the systems and methods discussed herein, a number of terms are defined below. The terms defined below, as well as other terms used herein, should be construed to include the provided definitions, the ordinary and customary meaning of the terms, and/or any other implied meaning for the respective terms. Thus, the definitions below do not limit the meaning of these terms, but only provide exemplary definitions.


Ontology: Stored information that provides a data model for storage of data in one or more databases. For example, the stored data may comprise definitions for object types and property types for data in a database, and how objects and properties may be related.


Database: A broad term for any data structure for storing and/or organizing data, including, but not limited to, relational databases (Oracle database, mySQL database, etc.), spreadsheets, XML files, and text file, among others.


Data Object or Object: A data container for information representing specific things in the world that have a number of definable properties. For example, a data object can represent an entity such as a person, a place, an organization, a market instrument, or other noun. A data object can represent an event that happens at a point in time or for a duration. A data object can represent a document or other unstructured data source such as an e-mail message, a news report, or a written paper or article. Each data object may be associated with a unique identifier that uniquely identifies the data object. The object's attributes (e.g. metadata about the object) may be represented in one or more properties.


Object Type: Type of a data object (e.g., Person, Event, or Document). Object types may be defined by an ontology and may be modified or updated to include additional object types. An object definition (e.g., in an ontology) may include how the object is related to other objects, such as being a sub-object type of another object type (e.g. an agent may be a sub-object type of a person object type), and the properties the object type may have.


Properties: Attributes of a data object that represent individual data items. At a minimum, each property of a data object has a property type and a value or values.


Property Type: The type of data a property is, such as a string, an integer, or a double. Property types may include complex property types, such as a series data values associated with timed ticks (e.g. a time series), etc.


Property Value: The value associated with a property, which is of the type indicated in the property type associated with the property. A property may have multiple values.


Link: A connection between two data objects, based on, for example, a relationship, an event, and/or matching properties. Links may be directional, such as one representing a payment from person A to B, or bidirectional.


Link Set: Set of multiple links that are shared between two or more data objects.


Expression: A sequence of characters which may be interpreted or evaluated by a computer. To “evaluate” an expression means to perform the computation that the expression specifies and to return the result of that computation. The returned result is referred to as the “value” or the “output” of the expression. Expressions may also be referred to as formulas. Expressions and/or formulas may be applied to time series and/or time-series objects to produce new outputs.


Operation: Similar to an expression, an operation is an action or procedure which produces a new output from one or more inputs. The terms operation, expression, and/or formula may be used interchangeably in the present disclosure, however, for the sake of clarity, the term “operation” is generally used in reference to manipulations of an OLAP cube.


Time Series: A mapping from timestamps to data values. The data values in a time series are measured and/or recorded at date-time points that are represented by the timestamps. Expressions may be applied to time series and/or a combination of multiple time series. Time series are a type of data object, and thus time series may be referred to herein as time-series objects, time-series data objects, time-sensitive objects, and/or time-sensitive data objects. In some embodiments, an object time series is a time series in which timestamps are mapped to objects, rather than just data values. Expressions may also be applied to object time series and/or a combination of multiple object time series.


Online Analytical Processing (OLAP) Cube: A group of data cells and/or database items arranged according to the dimensions of the data. When the data includes three or more dimensions, the data may be visualized as a cube or hypercube in which each dimension forms a side of the cube. Example dimensions may include measures, metrics, products, geographical regions, and sales channels, among others. The data of an OLAP cube is organized such that the OLAP cube may be manipulated and operated upon in various ways such that a user may rapidly extract relevant data. Examples of typical operations include, but are not limited to, drill up and down, roll up, roll down, pivot, and slice and dice, among others. OLAP cubes may also be referred to herein as multidimensional databases, cubes, and/or hypercubes.


Time-sensitive OLAP Cube: An OLAP cube in which the data (including the metrics and/or dimensions) of the cube include time-series data objects. A time-sensitive OLAP cube may be operated upon in the same or similar manner as an OLAP cube may be operated upon. However, in contrast to a typical OLAP cube, a time-sensitive OLAP cube outputs time-series objects to which further expressions may be applied. A time-sensitive OLAP cube may also be referred to herein as a time-sensitive cube, a time-series OLAP cube, and/or a time-series cube.


Object Centric Data Model


To provide a framework for the following discussion of specific systems and methods described herein, an example database system 210 using an ontology 205 will now be described. This description is provided for the purpose of providing an example and is not intended to limit the techniques to the example data model, the example database system, or the example database system's use of an ontology to represent information.


In one embodiment, a body of data is conceptually structured according to an object-centric data model represented by ontology 205. The conceptual data model is independent of any particular database used for durably storing one or more database(s) 209 based on the ontology 205. For example, each object of the conceptual data model may correspond to one or more rows in a relational database or an entry in Lightweight Directory Access Protocol (LDAP) database, or any combination of one or more databases.



FIG. 2 illustrates an object-centric conceptual data model according to an embodiment. An ontology 205, as noted above, may include stored information providing a data model for storage of data in the database 209. The ontology 205 may be defined by one or more object types, which may each be associated with one or more property types. At the highest level of abstraction, data object 201 is a container for information representing things in the world. For example, data object 201 can represent an entity such as a person, a place, an organization, a market instrument, or other noun. Data object 201 can represent an event that happens at a point in time or for a duration. Data object 201 can represent a document or other unstructured data source such as an e-mail message, a news report, or a written paper or article. Each data object 201 is associated with a unique identifier that uniquely identifies the data object within the database system.


Different types of data objects may have different property types. For example, a “Person” data object might have an “Eye Color” property type and an “Event” data object might have a “Date” property type. Each property 203 as represented by data in the database system 210 may have a property type defined by the ontology 205 used by the database 205.


Objects may be instantiated in the database 209 in accordance with the corresponding object definition for the particular object in the ontology 205. For example, a specific monetary payment (e.g., an object of type “event”) of US$30.00 (e.g., a property of type “currency”) taking place on Mar. 27, 2009 (e.g., a property of type “date”) may be stored in the database 209 as an event object with associated currency and date properties as defined within the ontology 205.


The data objects defined in the ontology 205 may support property multiplicity. In particular, a data object 201 may be allowed to have more than one property 203 of the same property type. For example, a “Person” data object might have multiple “Address” properties or multiple “Name” properties.


Each link 202 represents a connection between two data objects 201. In one embodiment, the connection is either through a relationship, an event, or through matching properties. A relationship connection may be asymmetrical or symmetrical. For example, “Person” data object A may be connected to “Person” data object B by a “Child Of” relationship (where “Person” data object B has an asymmetric “Parent Of” relationship to “Person” data object A), a “Kin Of” symmetric relationship to “Person” data object C, and an asymmetric “Member Of” relationship to “Organization” data object X. The type of relationship between two data objects may vary depending on the types of the data objects. For example, “Person” data object A may have an “Appears In” relationship with “Document” data object Y or have a “Participate In” relationship with “Event” data object E. As an example of an event connection, two “Person” data objects may be connected by an “Airline Flight” data object representing a particular airline flight if they traveled together on that flight, or by a “Meeting” data object representing a particular meeting if they both attended that meeting. In one embodiment, when two data objects are connected by an event, they are also connected by relationships, in which each data object has a specific relationship to the event, such as, for example, an “Appears In” relationship.


As an example of a matching properties connection, two “Person” data objects representing a brother and a sister, may both have an “Address” property that indicates where they live. If the brother and the sister live in the same home, then their “Address” properties likely contain similar, if not identical property values. In one embodiment, a link between two data objects may be established based on similar or matching properties (e.g., property types and/or property values) of the data objects. These are just some examples of the types of connections that may be represented by a link and other types of connections may be represented; embodiments are not limited to any particular types of connections between data objects. For example, a document might contain references to two different objects. For example, a document may contain a reference to a payment (one object), and a person (a second object). A link between these two objects may represent a connection between these two entities through their co-occurrence within the same document.


Each data object 201 can have multiple links with another data object 201 to form a link set 204. For example, two “Person” data objects representing a husband and a wife could be linked through a “Spouse Of” relationship, a matching “Address” property, and one or more matching “Event” properties (e.g., a wedding). Each link 202 as represented by data in a database may have a link type defined by the database ontology used by the database.


Various exemplary components and data may be used in identifying and storing data according to an ontology. In an example, the ontology may be configured, and data in the data model populated, by a system of parsers and ontology configuration tools. In an embodiment, input data is provided to parser. The input data may comprise data from one or more sources. For example, an institution may have one or more databases with information on credit card transactions, rental cars, and people. The databases may contain a variety of related information and attributes about each type of data, such as a “date” for a credit card transaction, an address for a person, and a date for when a rental car is rented. The parser is able to read a variety of source input data types and determine which type of data it is reading.


In accordance with the discussion above, the example ontology 205 comprises stored information providing the data model of data stored in database 209, and the ontology is defined by one or more object types, one or more property types, and one or more link types. Based on information determined by the parser or other mapping of source input information to object type, one or more data objects 201 may be instantiated in the database 209 based on respective determined object types, and each of the objects 201 has one or more properties 203 that are instantiated based on property types. Two data objects 201 may be connected by one or more links 202 that may be instantiated based on link types. The property types each may comprise one or more data types, such as a string, number, etc. Property types may be instantiated based on a base property type. For example, a base property type may be “Locations” and a property type may be “Home.”


In an embodiment, a user of the system uses an object type editor to create and/or modify the object types and define attributes of the object types. In an embodiment, a user of the system uses a property type editor to create and/or modify the property types and define attributes of the property types. In an embodiment, a user of the system uses link type editor to create the link types. Alternatively, other programs, processes, or programmatic controls may be used to create link types and property types and define attributes, and using editors is not required.


In an embodiment, creating a property type using the property type editor involves defining at least one parser definition using a parser editor. A parser definition comprises metadata that informs parser how to parse input data to determine whether values in the input data can be assigned to the property type that is associated with the parser definition. In an embodiment, each parser definition may comprise a regular expression parser or a code module parser. In other embodiments, other kinds of parser definitions may be provided using scripts or other programmatic elements. Once defined, both a regular expression parser and a code module parser can provide input to parser to control parsing of input data.


Using the data types defined in the ontology, input data may be parsed by the parser to determine which object type should receive data from a record created from the input data, and which property types should be assigned to data from individual field values in the input data. Based on the object-property mapping, the parser selects one of the parser definitions that is associated with a property type in the input data. The parser parses an input data field using the selected parser definition, resulting in creating new or modified data. The new or modified data is added to the database 209 according to ontology 205 by storing values of the new or modified data in a property of the specified property type. As a result, input data having varying format or syntax can be created in database 209. The ontology 205 may be modified at any time using object type editor, property type editor, and link type editor, or under program control without human use of an editor. Parser editor enables creating multiple parser definitions that can successfully parse input data having varying format or syntax and determine which property types should be used to transform input data into new or modified input data.


The properties, objects, and the links (e.g. relationships) between the objects can be visualized using a graphical user interface (GUI). In addition to visually showing relationships between the data objects, the user interface may allow various other manipulations. For example, the objects within database 108 may be searched (e.g., text string matching of object properties), inspected (e.g., properties and associated data viewed), filtered (e.g., narrowing the universe of objects into sets and subsets by properties or relationships), and/or statistically aggregated (e.g., numerically summarized based on summarization criteria), among other operations and visualizations.


Time-Sensitive OLAP Cube



FIG. 3 illustrates an example multidimensional database structure 300 of the time-sensitive cube data system, according to an embodiment of the present disclosure. The multidimensional database structure of FIG. 3 may also be referred to as an OLAP cube, or an OLAP cube database. The multidimensional database structure 300 advantageously includes one or more time-series objects that may be output by the time-sensitive cube data system when operations are performed by a user.


The multidimensional database structure 300 of FIG. 3 includes time-series metrics 302, dimension one 306, and dimension two 310. In an embodiment, the multidimensional database structure 300 may include more or fewer time-series metrics and/or dimensions than is shown in FIG. 3. The time-series metrics 302 include multiple metrics 304. In this embodiment, each of the metrics 304 is a time-series object, meaning that each metric of the multidimensional database structure 300 includes a mapping from timestamps to data values and/or objects, and/or the metric may be modeled as a time series. In an embodiment, one or more of the time-series metrics 302 may be time-series objects, while one or more may be simple values or other types of data. Additionally, in FIG. 3, each of dimensions 306 and 310 includes multiple dimension characteristics (308 and 312, respectively). In an embodiment, dimensions 306 and 310 may include more and/or fewer characteristics than is shown in FIG. 3. In an embodiment, the dimension characteristics 308 and 310 may be organized in a hierarchical structure, including, for example, sub-characteristics, sub-sub-characteristics, etc. In an embodiment, dimension 306 and/or dimension 310 may include objects, time-series objects, and/or other types of data or labels. In an embodiment, characteristics of a dimension may be referred to as values.


Advantageously, the multidimensional database structure 300 is organized such that it may be used in the time-sensitive cube data system and enable rapid responses to multidimensional queries and operations. Further, the responses and/or outputs of queries to the time-sensitive cube data system may include time-series objects, to which further expressions and/or statistical analysis may be applied. Thus, time-sensitive metrics and/or statistics may be extracted from the time-sensitive cube data system.



FIG. 4 illustrates an example multidimensional database 400 of the time-sensitive cube data system having a structure analogous to the multidimensional database structure 300 of FIG. 3, according to an embodiment of the present disclosure. The loans multidimensional database 400 contains information that may be relevant to, for example, lenders (such as a bank or other mortgage lender). The description of the multidimensional database structure 300 provided above in reference to FIG. 3, applies equally to the example loans multidimensional database 400 of FIG. 4.


In the example multidimensional database 400 of FIG. 4, time-series metrics 402 include time-series metrics/objects 404 including: Loan Amount (e.g., the value of a loan or group of loans), Unpaid Balance (e.g., the unpaid balance on a loan or group of loans), and Risk of Default (e.g., the risk that one or more debtors will default on a loan or group of loans). In this embodiment, each of the time-series metrics/objects 404 comprise metrics or measurements that may be relevant to a lender in assessing their portfolio of loans, and each comprises a time-series object (meaning that the value of each varies with time). For example, the Loan Amount associated with a group of loans of the lender varies with time as new loans are underwritten, and/or other loans are paid off. Similarly, the Unpaid Balance associated with a group of loans varies with time as debtors make payments on their loan balances and/or new loans are underwritten. The Risk of Default may also vary with time as the characteristics associated with the pool off debtors change over time. In an embodiment, more or fewer metrics may be included, one or more of which may or may not be time-sensitive. Examples of other types of data that may be modeled as a time series include, for example, prices, populations, natural phenomena (such as weather), among many others.


Additionally, the loans multidimensional database 400 includes two dimensions: loan status 406 and loan servicer 410. Status 406 has possible status characteristics 408 including Current (e.g., the debtor(s) associated with the loan(s) are current on their payments), PD30 (past due 30), and PD60 (past due 60). Additional statuses may be included in certain embodiments, for example, PD90 and/or PD120. Also, servicer 410 has possible servicer characteristics 412 including A, B, and C. Additional servicers may be included in certain embodiments. In an embodiment, one or more of the dimensions of the time-sensitive cube data system are time-sensitive. In an embodiment, more or fewer dimensions may be included, one or more of which may or may not be time-sensitive. For example, the example loans multidimensional database 400 may include a dimension regarding the region or state in which the loan was originated. In an embodiment, the dimensions of the loans multidimensional database 400 may include a hierarchical arrangement of sub-characteristics, etc., as described above.



FIG. 5 illustrates an example visual representation or logical structure of the example loans multidimensional database 400 of the time-sensitive cube data system, according to an embodiment of the present disclosure. The visual, cube-like, representation of FIG. 5 is referred to as a time-sensitive OLAP cube 550. Three dimensions of data are represented in the time-sensitive OLAP cube 550: servicer 410, status 406, and state 552. The state dimension 552 includes characteristics CA (California), FL (Florida), and IL (Illinois), while the servicer 410 and status 406 dimensions include values as described above with reference to FIG. 4.


The dimensions of the example time-sensitive OLAP cube 550 serve as indices for identifying values and/or objects within the cube. Operations may be performed on the cube by selecting values and/or ranges of values of one or more dimensions. Examples of typical operations include, but are not limited to, drill up and down, roll up, roll down, pivot, and slice and dice, among others. For example, value and/or object 554 may be selected by specifying servicer C, status PD90, and state CA. Selecting one member of a dimension results in a sub-cube (in which the number of dimensions is reduced by one) comprising the remaining dimensions. Selecting all but two dimensions results in a slice (or page) of the cube. This may be seen with user selection 554, in which a single value (CA) of the state dimension 552 is selected, resulting in slice of two-dimensions (servicer 410 and status 406). The results of such a slice may be seen in, for example, the user interface of FIG. 1.


Advantageously, each cell of the time-sensitive OLAP cube 550 may represent a time-series object. When operations are performed on the time-sensitive OLAP cube 550, one or more time-series objects are output, which may then be further visualized and analyzed. Generally, time-sensitive OLAP cubes may have hierarchies or formula-based relationships of data within each dimension. Operations on the cube may result in consolidation in which data relationships for one or more dimensions are computed. For example, instead of slicing 554, a user may consolidate all the data across the state dimension 552, resulting in two dimensions of data including all states. As mentioned above, other OLAP cube operations (including, for example, drill up and down, roll up, pivot, dice, etc.) may be performed on the time-sensitive OLAP cube 550 to produce time-sensitive outputs.


Turn now back to FIG. 1 described above, an example of one possible set of results of the user selection 554 is shown. Specifically, two dimensions of data are represented in the time-series object display 104 of the user interface 102: status 106 and servicer 108. As indicated at 109, regarding the third dimension of data (state) only California is represented. Alternatively, the user may have chosen to view data related to only Florida or Illinois, or any combination of the state dimension. Alternatively, the user may have sliced the cube in any other way, and/or performed any other operation on the cube.


In an embodiment, after an operation has been performed on the cube, and time-series objects have been outputted (as shown in the small graphs of the time-series object display 104, e.g., time-series object 110), the user may optionally specify a particular time period of interest. In the time-series object display 104 of FIG. 1, the user has specified the past 4 month (see indicator 109), however the user may have specified any other time frame and/or period. For example, in an embodiment the user may specify a number of months or years, a number of minutes or hours, a number of seconds, a particular range of time periods, and/or a single point in time, among others. For example, in an embodiment the user may specify a single point in time, resulting in an output of a single value calculated from the time-series data object (rather than a graph of values).


In an embodiment, the user may apply a formula or expression (and/or other statistical analysis) to the time-series objects output by the time-sensitive cube data system. Indicator 109 demonstrates one such example expression, namely “sum(Loan Amount).” The expression of indicator 109 causes the time-sensitive cube data system to sum or aggregate the total loan value of loans within the respective dimensions, for every point in time, and graph the result for the 4 month time period specified. Alternatively, the user may indicated an expression that may result in a single value from a single day, for example, “sum (Loan Amount).time (‘Jan 4’).” In an embodiment, the user may apply an expression incorporating multiple time-sensitive metrics. For example, the user may apply the expression, “sum(Unpaid Balance×Risk).overtime,” producing a time-series graph showing a weighted risk indicator over time. In an embodiment, an expression may include any number of mathematical operations, for example, a moving average, etc.



FIG. 7 illustrates an alternative user interface 702 of the time-sensitive cube data system, according to an embodiment of the present disclosure. In the user interface 702 of FIG. 7 a time-series object display 704 is shown with three dimensions of data. In particular, in addition to the two dimensions shown in time-series object display 104 of FIG. 1, at least two values of the state dimension 706 are shown in the time-series object display 704. The time-series object display 704 shows time-series object outputs for each of California and Florida, for two other dimensions of data (status and servicer). In an embodiment, the user may optionally scroll the time-series object display 704 up to view additional values of the state dimension 706. In another embodiment, the user interface 702 may include layers 708, each of which may be accessible to the user, and each of which may display time-series objects related to a different value of a particular dimension of data. For example, in an embodiment, the user may select various of the layers 708 to view status and servicer time-series object outputs for each of the different states. In an embodiment, the user may slice the time-sensitive OLAP cube such that the user interface shows different dimensions of data than those shown in either of FIG. 1 or 7. For example, the user may desire to view time-series object output associated with servicers vs. states, among other possibilities.


The loan multidimensional database example of the preceding description is only one example of an application of the time-sensitive cube data system. However, the time-sensitive cube data system may be applied to any data analysis problem. For example, the time-sensitive cube data system may be used to visualize and analyze customer data, shipping data, purchase data, personnel data, among other types of data.



FIG. 6 is a flowchart depicting an illustrative operation of the time-sensitive cube data system, according to an embodiment of the present disclosure. In various embodiments, fewer blocks or additional blocks may be included in the process, or various blocks may be performed in an order different from that shown in FIG. 6.


At block 602, the time-sensitive cube data system accesses time-series objects from the multidimensional database, including metrics and dimensions (as described above in reference to FIGS. 3 and 4. Then, at block 604, the time-sensitive cube data system generates the time-sensitive OLAP cube from the accessed metrics and dimensions (as described above with reference to the FIG. 5).


At block 605, the time-sensitive cube data system may receive operations from the user with respect to the generated time-sensitive OLAP cube. For example, any of the operations described above may be received, including, but not limited to: drill down and up, roll up, roll down, pivot, and/or slice and dice. Next, at block 608, the operation is implemented on the cube, as described above. For example, the cube may be sliced according to user selection 554 as shown in FIG. 5. Then, the user may optionally provide additional operations 610 that may also be implemented on the cube.


At block 612, the time-sensitive cube data system outputs the time-series objects as defined by the operations implemented on the cube. Examples of such outputs are shown in FIGS. 1 and 7, and described in reference to those figures. Additionally, at block 614 the time-sensitive cube data system may optionally implement additional expressions and/or operations on the outputted time-series objects. Example of such expressions and/or operations are described above in reference to FIG. 1. In particular, a user may specify particular time periods or ranges of interest, and/or may specify formulas to be applied to the time-series metrics.


In an embodiment, the time-sensitive cube data system may include an integrated user interface though which the user may manipulate the time-sensitive OLAP cube, for example, an interface that provides a view as shown in FIG. 5. In an embodiment, the time-sensitive cube data system may automatically generate a time-sensitive OLAP cube and/or a time-series object display (such as time-series object display 104) from a user selection on an alternative data display, such as graph representation 403. For example, in an embodiment, the may select data items and/or drag-and-drop items on the graph representation 403 and the time-sensitive cube data system may then automatically produce the time-sensitive OLAP cube 550 of FIG. 5 and/or the time-series object display 104 of FIG. 1.


In an embodiment, the time-sensitive OLAP cube 550 of FIG. 5 includes data for a single point in time (a snapshot), but may be slid over time (e.g., updated over time) to include data for any point in time. In this embodiment, sliding the cube over time is possible because the underlying data of the multidimensional database are modeled as time series.


In an embodiment, the time-series object display 104 of FIG. 1 may include, to the right of the servicer C column, a summary column that automatically accumulates the results from the columns to the left and shows a cumulative time-series graph of data. In an embodiment, the time-sensitive cube data system may output data to a spreadsheet application (and/or other application or format), where it may be interpreted and manipulated further by the user.


Implementation Mechanisms


According to one embodiment, the techniques described herein are implemented by one or more special-purpose computing devices, such as the time-sensitive cube data system that is discussed herein. The special-purpose computing devices may be hard-wired to perform the techniques, or may include digital electronic devices such as one or more application-specific integrated circuits (ASICs) or field programmable gate arrays (FPGAs) that are persistently programmed to perform the techniques, or may include one or more general purpose hardware processors programmed to perform the techniques pursuant to program instructions in firmware, memory, other storage, or a combination. Such special-purpose computing devices may also combine custom hard-wired logic, ASICs, or FPGAs with custom programming to accomplish the techniques. The special-purpose computing devices may be desktop computer systems, server computer systems, portable computer systems, handheld devices, networking devices or any other device or combination of devices that incorporate hard-wired and/or program logic to implement the techniques.


Computing device(s) are generally controlled and coordinated by operating system software, such as iOS, Android, Chrome OS, Windows XP, Windows Vista, Windows 7, Windows 8, Windows Server, Windows CE, Unix, Linux, SunOS, Solaris, iOS, Blackberry OS, VxWorks, or other compatible operating systems. In other embodiments, the computing device may be controlled by a proprietary operating system. Conventional operating systems control and schedule computer processes for execution, perform memory management, provide file system, networking, I/O services, and provide a user interface functionality, such as a graphical user interface (“GUI”), among other things.


For example, FIG. 8 is a block diagram that illustrates a computer system 800 upon which systems and methods discussed herein may be implemented. Computer system 800 includes a bus 802 or other communication mechanism for communicating information, and a hardware processor, or multiple processors, 804 coupled with bus 802 for processing information. Hardware processor(s) 804 may be, for example, one or more general purpose microprocessors.


Computer system 800 also includes a main memory 806, such as a random access memory (RAM), cache and/or other dynamic storage devices, coupled to bus 802 for storing information and instructions to be executed by processor 804. Main memory 806 also may be used for storing temporary variables or other intermediate information during execution of instructions to be executed by processor 804. Such instructions, when stored in storage media accessible to processor 804, render computer system 800 into a special-purpose machine that is customized to perform the operations specified in the instructions.


Computer system 800 further includes a read only memory (ROM) 808 or other static storage device coupled to bus 802 for storing static information and instructions for processor 804. A storage device 810, such as a magnetic disk, optical disk, or USB thumb drive (Flash drive), etc., is provided and coupled to bus 802 for storing information and instructions.


Computer system 800 may be coupled via bus 802 to a display 812, such as a cathode ray tube (CRT) or LCD display (or touch screen), for displaying information to a computer user. An input device 814, including alphanumeric and other keys, is coupled to bus 802 for communicating information and command selections to processor 804. Another type of user input device is cursor control 816, such as a mouse, a trackball, or cursor direction keys for communicating direction information and command selections to processor 804 and for controlling cursor movement on display 812. This input device typically has two degrees of freedom in two axes, a first axis (e.g., x) and a second axis (e.g., y), that allows the device to specify positions in a plane. In some embodiments, the same direction information and command selections as cursor control may be implemented via receiving touches on a touch screen without a cursor.


Computing system 800 may include a user interface module to implement a GUI that may be stored in a mass storage device as executable software codes that are executed by the computing device(s). This and other modules may include, by way of example, components, such as software components, object-oriented software components, class components and task components, processes, functions, attributes, procedures, subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables.


In general, the word “module,” as used herein, refers to logic embodied in hardware or firmware, or to a collection of software instructions, possibly having entry and exit points, written in a programming language, such as, for example, Java, Lua, C or C++. A software module may be compiled and linked into an executable program, installed in a dynamic link library, or may be written in an interpreted programming language such as, for example, BASIC, Perl, or Python. It will be appreciated that software modules may be callable from other modules or from themselves, and/or may be invoked in response to detected events or interrupts. Software modules configured for execution on computing devices may be provided on a computer readable medium, such as a compact disc, digital video disc, flash drive, magnetic disc, or any other tangible medium, or as a digital download (and may be originally stored in a compressed or installable format that requires installation, decompression or decryption prior to execution). Such software code may be stored, partially or fully, on a memory device of the executing computing device, for execution by the computing device. Software instructions may be embedded in firmware, such as an EPROM. It will be further appreciated that hardware modules may be comprised of connected logic units, such as gates and flip-flops, and/or may be comprised of programmable units, such as programmable gate arrays or processors. The modules or computing device functionality described herein are preferably implemented as software modules, but may be represented in hardware or firmware. Generally, the modules described herein refer to logical modules that may be combined with other modules or divided into sub-modules despite their physical organization or storage


Computer system 800 may implement the techniques described herein using customized hard-wired logic, one or more ASICs or FPGAs, firmware and/or program logic which in combination with the computer system causes or programs computer system 800 to be a special-purpose machine. According to one embodiment, the techniques herein are performed by computer system 800 in response to processor(s) 804 executing one or more sequences of one or more instructions contained in main memory 806. Such instructions may be read into main memory 806 from another storage medium, such as storage device 810. Execution of the sequences of instructions contained in main memory 806 causes processor(s) 804 to perform the process steps described herein. In alternative embodiments, hard-wired circuitry may be used in place of or in combination with software instructions.


The term “non-transitory media,” and similar terms, as used herein refers to any media that store data and/or instructions that cause a machine to operate in a specific fashion. Such non-transitory media may comprise non-volatile media and/or volatile media. Non-volatile media includes, for example, optical or magnetic disks, such as storage device 810. Volatile media includes dynamic memory, such as main memory 806. Common forms of non-transitory media include, for example, a floppy disk, a flexible disk, hard disk, solid state drive, magnetic tape, or any other magnetic data storage medium, a CD-ROM, any other optical data storage medium, any physical medium with patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, NVRAM, any other memory chip or cartridge, and networked versions of the same.


Non-transitory media is distinct from but may be used in conjunction with transmission media. Transmission media participates in transferring information between non-transitory media. For example, transmission media includes coaxial cables, copper wire and fiber optics, including the wires that comprise bus 802. Transmission media can also take the form of acoustic or light waves, such as those generated during radio-wave and infra-red data communications.


Various forms of media may be involved in carrying one or more sequences of one or more instructions to processor 804 for execution. For example, the instructions may initially be carried on a magnetic disk or solid state drive of a remote computer. The remote computer can load the instructions into its dynamic memory and send the instructions over a telephone line using a modem. A modem local to computer system 800 can receive the data on the telephone line and use an infra-red transmitter to convert the data to an infra-red signal. An infra-red detector can receive the data carried in the infra-red signal and appropriate circuitry can place the data on bus 802. Bus 802 carries the data to main memory 806, from which processor 804 retrieves and executes the instructions. The instructions received by main memory 806 may retrieves and executes the instructions. The instructions received by main memory 806 may optionally be stored on storage device 810 either before or after execution by processor 804.


Computer system 800 also includes a communication interface 818 coupled to bus 802. Communication interface 818 provides a two-way data communication coupling to a network link 820 that is connected to a local network 822. For example, communication interface 818 may be an integrated services digital network (ISDN) card, cable modem, satellite modem, or a modem to provide a data communication connection to a corresponding type of telephone line. As another example, communication interface 818 may be a local area network (LAN) card to provide a data communication connection to a compatible LAN (or WAN component to communicated with a WAN). Wireless links may also be implemented. In any such implementation, communication interface 818 sends and receives electrical, electromagnetic or optical signals that carry digital data streams representing various types of information.


Network link 820 typically provides data communication through one or more networks to other data devices. For example, network link 820 may provide a connection through local network 822 to a host computer 824 or to data equipment operated by an Internet Service Provider (ISP) 826. ISP 826 in turn provides data communication services through the world wide packet data communication network now commonly referred to as the “Internet” 828. Local network 822 and Internet 828 both use electrical, electromagnetic or optical signals that carry digital data streams. The signals through the various networks and the signals on network link 820 and through communication interface 818, which carry the digital data to and from computer system 800, are example forms of transmission media.


Computer system 800 can send messages and receive data, including program code, through the network(s), network link 820 and communication interface 818. In the Internet example, a server 830 might transmit a requested code for an application program through Internet 828, ISP 826, local network 822 and communication interface 818.


The received code may be executed by processor 804 as it is received, and/or stored in storage device 810, or other non-volatile storage for later execution.


In an embodiment, the time-sensitive cube data system is implemented by the computer system 800. For example, time-series data objects may be stored in the storage device 810, and/or in an external database accessible through the local network 822. The user interfaces and/or operations of the time-sensitive cube data system may be implemented by modules stored in the main memory 806, the ROM 808, and/or the storage device 810, and executed by the processor(s) 804. For example, the computer system 800 may include a user interface module and OLAP cube analysis module, among others.


Advantageously, the time-sensitive cube data system provides a time-sensitive OLAP cube which may be manipulated by a user, and which outputs time-series data objects that may be further operated upon and analyzed. The time-series objects output by the time-sensitive cube data system are more helpful than a single snapshot, as a user is able to see data trends over time. The time-sensitive and/or time-series data objects output by the time-sensitive cube data system may be displayed to the user in any way that may be advantageous to the user's understanding. The time-sensitive multidimensional database structure of the time-sensitive cube data system advantageously includes one or more time-series objects that may be output by the time-sensitive cube data system when operations are performed by a user. Further, the multidimensional database structure is organized such that it may be used in the time-sensitive cube data system and enable rapid responses to multidimensional queries and operations. Additionally, advantageously, each cell of the time-sensitive OLAP cube may represent a time-series object. Further, because data is modeled as a time series in the time-sensitive cube data system, further computations may be accomplished more efficiently by computing over the entire time series instead of sampling one point at a time, as may have been done previously. Expressing the computations as related to time series allows the computations to be reused across multiple calculations.


Additional Implementation Details


In an embodiment, all pieces of a Cube computation might depend on a valueOn date.


In an embodiment, the Cube system may not evaluate the starting universe on multiple dates. Instead it may evaluate it once at the beginning of the computation, with the valueOn date defined in the context in which the compute function is invoked. To implement time-varying starting universe the system may rely on the Cube system's filterBy metric, which may handle multiple valueOn dates properly.


In an embodiment, for Filter/groupBy/aggregateBy Metrics, each metric may be evaluated in one of two ways: (1) If the metric return type is a TimeSeries/ObjectTimeSeries, the Cube system may evaluate it once and sample the resulting *Series on the required dates. (2) If the metric return type is anything else, the Cube system may assume it is time-sensitive and evaluate it on the required dates. If the user wants a CM to be evaluated only once (because it has expensive CM logic), they may return a single-point ObjectTimeSeries.


In an embodiment, regarding Cube.computeOn(DateSet d), instead of invoking Cube.compute to obtain a regular CubeResult for a single date, users may invoke Cube.computeOn(DateSet) metric to efficiently compute the same Cube over multiple dates.


In an embodiment, regarding CubeResult, CubeResults returned by Cube.computeOn(DateSet) may have the same type as regular CubeResults. The only difference may be that all aggregates return a TimeSeries instead of a Number. TimeSeries returned by CubeResult may have a point on every date in the given DateSet. When an aggregate value cannot be computed (because, for example, there were no items for that specific key in that date) then NaN may be used as a placeholder.


Each of the processes, methods, and algorithms described in the preceding sections may be embodied in, and fully or partially automated by, code modules executed by one or more computer systems or computer processors comprising computer hardware. The processes and algorithms may be implemented partially or wholly in application-specific circuitry.


The various features and processes described above may be used independently of one another, or may be combined in various ways. All possible combinations and subcombinations are intended to fall within the scope of this disclosure. In addition, certain method or process blocks may be omitted in some implementations. The methods and processes described herein are also not limited to any particular sequence, and the blocks or states relating thereto can be performed in other sequences that are appropriate. For example, described blocks or states may be performed in an order other than that specifically disclosed, or multiple blocks or states may be combined in a single block or state. The example blocks or states may be performed in serial, in parallel, or in some other manner. Blocks or states may be added to or removed from the disclosed example embodiments. The example systems and components described herein may be configured differently than described. For example, elements may be added to, removed from, or rearranged compared to the disclosed example embodiments.


Conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment.


Any process descriptions, elements, or blocks in the flow diagrams described herein and/or depicted in the attached figures should be understood as potentially representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process. Alternate implementations are included within the scope of the embodiments described herein in which elements or functions may be deleted, executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those skilled in the art


It should be emphasized that many variations and modifications may be made to the above-described embodiments, the elements of which are to be understood as being among other acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure. The foregoing description details certain embodiments of the invention. It will be appreciated, however, that no matter how detailed the foregoing appears in text, the invention can be practiced in many ways. As is also stated above, it should be noted that the use of particular terminology when describing certain features or aspects of the invention should not be taken to imply that the terminology is being re-defined herein to be restricted to including any specific characteristics of the features or aspects of the invention with which that terminology is associated. The scope of the invention should therefore be construed in accordance with the appended claims and any equivalents thereof.

Claims
  • 1. A computer system comprising: a computer processor; anda computer readable storage medium storing program instructions configured for execution by the computer processor in order to configure the computer processor to: generate a graphical user interface including at least a representation of a plurality of dimensions of a multidimensional data set;receive, via the graphical user interface, a selection of at least two dimensions of the multidimensional data set;determine a plurality of data objects each corresponding to different combinations of values of the selected dimensions;generate a plurality of two-dimensional graphs that are spatially positioned in a single graphical user interface view, wherein: each of the two-dimensional graphs is generated based on data associated with a respective one of the plurality of data objects,each of the two-dimensional graphs comprises a respective x-axis and a respective y-axis,the x-axes of the two-dimensional graphs each have a first common scale and a first common interval,the y-axes of the two-dimensional graphs each have a second common scale and a second common interval, anddata represented in each respective two-dimensional graph is shown according to the first common scale and the first common interval of the x-axes and the second common scale and the second common interval of the y-axes; andupdate the graphical user interface to display the single graphical user interface view including the plurality of two-dimensional graphs,wherein: the plurality of two-dimensional graphs are displayed in a plurality of rows and columns,each combination of row and column corresponds to a different respective combination of values of the selected dimensions, andthe plurality of two-dimensional graphs are spatially positioned in the single graphical user interface view in corresponding rows and columns to enable a user to directly compare data represented in the plurality of two-dimensional graphs to view differences in data across the selected dimensions.
  • 2. The computer system of claim 1, wherein the computer processor is further configured to: receive, via the graphical user interface, an indication of a new interval;re-generate the plurality of two-dimensional graphs such that at least one of the first common interval or the second common interval corresponds to the new interval; andupdate the graphical user interface to display the single graphical user interface view including the re-generated two-dimensional graphs.
  • 3. The computer system of claim 1, wherein the computer processor is further configured to: receive, via the graphical user interface, a mathematical operation;apply the mathematical operation to the determined data objects;re-generate the plurality of two-dimensional graphs such that at least one of the x-axis or the y-axis of each of the two-dimensional graphs represents an output of the applied mathematical operation; andupdate the graphical user interface to display the single graphical user interface view including the re-generated two-dimensional graphs.
  • 4. The computer system of claim 3, wherein the received mathematical operation includes an indication of a property associated with the determined data objects.
  • 5. The computer system of claim 3, wherein the received mathematical operation comprises a summation.
  • 6. The computer system of claim 1, wherein the computer processor is further configured to: receive, via the graphical user interface, an indication of a new interval and a mathematical operation;apply the mathematical operation to the determined data objects;re-generate the plurality of two-dimensional graphs such that: at least one of the first common interval or the second common interval corresponds to the new interval; andat least one of the x-axis or the y-axis of each of the two-dimensional graphs represents an output of the applied mathematical operation; andupdate the graphical user interface to display the single graphical user interface view including the re-generated two-dimensional graphs.
  • 7. The computer system of claim 1, wherein the computer processor is further configured to: update the graphical user interface to display a plurality of selectable layers, each of the selectable layers corresponding to different values of one of the selected dimensions, each of the selectable layers including the plurality of two-dimensional graphs generated based on the corresponding value of the one of the selected dimensions.
  • 8. The computer system of claim 7, wherein the computer processor is further configured to: receive, via the graphical user interface, a selection of one of the plurality of layers; andupdate the graphical user interface to display the selected layer including the corresponding two-dimensional graphs.
  • 9. The computer system of claim 1, wherein the selection of at least two dimensions of the multidimensional data set comprises at least one of a drill up operation, a drill down operation, a roll up operation, a pivot operation, a slice operation, or a dice operation.
  • 10. A method comprising: generating, by a computing system including a computer processor, a graphical user interface including at least a representation of a plurality of dimensions of a multidimensional data set;receiving, via the graphical user interface, a selection of at least two dimensions of the multidimensional data set;determining, by the computing system, a plurality of data objects each corresponding to different combinations of values of the selected dimensions;generating, by the computing system, a plurality of two-dimensional graphs that are spatially positioned in a single graphical user interface view, wherein: each of the two-dimensional graphs is generated based on data associated with a respective one of the plurality of data objects,the x-axes of the two-dimensional graphs each have a first common scale and a first common interval,the y-axes of the two-dimensional graphs each have a second common scale and a second common interval, anddata represented in each respective two-dimensional graph is shown according to the first common scale and the first common interval of the x-axes and the second common scale and the second common interval of the y-axes; andupdating the graphical user interface to display the single graphical user interface view including the plurality of two-dimensional graphs,wherein: the plurality of two-dimensional graphs are displayed in a plurality of rows and columns,each combination of row and column corresponds to a different respective combination of values of the selected dimensions, andthe plurality of two-dimensional graphs are spatially positioned in the single graphical user interface view in corresponding rows and columns to enable a user to directly compare data represented in the plurality of two-dimensional graphs to view differences in data across the selected dimensions.
  • 11. The method of claim 10 further comprising: receiving, via the graphical user interface, an indication of a new interval;re-generating, by the computing system, the plurality of two-dimensional graphs such that at least one of the first common interval or the second common interval corresponds to the new interval; andupdating the graphical user interface to display the single graphical user interface view including the re-generated two-dimensional graphs.
  • 12. The method of claim 11 further comprising: receiving, via the graphical user interface, a mathematical operation;applying, by the computing system, the mathematical operation to the determined data objects;again re-generating, by the computing system, the plurality of two-dimensional graphs such that at least one of the x-axis or the y-axis of each of the two-dimensional graphs represents an output of the applied mathematical operation; andupdating the graphical user interface to display the single graphical user interface view including the again re-generated two-dimensional graphs.
  • 13. The method of claim 12, wherein the received mathematical operation includes an indication of a property associated with the determined data objects.
  • 14. The method of claim 10 further comprising: updating the graphical user interface to display a plurality of selectable layers, each of the selectable layers corresponding to different values of one of the selected dimensions, each of the selectable layers including the plurality of two-dimensional graphs generated based on the corresponding value of the one of the selected dimensions.
  • 15. The method of claim 14 further comprising: receiving, via the graphical user interface, a selection of one of the plurality of layers; andupdating the graphical user interface to display the selected layer including the corresponding two-dimensional graphs.
  • 16. A computer readable storage medium storing computer executable instructions configured for execution by one or more processors of a computer system to configure the one or more processors to: generate a graphical user interface including at least a representation of a plurality of dimensions of a multidimensional data set;receive, via the graphical user interface, a selection of at least two dimensions of the multidimensional data set;determine a plurality of data objects each corresponding to different combinations of values of the selected dimensions;generate a plurality of two-dimensional graphs that are spatially positioned in a single graphical user interface view, wherein: each of the two-dimensional graphs is generated based on data associated with a respective one of the plurality of data objects,each of the two-dimensional graphs comprises a respective x-axis and a respective y-axis,the x-axes of the two-dimensional graphs each have a first common scale and a first common interval, andthe y-axes of the two-dimensional graphs each have a second common scale and a second common interval, anddata represented in each respective two-dimensional graph is shown according to the first common scale and the first common interval of the x-axes and the second common scale and the second common interval of the y-axes; andupdate the graphical user interface to display the single graphical user interface view including the plurality of two-dimensional graphs,wherein: the plurality of two-dimensional graphs are displayed in a plurality of rows and columns,each combination of row and column corresponds to a different respective combination of values of the selected dimensions, andthe plurality of two-dimensional graphs are spatially positioned in the single graphical user interface view in corresponding rows and columns to enable a user to directly compare data represented in the plurality of two-dimensional graphs to view differences in data across the selected dimensions.
  • 17. The computer readable storage medium of claim 16, wherein the one or more processors are further configured to: receive, via the graphical user interface, an indication of a new interval and a mathematical operation;apply the mathematical operation to the determined data objects;re-generate the plurality of two-dimensional graphs such that: at least one of the first common interval or the second common interview corresponds to the new interval; andat least one of the x-axis or the y-axis of each of the two-dimensional graphs represents an output of the applied mathematical operation; andupdate the graphical user interface to display the single graphical user interface view including the re-generated two-dimensional graphs.
  • 18. The computer readable storage medium of claim 17, wherein the received mathematical operation includes an indication of a property associated with the determined data objects.
  • 19. The computer readable storage medium of claim 16, wherein the one or more processors are further configured to: update the graphical user interface to display a plurality of selectable layers, each of the selectable layers corresponding to different values of one of the selected dimensions, each of the selectable layers including the plurality of two-dimensional graphs generated based on the corresponding value of the one of the selected dimensions.
  • 20. The computer readable storage medium of claim 19, wherein the one or more processors are further configured to: receive, via the graphical user interface, a selection of one of the plurality of layers; andupdate the graphical user interface to display the selected layer including the corresponding two-dimensional graphs.
CROSS-REFERENCE TO RELATED APPLICATIONS

Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57. This application is a continuation of U.S. patent application Ser. No. 14/102,394, filed Dec. 10, 2013, and titled “TIME-SENSITIVE CUBE,” which claims priority benefit of U.S. Provisional Patent Application No. 61/789,225, filed Mar. 15, 2013, and titled “TIME-SENSITIVE CUBE.” The entire disclosure of each of the above items is hereby made part of this specification as if set forth fully herein and incorporated by reference for all purposes, for all that it contains.

US Referenced Citations (1136)
Number Name Date Kind
5109399 Thompson Apr 1992 A
5241625 Epard et al. Aug 1993 A
5329108 Lamoure Jul 1994 A
5412769 Maruoka et al. May 1995 A
5414838 Kolton et al. May 1995 A
5418950 Li et al. May 1995 A
5428737 Li et al. Jun 1995 A
5428776 Rothfield Jun 1995 A
5444819 Negishi Aug 1995 A
5454104 Steidlmayer et al. Sep 1995 A
5542089 Lindsay et al. Jul 1996 A
5568390 Hirota et al. Oct 1996 A
5608899 Li et al. Mar 1997 A
5613105 Zbikowski et al. Mar 1997 A
5632009 Rao et al. May 1997 A
5670987 Doi et al. Sep 1997 A
5701456 Jacopi et al. Dec 1997 A
5724575 Hoover et al. Mar 1998 A
5781704 Rossmo Jul 1998 A
5794228 French et al. Aug 1998 A
5794229 French et al. Aug 1998 A
5798769 Chiu et al. Aug 1998 A
5819226 Gopinathan et al. Oct 1998 A
5819238 Fernholz Oct 1998 A
5826021 Mastors et al. Oct 1998 A
5832218 Gibbs et al. Nov 1998 A
5845300 Comer Dec 1998 A
5845530 Brockmeyer et al. Dec 1998 A
5857329 Bingham Jan 1999 A
5872973 Mitchell et al. Feb 1999 A
5878434 Draper et al. Mar 1999 A
5892900 Ginter et al. Apr 1999 A
5897636 Kaeser Apr 1999 A
5902349 Endo et al. May 1999 A
5911138 Li et al. Jun 1999 A
5918225 White et al. Jun 1999 A
5966706 Biliris et al. Oct 1999 A
5999911 Berg et al. Dec 1999 A
6006242 Poole et al. Dec 1999 A
6012042 Black et al. Jan 2000 A
6057757 Arrowsmith et al. May 2000 A
6065026 Cornelia et al. May 2000 A
6072942 Stockwell et al. Jun 2000 A
6091956 Hollenberg Jul 2000 A
6094643 Anderson et al. Jul 2000 A
6104401 Parsons Aug 2000 A
6134582 Kennedy Oct 2000 A
6161098 Wallman Dec 2000 A
6189005 Chakrabarti et al. Feb 2001 B1
6208985 Krehel Mar 2001 B1
6219053 Tachibana et al. Apr 2001 B1
6232971 Haynes May 2001 B1
6236994 Swartz et al. May 2001 B1
6237138 Hameluck et al. May 2001 B1
6243706 Moreau et al. Jun 2001 B1
6243717 Gordon et al. Jun 2001 B1
6247019 Davies Jun 2001 B1
6279018 Kudrolli et al. Aug 2001 B1
6289334 Reiner et al. Sep 2001 B1
6289338 Stoffel et al. Sep 2001 B1
6311181 Lee et al. Oct 2001 B1
6313833 Knight Nov 2001 B1
6321274 Shakib et al. Nov 2001 B1
6341310 Leshem et al. Jan 2002 B1
6349315 Sonoyama et al. Feb 2002 B1
6366933 Ball et al. Apr 2002 B1
6369835 Lin Apr 2002 B1
6370538 Lamping et al. Apr 2002 B1
6430305 Decker Aug 2002 B1
6456997 Shukla Sep 2002 B1
6463404 Appleby Oct 2002 B1
6496774 Davies Dec 2002 B1
6496817 Whang et al. Dec 2002 B1
6513019 Lewis Jan 2003 B2
6519627 Dan et al. Feb 2003 B1
6523019 Borthwick Feb 2003 B1
6532449 Goertzel et al. Mar 2003 B1
6549944 Weinberg et al. Apr 2003 B1
6560620 Ching May 2003 B1
6581068 Bensoussan et al. Jun 2003 B1
6590577 Yonts Jul 2003 B1
6594672 Lampson et al. Jul 2003 B1
6608559 Lemelson et al. Aug 2003 B1
6631496 Li et al. Oct 2003 B1
6640231 Andersen et al. Oct 2003 B1
6642945 Sharpe Nov 2003 B1
6643613 McGee et al. Nov 2003 B2
6662202 Krusche et al. Dec 2003 B1
6665683 Meltzer Dec 2003 B1
6674434 Chojnacki et al. Jan 2004 B1
6714936 Nevin, III Mar 2004 B1
6745382 Zothner Jun 2004 B1
6748481 Parry et al. Jun 2004 B1
6775675 Nwabueze et al. Aug 2004 B1
6801201 Escher Oct 2004 B2
6820135 Dingman et al. Nov 2004 B1
6828920 Owen et al. Dec 2004 B2
6839745 Dingari et al. Jan 2005 B1
6851108 Syme et al. Feb 2005 B1
6857120 Arnold et al. Feb 2005 B1
6876981 Berckmans Apr 2005 B1
6877137 Rivette et al. Apr 2005 B1
6907426 Hellerstein et al. Jun 2005 B2
6920453 Mannila et al. Jul 2005 B2
6944821 Bates et al. Sep 2005 B1
6976024 Chavez et al. Dec 2005 B1
6976210 Silva et al. Dec 2005 B1
6978419 Kantrowitz Dec 2005 B1
6980984 Huffman et al. Dec 2005 B1
6985950 Hanson et al. Jan 2006 B1
7028223 Kolawa et al. Apr 2006 B1
7036085 Barros Apr 2006 B2
7043449 Li et al. May 2006 B1
7043702 Chi et al. May 2006 B2
7055110 Kupka et al. May 2006 B2
7058648 Lightfoot et al. Jun 2006 B1
7085890 Kashyap Aug 2006 B2
7086028 Davis et al. Aug 2006 B1
7089541 Ungar Aug 2006 B2
7111231 Huck et al. Sep 2006 B1
7133409 Willardson Nov 2006 B1
7139800 Bellotti et al. Nov 2006 B2
7155728 Prabhu et al. Dec 2006 B1
7158878 Rasmussen et al. Jan 2007 B2
7162475 Ackerman Jan 2007 B2
7168039 Bertram Jan 2007 B2
7171427 Witkowski et al. Jan 2007 B2
7174377 Bernard et al. Feb 2007 B2
7181423 Blanchard et al. Feb 2007 B2
7185065 Holtzman et al. Feb 2007 B1
7213030 Jenkins May 2007 B1
7216133 Wu et al. May 2007 B2
7216299 Knight May 2007 B2
7237192 Stephenson et al. Jun 2007 B1
7240330 Fairweather Jul 2007 B2
7246090 Thomas Jul 2007 B1
7269786 Malloy et al. Sep 2007 B1
7278105 Kitts Oct 2007 B1
7290698 Poslinski et al. Nov 2007 B2
7333998 Heckerman et al. Feb 2008 B2
7356504 Muller Apr 2008 B2
7370047 Gorman May 2008 B2
7379811 Rasmussen et al. May 2008 B2
7379903 Caballero et al. May 2008 B2
7392254 Jenkins Jun 2008 B1
7401038 Masuda Jul 2008 B2
7403921 Tanpoco et al. Jul 2008 B2
7403922 Lewis et al. Jul 2008 B1
7403942 Bayliss Jul 2008 B1
7406592 Polyudov Jul 2008 B1
7409357 Schaf et al. Aug 2008 B2
7426654 Adams et al. Sep 2008 B2
7437728 Stackhouse et al. Oct 2008 B2
7441182 Beilinson et al. Oct 2008 B2
7454466 Bellotti et al. Nov 2008 B2
7461158 Rider et al. Dec 2008 B2
7467375 Tondreau et al. Dec 2008 B2
7469238 Satchwell Dec 2008 B2
7487139 Fraleigh et al. Feb 2009 B2
7502786 Liu et al. Mar 2009 B2
7519589 Charnock et al. Apr 2009 B2
7525422 Bishop et al. Apr 2009 B2
7529727 Arning et al. May 2009 B2
7529734 Dirisala May 2009 B2
7533069 Fairweather May 2009 B2
7542934 Markel Jun 2009 B2
7546245 Surpin et al. Jun 2009 B2
7546353 Hesselink et al. Jun 2009 B2
7558677 Jones Jul 2009 B2
7574409 Patinkin Aug 2009 B2
7574428 Leiserowitz et al. Aug 2009 B2
7579965 Bucholz Aug 2009 B2
7587352 Arnott Sep 2009 B2
7590582 Dunne Sep 2009 B2
7596285 Brown et al. Sep 2009 B2
7603229 Goldberg et al. Oct 2009 B2
7610290 Kruy et al. Oct 2009 B2
7614006 Molander Nov 2009 B2
7617232 Gabbert et al. Nov 2009 B2
7620582 Masuda Nov 2009 B2
7620628 Kapur et al. Nov 2009 B2
7627489 Schaeffer et al. Dec 2009 B2
7627812 Chamberlain et al. Dec 2009 B2
7630931 Rachev et al. Dec 2009 B1
7634717 Chamberlain et al. Dec 2009 B2
7640173 Surpin et al. Dec 2009 B2
7657478 De Diego Feb 2010 B2
7685042 Monroe et al. Mar 2010 B1
7685083 Fairweather Mar 2010 B2
7703021 Flam Apr 2010 B1
7706817 Bamrah et al. Apr 2010 B2
7712049 Williams et al. May 2010 B2
7716067 Surpin et al. May 2010 B2
7716077 Mikurak May 2010 B1
7716227 Hao et al. May 2010 B1
7725530 Sah et al. May 2010 B2
7725547 Albertson et al. May 2010 B2
7725728 Ama et al. May 2010 B2
7730082 Sah et al. Jun 2010 B2
7730109 Rohrs et al. Jun 2010 B2
7756843 Palmer Jul 2010 B1
7757220 Griffith et al. Jul 2010 B2
7770100 Chamberlain et al. Aug 2010 B2
7783679 Bley Aug 2010 B2
7805457 Viola et al. Sep 2010 B1
7809703 Balabhadrapatruni et al. Oct 2010 B2
7818291 Ferguson et al. Oct 2010 B2
7818658 Chen Oct 2010 B2
7835966 Satchwell Nov 2010 B2
7848995 Dalal Dec 2010 B2
7853573 Warner et al. Dec 2010 B2
7870493 Pall et al. Jan 2011 B2
7877421 Berger et al. Jan 2011 B2
7880921 Dattilo et al. Feb 2011 B2
7894984 Rasmussen et al. Feb 2011 B2
7899611 Downs et al. Mar 2011 B2
7899796 Borthwick et al. Mar 2011 B1
7904913 Sim-Tang et al. Mar 2011 B2
7908521 Sridharan et al. Mar 2011 B2
7912842 Bayliss Mar 2011 B1
7917376 Bellin et al. Mar 2011 B2
7920963 Jouline et al. Apr 2011 B2
7933862 Chamberlain et al. Apr 2011 B2
7941321 Greenstein et al. May 2011 B2
7958147 Turner et al. Jun 2011 B1
7962281 Rasmussen et al. Jun 2011 B2
7962495 Jain et al. Jun 2011 B2
7962848 Bertram Jun 2011 B2
7970240 Chao et al. Jun 2011 B1
7971150 Raskutti et al. Jun 2011 B2
7979424 Dettinger et al. Jul 2011 B2
7984374 Caro et al. Jul 2011 B2
8001465 Kudrolli et al. Aug 2011 B2
8001482 Bhattiprolu et al. Aug 2011 B2
8010507 Poston et al. Aug 2011 B2
8010545 Stefik et al. Aug 2011 B2
8015487 Roy et al. Sep 2011 B2
8024778 Cash et al. Sep 2011 B2
8036632 Cona et al. Oct 2011 B1
8036971 Aymeloglu et al. Oct 2011 B2
8041714 Aymeloglu et al. Oct 2011 B2
8042110 Kawahara et al. Oct 2011 B1
8046283 Burns Oct 2011 B2
8054756 Chand et al. Nov 2011 B2
8073857 Sreekanth Dec 2011 B2
8082172 Chao et al. Dec 2011 B2
8103543 Zwicky Jan 2012 B1
8103962 Embley et al. Jan 2012 B2
8108138 Bruce et al. Jan 2012 B2
8112425 Baum et al. Feb 2012 B2
8117022 Linker Feb 2012 B2
8126848 Wagner Feb 2012 B2
8134457 Velipasalar et al. Mar 2012 B2
8145703 Frishert et al. Mar 2012 B2
8185819 Sah et al. May 2012 B2
8214361 Sandler et al. Jul 2012 B1
8214490 Vos et al. Jul 2012 B1
8214764 Gemmell et al. Jul 2012 B2
8225201 Michael Jul 2012 B2
8229902 Vishniac et al. Jul 2012 B2
8229947 Fujinaga Jul 2012 B2
8230333 Decherd et al. Jul 2012 B2
8271461 Pike et al. Sep 2012 B2
8280880 Aymeloglu et al. Oct 2012 B1
8290838 Thakur et al. Oct 2012 B1
8290926 Ozzie et al. Oct 2012 B2
8290942 Jones et al. Oct 2012 B2
8301464 Cave et al. Oct 2012 B1
8301904 Gryaznov Oct 2012 B1
8302855 Ma et al. Nov 2012 B2
8312367 Foster Nov 2012 B2
8312546 Alme Nov 2012 B2
8326727 Aymeloglu et al. Dec 2012 B2
8352174 Milstein et al. Jan 2013 B2
8352881 Champion et al. Jan 2013 B2
8364642 Garrod Jan 2013 B1
8368695 Howell et al. Feb 2013 B2
8397171 Klassen et al. Mar 2013 B2
8412707 Mianji Apr 2013 B1
8417409 Bast et al. Apr 2013 B2
8417715 Bruckhaus et al. Apr 2013 B1
8429194 Aymeloglu et al. Apr 2013 B2
8429527 Arbogast Apr 2013 B1
8433702 Carrino et al. Apr 2013 B1
8447722 Ahuja et al. May 2013 B1
8452790 Mianji May 2013 B1
8463036 Ramesh et al. Jun 2013 B1
8473454 Evanitsky et al. Jun 2013 B2
8484115 Aymeloglu et al. Jul 2013 B2
8484549 Burr et al. Jul 2013 B2
8489331 Kopf et al. Jul 2013 B2
8489641 Seefeld et al. Jul 2013 B1
8494941 Aymeloglu et al. Jul 2013 B2
8498984 Hwang et al. Jul 2013 B1
8499287 Shafi et al. Jul 2013 B2
8510743 Hackborn et al. Aug 2013 B2
8514082 Cova et al. Aug 2013 B2
8515207 Chau Aug 2013 B2
8554579 Tribble et al. Oct 2013 B2
8554653 Falkenborg et al. Oct 2013 B2
8554709 Goodson et al. Oct 2013 B2
8554719 McGrew Oct 2013 B2
8560413 Quarterman Oct 2013 B1
8560494 Downing Oct 2013 B1
8577911 Stepinski et al. Nov 2013 B1
8589273 Creeden et al. Nov 2013 B2
8595234 Siripurapu et al. Nov 2013 B2
8600872 Yan Dec 2013 B1
8601326 Kirn Dec 2013 B1
8620641 Farnsworth et al. Dec 2013 B2
8639552 Chen et al. Jan 2014 B1
8639757 Zang et al. Jan 2014 B1
8645332 Cohen et al. Feb 2014 B1
8646080 Williamson et al. Feb 2014 B2
8666861 Li et al. Mar 2014 B2
8676857 Adams et al. Mar 2014 B1
8688573 Ruknoic et al. Apr 2014 B1
8689108 Duffield et al. Apr 2014 B1
8713467 Goldenberg et al. Apr 2014 B1
8726379 Stiansen et al. May 2014 B1
8732574 Burr et al. May 2014 B2
8739278 Varghese May 2014 B2
8742934 Sarpy et al. Jun 2014 B1
8744890 Bernier Jun 2014 B1
8745516 Mason et al. Jun 2014 B2
8763078 Castellucci et al. Jun 2014 B1
8781169 Jackson et al. Jul 2014 B2
8786605 Curtis et al. Jul 2014 B1
8787939 Papakipos et al. Jul 2014 B2
8788407 Singh et al. Jul 2014 B1
8798354 Bunzel et al. Aug 2014 B1
8799799 Cervelli et al. Aug 2014 B1
8799867 Peri-Glass et al. Aug 2014 B1
8812960 Sun et al. Aug 2014 B1
8830322 Nerayoff et al. Sep 2014 B2
8832594 Thompson et al. Sep 2014 B1
8868537 Colgrove et al. Oct 2014 B1
8903717 Elliot Dec 2014 B2
8909597 Aymeloglu et al. Dec 2014 B2
8909656 Kumar et al. Dec 2014 B2
8917274 Ma et al. Dec 2014 B2
8924388 Elliot et al. Dec 2014 B2
8924389 Elliot et al. Dec 2014 B2
8924429 Fisher et al. Dec 2014 B1
8924872 Bogomolov et al. Dec 2014 B1
8935201 Fisher et al. Jan 2015 B1
8937619 Sharma et al. Jan 2015 B2
8938686 Erenrich et al. Jan 2015 B1
8949164 Mohler Feb 2015 B1
8984390 Aymeloglu et al. Mar 2015 B2
9009171 Grossman et al. Apr 2015 B1
9009827 Albertson et al. Apr 2015 B1
9021260 Falk et al. Apr 2015 B1
9021384 Beard et al. Apr 2015 B1
9031981 Potter et al. May 2015 B1
9032531 Scorvo et al. May 2015 B1
9043696 Meiklejohn et al. May 2015 B1
9043894 Dennison et al. May 2015 B1
9092482 Harris et al. Jul 2015 B2
9100428 Visbal Aug 2015 B1
9105000 White et al. Aug 2015 B1
9116975 Shankar et al. Aug 2015 B2
9129219 Robertson et al. Sep 2015 B1
9229966 Aymeloglu et al. Jan 2016 B2
9280532 Cicerone Mar 2016 B2
9292388 Fisher et al. Mar 2016 B2
9330120 Downing et al. May 2016 B2
9348677 Marinelli, III et al. May 2016 B2
9367463 Biswal et al. Jun 2016 B2
9449074 Fisher et al. Sep 2016 B1
20010011243 Dembo et al. Aug 2001 A1
20010021936 Bertram Sep 2001 A1
20010027424 Torigoe Oct 2001 A1
20020007329 Alcaly et al. Jan 2002 A1
20020007331 Lo et al. Jan 2002 A1
20020026404 Thompson Feb 2002 A1
20020030701 Knight Mar 2002 A1
20020032677 Morgenthaler et al. Mar 2002 A1
20020033848 Sciammarella et al. Mar 2002 A1
20020035590 Eibach et al. Mar 2002 A1
20020040336 Blanchard et al. Apr 2002 A1
20020059126 Ricciardi May 2002 A1
20020065708 Senay et al. May 2002 A1
20020087570 Jacquez et al. Jul 2002 A1
20020091707 Keller Jul 2002 A1
20020095360 Joao Jul 2002 A1
20020095658 Shulman Jul 2002 A1
20020099870 Miller et al. Jul 2002 A1
20020103705 Brady Aug 2002 A1
20020116120 Ruiz et al. Aug 2002 A1
20020130907 Chi et al. Sep 2002 A1
20020138383 Rhee Sep 2002 A1
20020147671 Sloan et al. Oct 2002 A1
20020147805 Leshem et al. Oct 2002 A1
20020156812 Krasnoiarov et al. Oct 2002 A1
20020174201 Ramer et al. Nov 2002 A1
20020184111 Swanson Dec 2002 A1
20020194119 Wright et al. Dec 2002 A1
20030004770 Miller et al. Jan 2003 A1
20030009392 Perkowski Jan 2003 A1
20030009399 Boerner Jan 2003 A1
20030023620 Trotta Jan 2003 A1
20030028560 Kudrolli et al. Feb 2003 A1
20030039948 Donahue Feb 2003 A1
20030065605 Gatto Apr 2003 A1
20030065606 Satchwell Apr 2003 A1
20030065607 Satchwell Apr 2003 A1
20030078827 Hoffman Apr 2003 A1
20030093401 Czajkowski et al. May 2003 A1
20030093755 O'Carroll May 2003 A1
20030105759 Bess et al. Jun 2003 A1
20030105833 Daniels Jun 2003 A1
20030115481 Baird et al. Jun 2003 A1
20030126102 Borthwick Jul 2003 A1
20030130996 Bayerl et al. Jul 2003 A1
20030140106 Raguseo Jul 2003 A1
20030144868 MacIntyre et al. Jul 2003 A1
20030163352 Surpin et al. Aug 2003 A1
20030167423 Murakami et al. Sep 2003 A1
20030172021 Huang Sep 2003 A1
20030172053 Fairweather Sep 2003 A1
20030177112 Gardner Sep 2003 A1
20030182177 Gallagher Sep 2003 A1
20030182313 Federwisch et al. Sep 2003 A1
20030184588 Lee Oct 2003 A1
20030187761 Olsen et al. Oct 2003 A1
20030200217 Ackerman Oct 2003 A1
20030212670 Yalamanchi et al. Nov 2003 A1
20030212718 Tester Nov 2003 A1
20030225755 Iwayama et al. Dec 2003 A1
20030229848 Arend et al. Dec 2003 A1
20040003009 Wilmot Jan 2004 A1
20040006523 Coker Jan 2004 A1
20040032432 Baynger Feb 2004 A1
20040034570 Davis Feb 2004 A1
20040044648 Anfindsen et al. Mar 2004 A1
20040064256 Barinek et al. Apr 2004 A1
20040083466 Dapp et al. Apr 2004 A1
20040085318 Hassler et al. May 2004 A1
20040088177 Travis et al. May 2004 A1
20040095349 Bito et al. May 2004 A1
20040098731 Demsey et al. May 2004 A1
20040103088 Cragun et al. May 2004 A1
20040111410 Burgoon et al. Jun 2004 A1
20040111480 Yue Jun 2004 A1
20040117387 Civetta et al. Jun 2004 A1
20040122756 Creeden Jun 2004 A1
20040126840 Cheng et al. Jul 2004 A1
20040133500 Thompson et al. Jul 2004 A1
20040139212 Mukherjee et al. Jul 2004 A1
20040143602 Ruiz et al. Jul 2004 A1
20040143796 Lerner et al. Jul 2004 A1
20040153418 Hanweck Aug 2004 A1
20040153451 Phillips et al. Aug 2004 A1
20040153837 Preston et al. Aug 2004 A1
20040163039 Gorman Aug 2004 A1
20040181554 Heckerman et al. Sep 2004 A1
20040193599 Liu et al. Sep 2004 A1
20040193600 Kaasten et al. Sep 2004 A1
20040193608 Gollapudi et al. Sep 2004 A1
20040205492 Newsome Oct 2004 A1
20040210763 Jonas Oct 2004 A1
20040221223 Yu et al. Nov 2004 A1
20040236688 Bozeman Nov 2004 A1
20040254658 Sherriff et al. Dec 2004 A1
20040260702 Cragun et al. Dec 2004 A1
20040267746 Marcjan et al. Dec 2004 A1
20050004911 Goldberg et al. Jan 2005 A1
20050010472 Quatse et al. Jan 2005 A1
20050021397 Cui et al. Jan 2005 A1
20050021877 Varpela et al. Jan 2005 A1
20050027632 Zeitoun et al. Feb 2005 A1
20050027705 Sadri et al. Feb 2005 A1
20050028094 Allyn Feb 2005 A1
20050039116 Slack-Smith Feb 2005 A1
20050039119 Parks et al. Feb 2005 A1
20050060712 Miller et al. Mar 2005 A1
20050060713 Miller et al. Mar 2005 A1
20050065811 Chu et al. Mar 2005 A1
20050075962 Dunne Apr 2005 A1
20050075966 Duka Apr 2005 A1
20050080769 Gemmell Apr 2005 A1
20050086207 Heuer et al. Apr 2005 A1
20050090911 Ingargiola et al. Apr 2005 A1
20050091186 Elish Apr 2005 A1
20050097441 Herbach et al. May 2005 A1
20050108001 Aarskog May 2005 A1
20050120080 Weinreb et al. Jun 2005 A1
20050125715 Franco et al. Jun 2005 A1
20050131935 O'Leary et al. Jun 2005 A1
20050133588 Williams Jun 2005 A1
20050144205 Okita Jun 2005 A1
20050149455 Bruesewitz et al. Jul 2005 A1
20050154628 Eckart et al. Jul 2005 A1
20050154769 Eckart et al. Jul 2005 A1
20050162523 Darrell et al. Jul 2005 A1
20050166144 Gross Jul 2005 A1
20050171881 Ghassemieh et al. Aug 2005 A1
20050180330 Shapiro Aug 2005 A1
20050182709 Belcsak et al. Aug 2005 A1
20050182793 Keenan et al. Aug 2005 A1
20050183005 Denoue et al. Aug 2005 A1
20050210409 Jou Sep 2005 A1
20050226473 Ramesh Oct 2005 A1
20050246327 Yeung et al. Nov 2005 A1
20050251786 Citron et al. Nov 2005 A1
20050256703 Markel Nov 2005 A1
20050262004 Sakata et al. Nov 2005 A1
20050262057 Lesh et al. Nov 2005 A1
20050262493 Schmidt et al. Nov 2005 A1
20050262512 Schmidt et al. Nov 2005 A1
20050278286 Djugash et al. Dec 2005 A1
20060004740 Dettinger et al. Jan 2006 A1
20060010130 Leff et al. Jan 2006 A1
20060020398 Vernon et al. Jan 2006 A1
20060026120 Carolan et al. Feb 2006 A1
20060026170 Kreitler et al. Feb 2006 A1
20060026561 Bauman et al. Feb 2006 A1
20060031779 Theurer et al. Feb 2006 A1
20060045470 Poslinski et al. Mar 2006 A1
20060047590 Anderson et al. Mar 2006 A1
20060052984 Nakadate et al. Mar 2006 A1
20060053097 King et al. Mar 2006 A1
20060053170 Hill et al. Mar 2006 A1
20060059072 Boglaev Mar 2006 A1
20060059139 Robinson Mar 2006 A1
20060064181 Kato Mar 2006 A1
20060070046 Balakrishnan et al. Mar 2006 A1
20060074730 Shukla et al. Apr 2006 A1
20060074866 Chamberlain et al. Apr 2006 A1
20060074881 Vembu et al. Apr 2006 A1
20060074967 Shaburov Apr 2006 A1
20060080316 Gilmore et al. Apr 2006 A1
20060080616 Vogel et al. Apr 2006 A1
20060080619 Carlson et al. Apr 2006 A1
20060093222 Saffer et al. May 2006 A1
20060116943 Willain Jun 2006 A1
20060116991 Calderwood Jun 2006 A1
20060129746 Porter Jun 2006 A1
20060129992 Oberholtzer et al. Jun 2006 A1
20060136513 Ngo et al. Jun 2006 A1
20060139375 Rasmussen et al. Jun 2006 A1
20060142949 Helt Jun 2006 A1
20060143034 Rothermel Jun 2006 A1
20060143075 Carr et al. Jun 2006 A1
20060143079 Basak et al. Jun 2006 A1
20060149596 Surpin et al. Jul 2006 A1
20060155654 Plessis et al. Jul 2006 A1
20060203337 White Sep 2006 A1
20060209085 Wong et al. Sep 2006 A1
20060218206 Bourbonnais et al. Sep 2006 A1
20060218405 Ama et al. Sep 2006 A1
20060218491 Grossman et al. Sep 2006 A1
20060218637 Thomas et al. Sep 2006 A1
20060224356 Castelli et al. Oct 2006 A1
20060235786 DiSalvo Oct 2006 A1
20060241856 Cobleigh et al. Oct 2006 A1
20060241974 Chao et al. Oct 2006 A1
20060242040 Rader et al. Oct 2006 A1
20060242630 Koike et al. Oct 2006 A1
20060253502 Raman et al. Nov 2006 A1
20060265311 Dean et al. Nov 2006 A1
20060265397 Bryan et al. Nov 2006 A1
20060265417 Amato et al. Nov 2006 A1
20060271277 Hu et al. Nov 2006 A1
20060271838 Carro Nov 2006 A1
20060271884 Hurst Nov 2006 A1
20060277460 Forstall et al. Dec 2006 A1
20060279630 Aggarwal et al. Dec 2006 A1
20060288046 Gupta et al. Dec 2006 A1
20070000999 Kubo et al. Jan 2007 A1
20070005582 Navratil et al. Jan 2007 A1
20070011150 Frank Jan 2007 A1
20070011304 Error Jan 2007 A1
20070016363 Huang et al. Jan 2007 A1
20070027851 Kruy et al. Feb 2007 A1
20070038646 Thota Feb 2007 A1
20070038962 Fuchs et al. Feb 2007 A1
20070043686 Teng et al. Feb 2007 A1
20070055598 Arnott et al. Mar 2007 A1
20070055599 Arnott Mar 2007 A1
20070057966 Ohno et al. Mar 2007 A1
20070061259 Zoldi et al. Mar 2007 A1
20070061752 Cory Mar 2007 A1
20070067233 Dalal Mar 2007 A1
20070067285 Blume Mar 2007 A1
20070078832 Ott et al. Apr 2007 A1
20070083541 Fraleigh et al. Apr 2007 A1
20070088596 Berkelhamer et al. Apr 2007 A1
20070091868 Hollman et al. Apr 2007 A1
20070094248 McVeigh et al. Apr 2007 A1
20070094312 Sim-Tang Apr 2007 A1
20070094389 Nussey et al. Apr 2007 A1
20070106582 Baker et al. May 2007 A1
20070112714 Fairweather May 2007 A1
20070113164 Hansen et al. May 2007 A1
20070118527 Winje et al. May 2007 A1
20070136115 Doganaksoy et al. Jun 2007 A1
20070150369 Zivin Jun 2007 A1
20070150801 Chidlovskii et al. Jun 2007 A1
20070150805 Misovski Jun 2007 A1
20070156673 Maga Jul 2007 A1
20070168269 Chuo Jul 2007 A1
20070168270 De Diego Arozamena et al. Jul 2007 A1
20070168336 Ransil et al. Jul 2007 A1
20070168871 Jenkins Jul 2007 A1
20070174760 Chamberlain et al. Jul 2007 A1
20070178501 Rabinowitz et al. Aug 2007 A1
20070185867 Maga Aug 2007 A1
20070192265 Chopin et al. Aug 2007 A1
20070192281 Cradick et al. Aug 2007 A1
20070198571 Ferguson et al. Aug 2007 A1
20070208497 Downs et al. Sep 2007 A1
20070208498 Barker et al. Sep 2007 A1
20070208736 Tanigawa et al. Sep 2007 A1
20070219882 May Sep 2007 A1
20070220604 Long Sep 2007 A1
20070226617 Traub et al. Sep 2007 A1
20070233709 Abnous Oct 2007 A1
20070233756 D'Souza et al. Oct 2007 A1
20070239606 Eisen Oct 2007 A1
20070240062 Christena et al. Oct 2007 A1
20070245339 Bauman et al. Oct 2007 A1
20070260582 Liang Nov 2007 A1
20070266336 Nojima et al. Nov 2007 A1
20070271317 Carmel Nov 2007 A1
20070282951 Selimis et al. Dec 2007 A1
20070284433 Domenica et al. Dec 2007 A1
20070294643 Kyle Dec 2007 A1
20070299697 Friedlander et al. Dec 2007 A1
20080005063 Seeds Jan 2008 A1
20080015920 Fawls et al. Jan 2008 A1
20080016155 Khalatian Jan 2008 A1
20080016216 Worley et al. Jan 2008 A1
20080040250 Salter Feb 2008 A1
20080040684 Crump Feb 2008 A1
20080046481 Gould Feb 2008 A1
20080046803 Beauchamp et al. Feb 2008 A1
20080051989 Welsh Feb 2008 A1
20080052142 Bailey et al. Feb 2008 A1
20080069081 Chand et al. Mar 2008 A1
20080077597 Butler Mar 2008 A1
20080077642 Carbone et al. Mar 2008 A1
20080082486 Lermant et al. Apr 2008 A1
20080091693 Murthy Apr 2008 A1
20080097816 Freire et al. Apr 2008 A1
20080103798 Domenikos et al. May 2008 A1
20080103996 Forman et al. May 2008 A1
20080104019 Nath May 2008 A1
20080104407 Horne et al. May 2008 A1
20080109714 Kumar et al. May 2008 A1
20080126344 Hoffman et al. May 2008 A1
20080126951 Sood et al. May 2008 A1
20080133310 Kim et al. Jun 2008 A1
20080140387 Linker Jun 2008 A1
20080140576 Lewis et al. Jun 2008 A1
20080148398 Mezack et al. Jun 2008 A1
20080155440 Trevor et al. Jun 2008 A1
20080162616 Gross et al. Jul 2008 A1
20080172607 Baer Jul 2008 A1
20080177782 Poston et al. Jul 2008 A1
20080183639 DiSalvo Jul 2008 A1
20080195417 Surpin et al. Aug 2008 A1
20080195608 Clover Aug 2008 A1
20080195672 Hamel et al. Aug 2008 A1
20080196016 Todd Aug 2008 A1
20080201313 Dettinger et al. Aug 2008 A1
20080208820 Usey et al. Aug 2008 A1
20080215543 Huang et al. Sep 2008 A1
20080215546 Baum et al. Sep 2008 A1
20080222038 Eden et al. Sep 2008 A1
20080222295 Robinson et al. Sep 2008 A1
20080228467 Womack et al. Sep 2008 A1
20080243711 Aymeloglu et al. Oct 2008 A1
20080243799 Rozich et al. Oct 2008 A1
20080249845 Aronowich et al. Oct 2008 A1
20080249957 Masuyama et al. Oct 2008 A1
20080255973 El Wade et al. Oct 2008 A1
20080263468 Cappione et al. Oct 2008 A1
20080267107 Rosenberg Oct 2008 A1
20080267386 Cooper Oct 2008 A1
20080270316 Guidotti et al. Oct 2008 A1
20080276167 Michael Nov 2008 A1
20080278311 Grange et al. Nov 2008 A1
20080281580 Zabokritski Nov 2008 A1
20080288306 MacIntyre et al. Nov 2008 A1
20080288471 Wu et al. Nov 2008 A1
20080301042 Patzer Dec 2008 A1
20080301559 Martinsen et al. Dec 2008 A1
20080301643 Appleton et al. Dec 2008 A1
20080313132 Hao et al. Dec 2008 A1
20080313243 Poston et al. Dec 2008 A1
20080313281 Scheidl et al. Dec 2008 A1
20090002492 Velipasalar et al. Jan 2009 A1
20090006150 Prigge et al. Jan 2009 A1
20090006271 Crowder Jan 2009 A1
20090007056 Prigge et al. Jan 2009 A1
20090018996 Hunt Jan 2009 A1
20090027418 Maru et al. Jan 2009 A1
20090030915 Winter et al. Jan 2009 A1
20090031401 Cudich et al. Jan 2009 A1
20090037912 Stoitsev et al. Feb 2009 A1
20090043762 Shiverick et al. Feb 2009 A1
20090055251 Shah et al. Feb 2009 A1
20090055487 Moraes et al. Feb 2009 A1
20090076845 Bellin et al. Mar 2009 A1
20090083275 Jacob et al. Mar 2009 A1
20090088964 Schaaf et al. Apr 2009 A1
20090089651 Herberger et al. Apr 2009 A1
20090094166 Aymeloglu et al. Apr 2009 A1
20090094217 Dettinger et al. Apr 2009 A1
20090106178 Chu Apr 2009 A1
20090106242 McGrew Apr 2009 A1
20090106308 Killian et al. Apr 2009 A1
20090112678 Luzardo Apr 2009 A1
20090112745 Stefanescu Apr 2009 A1
20090112922 Barinaga Apr 2009 A1
20090119309 Gibson et al. May 2009 A1
20090125359 Knapic May 2009 A1
20090125369 Kloostra et al. May 2009 A1
20090125459 Norton et al. May 2009 A1
20090132921 Hwangbo et al. May 2009 A1
20090132953 Reed et al. May 2009 A1
20090138307 Belcsak et al. May 2009 A1
20090143052 Bates et al. Jun 2009 A1
20090144262 White et al. Jun 2009 A1
20090144274 Fraleigh et al. Jun 2009 A1
20090144747 Baker Jun 2009 A1
20090150868 Chakra et al. Jun 2009 A1
20090161147 Klave Jun 2009 A1
20090164387 Armstrong et al. Jun 2009 A1
20090164934 Bhattiprolu et al. Jun 2009 A1
20090171939 Athsani et al. Jul 2009 A1
20090172511 Decherd et al. Jul 2009 A1
20090172674 Bobak et al. Jul 2009 A1
20090172821 Daira et al. Jul 2009 A1
20090177962 Gusmorino et al. Jul 2009 A1
20090179892 Tsuda et al. Jul 2009 A1
20090187464 Bai et al. Jul 2009 A1
20090187546 Whyte et al. Jul 2009 A1
20090187548 Ji et al. Jul 2009 A1
20090187556 Ross et al. Jul 2009 A1
20090193012 Williams Jul 2009 A1
20090193050 Olson Jul 2009 A1
20090199047 Vaitheeswaran et al. Aug 2009 A1
20090199106 Jonsson et al. Aug 2009 A1
20090222400 Kupershmidt et al. Sep 2009 A1
20090222759 Drieschner Sep 2009 A1
20090222760 Halverson et al. Sep 2009 A1
20090228365 Tomchek et al. Sep 2009 A1
20090228507 Jain et al. Sep 2009 A1
20090234720 George et al. Sep 2009 A1
20090248721 Burton et al. Oct 2009 A1
20090248757 Havewala et al. Oct 2009 A1
20090249244 Robinson et al. Oct 2009 A1
20090254970 Agarwal et al. Oct 2009 A1
20090271343 Vaiciulis et al. Oct 2009 A1
20090281839 Lynn Nov 2009 A1
20090282068 Shockro et al. Nov 2009 A1
20090287470 Farnsworth et al. Nov 2009 A1
20090292626 Oxford Nov 2009 A1
20090299830 West et al. Dec 2009 A1
20090307049 Elliott et al. Dec 2009 A1
20090313250 Folting et al. Dec 2009 A1
20090313311 Hoffmann et al. Dec 2009 A1
20090313463 Pang et al. Dec 2009 A1
20090319418 Herz Dec 2009 A1
20090319891 MacKinlay Dec 2009 A1
20090319996 Shafi et al. Dec 2009 A1
20090327157 Dunne Dec 2009 A1
20100011282 Dollard et al. Jan 2010 A1
20100030722 Goodson et al. Feb 2010 A1
20100031141 Summers et al. Feb 2010 A1
20100042922 Bradateanu et al. Feb 2010 A1
20100057600 Johansen et al. Mar 2010 A1
20100057622 Faith et al. Mar 2010 A1
20100057716 Stefik et al. Mar 2010 A1
20100070426 Aymeloglu et al. Mar 2010 A1
20100070427 Rakhamimov et al. Mar 2010 A1
20100070464 Aymeloglu et al. Mar 2010 A1
20100070489 Aymeloglu et al. Mar 2010 A1
20100070523 Delgo et al. Mar 2010 A1
20100070531 Aymeloglu et al. Mar 2010 A1
20100070842 Aymeloglu et al. Mar 2010 A1
20100070844 Aymeloglu et al. Mar 2010 A1
20100070845 Facemire et al. Mar 2010 A1
20100070897 Aymeloglu et al. Mar 2010 A1
20100073315 Lee et al. Mar 2010 A1
20100082541 Kottomtharayil Apr 2010 A1
20100082671 Li et al. Apr 2010 A1
20100094765 Nandy Apr 2010 A1
20100098318 Anderson Apr 2010 A1
20100100963 Mahaffey Apr 2010 A1
20100103124 Kruzeniski et al. Apr 2010 A1
20100114817 Broeder et al. May 2010 A1
20100114831 Gilbert et al. May 2010 A1
20100114887 Conway et al. May 2010 A1
20100122152 Chamberlain et al. May 2010 A1
20100131457 Heimendinger May 2010 A1
20100131502 Fordham May 2010 A1
20100145902 Boyan et al. Jun 2010 A1
20100145909 Ngo Jun 2010 A1
20100161646 Ceballos et al. Jun 2010 A1
20100161735 Sharma Jun 2010 A1
20100162176 Dunton Jun 2010 A1
20100162371 Geil Jun 2010 A1
20100169192 Zoldi et al. Jul 2010 A1
20100169376 Chu Jul 2010 A1
20100169405 Zhang Jul 2010 A1
20100191563 Schlaifer et al. Jul 2010 A1
20100198684 Eraker et al. Aug 2010 A1
20100199167 Uematsu et al. Aug 2010 A1
20100199225 Coleman et al. Aug 2010 A1
20100204983 Chung et al. Aug 2010 A1
20100205108 Mun Aug 2010 A1
20100205662 Ibrahim et al. Aug 2010 A1
20100223260 Wu Sep 2010 A1
20100228812 Uomini Sep 2010 A1
20100235915 Memon et al. Sep 2010 A1
20100250412 Wagner Sep 2010 A1
20100262688 Hussain et al. Oct 2010 A1
20100280857 Liu et al. Nov 2010 A1
20100283787 Hamedi et al. Nov 2010 A1
20100293174 Bennett et al. Nov 2010 A1
20100306285 Shah et al. Dec 2010 A1
20100306713 Geisner et al. Dec 2010 A1
20100312530 Capriotti Dec 2010 A1
20100312837 Bodapati et al. Dec 2010 A1
20100313119 Baldwin et al. Dec 2010 A1
20100313239 Chakra et al. Dec 2010 A1
20100318924 Frankel et al. Dec 2010 A1
20100321399 Ellren et al. Dec 2010 A1
20100325526 Ellis et al. Dec 2010 A1
20100325581 Finkelstein et al. Dec 2010 A1
20100330801 Rouh Dec 2010 A1
20110004626 Naeymi-Rad et al. Jan 2011 A1
20110029526 Knight et al. Feb 2011 A1
20110035396 Merz et al. Feb 2011 A1
20110041084 Karam Feb 2011 A1
20110047159 Baid et al. Feb 2011 A1
20110055074 Chen et al. Mar 2011 A1
20110060753 Shaked et al. Mar 2011 A1
20110061013 Bilicki et al. Mar 2011 A1
20110066497 Gopinath et al. Mar 2011 A1
20110066933 Ludwig Mar 2011 A1
20110074811 Hanson et al. Mar 2011 A1
20110078055 Faribault et al. Mar 2011 A1
20110078173 Seligmann et al. Mar 2011 A1
20110093327 Fordyce et al. Apr 2011 A1
20110093490 Schindlauer et al. Apr 2011 A1
20110099133 Chang et al. Apr 2011 A1
20110099628 Lanxner et al. Apr 2011 A1
20110117878 Barash et al. May 2011 A1
20110119100 Ruhl et al. May 2011 A1
20110131082 Manser et al. Jun 2011 A1
20110131122 Griffin et al. Jun 2011 A1
20110131547 Elaasar Jun 2011 A1
20110137766 Rasmussen et al. Jun 2011 A1
20110145401 Westlake Jun 2011 A1
20110153384 Horne et al. Jun 2011 A1
20110153592 DeMarcken Jun 2011 A1
20110161096 Buehler et al. Jun 2011 A1
20110167105 Ramakrishnan et al. Jul 2011 A1
20110170799 Carrino et al. Jul 2011 A1
20110173032 Payne et al. Jul 2011 A1
20110173093 Psota et al. Jul 2011 A1
20110179042 Aymeloglu et al. Jul 2011 A1
20110185316 Reid et al. Jul 2011 A1
20110185401 Bak et al. Jul 2011 A1
20110208565 Ross et al. Aug 2011 A1
20110208724 Jones et al. Aug 2011 A1
20110208822 Rathod Aug 2011 A1
20110213655 Henkin Sep 2011 A1
20110218934 Elser Sep 2011 A1
20110218955 Tang Sep 2011 A1
20110219450 McDougal et al. Sep 2011 A1
20110225198 Edwards et al. Sep 2011 A1
20110225482 Chan et al. Sep 2011 A1
20110225586 Bentley et al. Sep 2011 A1
20110231305 Winters Sep 2011 A1
20110238495 Kang Sep 2011 A1
20110238553 Raj et al. Sep 2011 A1
20110251951 Kolkowitz Oct 2011 A1
20110252282 Meek et al. Oct 2011 A1
20110258072 Kerker et al. Oct 2011 A1
20110258158 Resende et al. Oct 2011 A1
20110258216 Supakkul et al. Oct 2011 A1
20110270604 Qi et al. Nov 2011 A1
20110270705 Parker Nov 2011 A1
20110270834 Sokolan et al. Nov 2011 A1
20110270871 He et al. Nov 2011 A1
20110289397 Eastmond et al. Nov 2011 A1
20110289407 Naik et al. Nov 2011 A1
20110289420 Morioka et al. Nov 2011 A1
20110291851 Whisenant Dec 2011 A1
20110295649 Fine Dec 2011 A1
20110307382 Siegel et al. Dec 2011 A1
20110310005 Chen et al. Dec 2011 A1
20110314007 Dassa et al. Dec 2011 A1
20110314024 Chang et al. Dec 2011 A1
20110321008 Jhoney et al. Dec 2011 A1
20120011238 Rathod Jan 2012 A1
20120011245 Gillette et al. Jan 2012 A1
20120013684 Robertson et al. Jan 2012 A1
20120019559 Siler et al. Jan 2012 A1
20120022945 Falkenborg et al. Jan 2012 A1
20120030140 Aymeloglu et al. Feb 2012 A1
20120036013 Neuhaus et al. Feb 2012 A1
20120036434 Oberstein Feb 2012 A1
20120050293 Carlhian et al. Mar 2012 A1
20120054284 Rakshit Mar 2012 A1
20120059853 Jagota Mar 2012 A1
20120066166 Curbera et al. Mar 2012 A1
20120066296 Appleton et al. Mar 2012 A1
20120072825 Sherkin et al. Mar 2012 A1
20120078595 Balandin et al. Mar 2012 A1
20120079363 Folting et al. Mar 2012 A1
20120084117 Tavares et al. Apr 2012 A1
20120084118 Bai et al. Apr 2012 A1
20120084287 Lakshminarayan et al. Apr 2012 A1
20120101952 Raleigh et al. Apr 2012 A1
20120102022 Miranker et al. Apr 2012 A1
20120106801 Jackson May 2012 A1
20120117082 Koperda et al. May 2012 A1
20120131512 Takeuchi et al. May 2012 A1
20120136804 Lucia May 2012 A1
20120137235 Ts et al. May 2012 A1
20120143816 Zhang et al. Jun 2012 A1
20120144335 Abeln et al. Jun 2012 A1
20120158585 Ganti Jun 2012 A1
20120159307 Chung et al. Jun 2012 A1
20120159362 Brown et al. Jun 2012 A1
20120159399 Bastide et al. Jun 2012 A1
20120159449 Arnold et al. Jun 2012 A1
20120170847 Tsukidate Jul 2012 A1
20120173381 Smith Jul 2012 A1
20120173985 Peppel Jul 2012 A1
20120174057 Narendra et al. Jul 2012 A1
20120180002 Campbell et al. Jul 2012 A1
20120188252 Law Jul 2012 A1
20120191446 Binsztok et al. Jul 2012 A1
20120196557 Reich et al. Aug 2012 A1
20120196558 Reich et al. Aug 2012 A1
20120197651 Robinson et al. Aug 2012 A1
20120203708 Psota et al. Aug 2012 A1
20120208636 Feige Aug 2012 A1
20120215784 King et al. Aug 2012 A1
20120221511 Gibson et al. Aug 2012 A1
20120221553 Wittmer et al. Aug 2012 A1
20120221580 Barney Aug 2012 A1
20120226523 Weiss Sep 2012 A1
20120245976 Kumar et al. Sep 2012 A1
20120246148 Dror Sep 2012 A1
20120254129 Wheeler et al. Oct 2012 A1
20120278249 Duggal et al. Nov 2012 A1
20120284345 Costenaro et al. Nov 2012 A1
20120284719 Phan et al. Nov 2012 A1
20120290506 Muramatsu et al. Nov 2012 A1
20120290879 Shibuya et al. Nov 2012 A1
20120296907 Long et al. Nov 2012 A1
20120311684 Paulsen et al. Dec 2012 A1
20120323888 Osann, Jr. Dec 2012 A1
20120330801 McDougal et al. Dec 2012 A1
20120330973 Ghuneim et al. Dec 2012 A1
20130006426 Healey et al. Jan 2013 A1
20130006725 Simanek et al. Jan 2013 A1
20130006916 McBride et al. Jan 2013 A1
20130016106 Yip et al. Jan 2013 A1
20130018796 Kolhatkar et al. Jan 2013 A1
20130024268 Manickavelu Jan 2013 A1
20130024731 Shochat et al. Jan 2013 A1
20130036346 Cicerone Feb 2013 A1
20130046635 Grigg et al. Feb 2013 A1
20130046842 Muntz et al. Feb 2013 A1
20130054306 Bhalla Feb 2013 A1
20130054551 Lange Feb 2013 A1
20130057551 Ebert et al. Mar 2013 A1
20130060786 Serrano et al. Mar 2013 A1
20130061169 Pearcy et al. Mar 2013 A1
20130073377 Heath Mar 2013 A1
20130073454 Busch Mar 2013 A1
20130078943 Biage et al. Mar 2013 A1
20130086482 Parsons Apr 2013 A1
20130096968 Van Pelt et al. Apr 2013 A1
20130096988 Grossman et al. Apr 2013 A1
20130097130 Bingol et al. Apr 2013 A1
20130097482 Marantz et al. Apr 2013 A1
20130101159 Chao et al. Apr 2013 A1
20130110746 Ahn May 2013 A1
20130110822 Ikeda et al. May 2013 A1
20130110877 Bonham et al. May 2013 A1
20130111320 Campbell et al. May 2013 A1
20130117651 Waldman et al. May 2013 A1
20130124193 Holmberg May 2013 A1
20130132348 Garrod May 2013 A1
20130150004 Rosen Jun 2013 A1
20130151148 Parundekar et al. Jun 2013 A1
20130151305 Akinola et al. Jun 2013 A1
20130151388 Falkenborg et al. Jun 2013 A1
20130151453 Bhanot et al. Jun 2013 A1
20130157234 Gulli et al. Jun 2013 A1
20130166348 Scotto Jun 2013 A1
20130166480 Popescu et al. Jun 2013 A1
20130166550 Buchmann et al. Jun 2013 A1
20130176321 Mitchell et al. Jul 2013 A1
20130179420 Park et al. Jul 2013 A1
20130185245 Anderson et al. Jul 2013 A1
20130185307 El-Yaniv et al. Jul 2013 A1
20130198624 Aymeloglu et al. Aug 2013 A1
20130224696 Wolfe et al. Aug 2013 A1
20130225212 Khan Aug 2013 A1
20130226318 Procyk Aug 2013 A1
20130226944 Baid et al. Aug 2013 A1
20130226953 Markovich et al. Aug 2013 A1
20130231862 Delling et al. Sep 2013 A1
20130232045 Tai Sep 2013 A1
20130232220 Sampson Sep 2013 A1
20130238616 Rose et al. Sep 2013 A1
20130238664 Hsu Sep 2013 A1
20130246170 Gross et al. Sep 2013 A1
20130246537 Gaddala Sep 2013 A1
20130246597 Iizawa et al. Sep 2013 A1
20130251233 Yang et al. Sep 2013 A1
20130262328 Federgreen Oct 2013 A1
20130262527 Hunter et al. Oct 2013 A1
20130263019 Castellanos et al. Oct 2013 A1
20130267207 Hao et al. Oct 2013 A1
20130268520 Fisher et al. Oct 2013 A1
20130279757 Kephart Oct 2013 A1
20130282696 John et al. Oct 2013 A1
20130290011 Lynn et al. Oct 2013 A1
20130290161 Aymeloglu et al. Oct 2013 A1
20130290825 Arndt et al. Oct 2013 A1
20130293553 Burr et al. Nov 2013 A1
20130297619 Chandrasekaran et al. Nov 2013 A1
20130304770 Boero et al. Nov 2013 A1
20130311375 Priebatsch Nov 2013 A1
20130325826 Agarwal et al. Dec 2013 A1
20140006404 McGrew et al. Jan 2014 A1
20140012724 O'Leary et al. Jan 2014 A1
20140012796 Petersen et al. Jan 2014 A1
20140012886 Downing et al. Jan 2014 A1
20140019936 Cohanoff Jan 2014 A1
20140032506 Hoey et al. Jan 2014 A1
20140033010 Richardt et al. Jan 2014 A1
20140040371 Gurevich et al. Feb 2014 A1
20140047319 Eberlein Feb 2014 A1
20140047357 Alfaro et al. Feb 2014 A1
20140058914 Song et al. Feb 2014 A1
20140059038 McPherson et al. Feb 2014 A1
20140067611 Adachi et al. Mar 2014 A1
20140068487 Steiger et al. Mar 2014 A1
20140074855 Zhao et al. Mar 2014 A1
20140074888 Potter et al. Mar 2014 A1
20140081685 Thacker et al. Mar 2014 A1
20140095273 Tang et al. Apr 2014 A1
20140095363 Caldwell Apr 2014 A1
20140095509 Patton Apr 2014 A1
20140108068 Williams Apr 2014 A1
20140108074 Miller et al. Apr 2014 A1
20140108380 Gotz et al. Apr 2014 A1
20140108985 Scott et al. Apr 2014 A1
20140115589 Marinelli, III et al. Apr 2014 A1
20140115610 Marinelli, III et al. Apr 2014 A1
20140120864 Manolarakis et al. May 2014 A1
20140123279 Bishop et al. May 2014 A1
20140129261 Bothwell et al. May 2014 A1
20140129936 Richards et al. May 2014 A1
20140136285 Carvalho May 2014 A1
20140143009 Brice et al. May 2014 A1
20140143025 Fish et al. May 2014 A1
20140149436 Bahrami et al. May 2014 A1
20140156527 Grigg et al. Jun 2014 A1
20140157172 Peery et al. Jun 2014 A1
20140164502 Khodorenko et al. Jun 2014 A1
20140181833 Bird et al. Jun 2014 A1
20140189536 Lange et al. Jul 2014 A1
20140195515 Baker et al. Jul 2014 A1
20140195887 Ellis et al. Jul 2014 A1
20140214579 Shen et al. Jul 2014 A1
20140222521 Chait Aug 2014 A1
20140222752 Isman et al. Aug 2014 A1
20140222793 Sadkin et al. Aug 2014 A1
20140229554 Grunin et al. Aug 2014 A1
20140237354 Burr et al. Aug 2014 A1
20140244388 Manouchehri et al. Aug 2014 A1
20140267294 Ma Sep 2014 A1
20140267295 Sharma Sep 2014 A1
20140279824 Tamayo Sep 2014 A1
20140279865 Kumar Sep 2014 A1
20140310266 Greenfield Oct 2014 A1
20140316911 Gross Oct 2014 A1
20140333651 Cervelli et al. Nov 2014 A1
20140337772 Cervelli et al. Nov 2014 A1
20140344230 Krause et al. Nov 2014 A1
20140358789 Boding et al. Dec 2014 A1
20140358829 Hurwitz Dec 2014 A1
20140366132 Stiansen et al. Dec 2014 A1
20150012509 Kirn Jan 2015 A1
20150019394 Unser et al. Jan 2015 A1
20150046481 Elliot Feb 2015 A1
20150046870 Goldenberg et al. Feb 2015 A1
20150073929 Psota et al. Mar 2015 A1
20150073954 Braff Mar 2015 A1
20150089424 Duffield et al. Mar 2015 A1
20150095773 Gonsalves et al. Apr 2015 A1
20150100897 Sun et al. Apr 2015 A1
20150100907 Erenrich et al. Apr 2015 A1
20150106379 Elliot et al. Apr 2015 A1
20150112641 Faraj Apr 2015 A1
20150120176 Curtis et al. Apr 2015 A1
20150134512 Mueller May 2015 A1
20150134666 Gattiker et al. May 2015 A1
20150135256 Hoy et al. May 2015 A1
20150161611 Duke et al. Jun 2015 A1
20150169709 Kara et al. Jun 2015 A1
20150169726 Kara et al. Jun 2015 A1
20150170077 Kara et al. Jun 2015 A1
20150178743 Aymeloglu et al. Jun 2015 A1
20150178825 Huerta Jun 2015 A1
20150178877 Bogomolov et al. Jun 2015 A1
20150186821 Wang et al. Jul 2015 A1
20150187036 Wang et al. Jul 2015 A1
20150188872 White Jul 2015 A1
20150205848 Kumar et al. Jul 2015 A1
20150227295 Meiklejohn et al. Aug 2015 A1
20150261817 Harris et al. Sep 2015 A1
20150269030 Fisher et al. Sep 2015 A1
20150309719 Ma et al. Oct 2015 A1
20150310005 Ryger et al. Oct 2015 A1
20150317342 Grossman et al. Nov 2015 A1
20150324868 Kaftan et al. Nov 2015 A1
20150338233 Cervelli et al. Nov 2015 A1
20150379413 Robertson et al. Dec 2015 A1
20160004764 Chakerian et al. Jan 2016 A1
20160026923 Erenrich et al. Jan 2016 A1
Foreign Referenced Citations (85)
Number Date Country
102546446 Jul 2012 CN
103167093 Jun 2013 CN
102054015 May 2014 CN
102014103482 Sep 2014 DE
102014204827 Sep 2014 DE
102014204830 Sep 2014 DE
102014204834 Sep 2014 DE
102014213036 Jan 2015 DE
102014215621 Feb 2015 DE
0652513 May 1995 EP
1109116 Jun 2001 EP
1146649 Oct 2001 EP
1647908 Apr 2006 EP
1 672 527 Jun 2006 EP
1926074 May 2008 EP
2487610 Aug 2012 EP
2 551 799 Jan 2013 EP
2555126 Feb 2013 EP
2560134 Feb 2013 EP
2634745 Sep 2013 EP
2743839 Jun 2014 EP
2778913 Sep 2014 EP
2778914 Sep 2014 EP
2778974 Sep 2014 EP
2778977 Sep 2014 EP
2778986 Sep 2014 EP
2835745 Feb 2015 EP
2835770 Feb 2015 EP
2838039 Feb 2015 EP
2846241 Mar 2015 EP
2851852 Mar 2015 EP
2858014 Apr 2015 EP
2858018 Apr 2015 EP
2863326 Apr 2015 EP
2863346 Apr 2015 EP
2869211 May 2015 EP
2876587 May 2015 EP
2884439 Jun 2015 EP
2884440 Jun 2015 EP
2889814 Jul 2015 EP
2891992 Jul 2015 EP
2892197 Jul 2015 EP
2911078 Aug 2015 EP
2911100 Aug 2015 EP
2921975 Sep 2015 EP
2940603 Nov 2015 EP
2940609 Nov 2015 EP
2963595 Jan 2016 EP
2366498 Mar 2002 GB
2513721 Nov 2014 GB
2508503 Jan 2015 GB
2516155 Jan 2015 GB
2517582 Feb 2015 GB
2508293 Apr 2015 GB
2518745 Apr 2015 GB
2012778 Nov 2014 NL
2013134 Jan 2015 NL
2013306 Feb 2015 NL
624557 Dec 2014 NZ
622485 Mar 2015 NZ
616212 May 2015 NZ
616299 Jul 2015 NZ
WO 0009529 Feb 2000 WO
WO 0034895 Jun 2000 WO
WO 0125906 Apr 2001 WO
WO 02065353 Aug 2002 WO
WO 2005104736 Nov 2005 WO
WO 2005116851 Dec 2005 WO
WO 2008064207 May 2008 WO
WO 2008121499 Oct 2008 WO
WO 2009042548 Apr 2009 WO
WO 2009051987 Apr 2009 WO
WO 2009061501 May 2009 WO
WO 2010000014 Jan 2010 WO
WO 2010030913 Mar 2010 WO
WO 2010030914 Mar 2010 WO
WO 2010030917 Mar 2010 WO
WO 2010030919 Mar 2010 WO
WO 2010030946 Mar 2010 WO
WO 2010030949 Mar 2010 WO
WO 2012025915 Mar 2012 WO
WO 2012119008 Sep 2012 WO
WO 2013010157 Jan 2013 WO
WO 2013030595 Mar 2013 WO
WO 2013102892 Jul 2013 WO
Non-Patent Literature Citations (515)
Entry
Title “How to create a samll multiple masterpiece in tableau”, date Nov. 10, 2014.
“A Quick Guide to UniProtKB Swiss-Prot &TrEMBL,” Sep. 2011, pp. 2.
Chen et al., “Bringing Order to the Web: Automatically Categorizing Search Results,” CHI 2000, Proceedings of the SIGCHI conference on Human Factors in Computing Systems, Apr. 1-6, 2000, The Hague, The Netherlands, pp. 145-152.
Conner, Nancy, “Google Apps: The Missing Manual,” Sharing and Collaborating on Documents, May 1, 2008, pp. 93-97, 106-113 & 120-121.
Delcher et al., “Identifying Bacterial Genes and Endosymbiont DNA with Glimmer,” BioInformatics, vol. 23, No. 6, 2007, pp. 673-679.
Goswami, Gautam, “Quite ‘Writely’ Said!” One Brick at a Time, Aug. 21, 2005, pp. 7.
Huff et al., “Calibrating the Huff Model Using ArcGIS Business Analyst,” ESRI, Sep. 2008, pp. 33.
Huff, David L., “Parameter Estimation in the Huff Model,” ESRI, ArcUser, Oct.-Dec. 2003, pp. 34-36.
Keylines.com, “An Introduction to KeyLines and Network Visualization,” Mar. 2014, http://keylines.com/wp-content/uploads/2014/03/KeyLines-White-Paper.pdf downloaded May 12, 2014 in 8 pages.
Keylines.com, “KeyLines Datasheet,” Mar. 2014, http://keylines.com/wp-content/uploads/2014/03/KeyLines-datasheet.pdf downloaded May 12, 2014 in 2 pages.
Keylines.com, “Visualizing Threats: Improved Cyber Security Through Network Visualization,” Apr. 2014, http://keylines.com/wp-content/uploads/2014/04/Visualizing-Threats1.pdf downloaded May 12, 2014 in 10 pages.
Kitts, Paul, “Chapter 14: Genome Assembly and Annotation Process,” The NCBI Handbook, Oct. 2002, pp. 1-21.
Madden, Tom, “Chapter 16: The Blast Sequence Analysis Tool,” The NCBI Handbook, Oct. 2002, pp. 1-15.
Manno et al., “Introducing Collaboration in Single-user Applications through the Centralized Control Architecture,” 2010, pp. 10.
Microsoft—Developer Network, “Getting Started with VBA in Word 2010,” Apr. 2010, http://msdn.microsoft.com/en-us/library/ff604039%28v=office.14%29.aspx as printed Apr. 4, 2014 in 17 pages.
Mizrachi, Ilene, “Chapter 1: GenBank: The Nuckeotide Sequence Database,” The NCBI Handbook, Oct. 2002, pp. 1-14.
Rouse, Margaret, “OLAP Cube,” http://searchdatamanagement.techtarget.com/definition/OLAP-cube, Apr. 28, 2012, pp. 16.
Sigrist, et al., “Prosite, a Protein Domain Database for Functional Characterization and Annotation,” Nucleic Acids Research, 2010, vol. 38, pp. D161-D166.
Sirotkin et al., “Chapter 13: The Processing of Biological Sequence Data at NCBI,” The NCBI Handbook, Oct. 2002, pp. 1-11.
“The FASTA Program Package,” fasta-36.3.4, Mar. 25, 2011, pp. 29.
Official Communication in European Application No. EP 14158861.6 dated Jun. 16, 2014.
Official Communication in New Zealand Application No. 622517 dated Apr. 3, 2014.
Official Communication in New Zealand Application No. 624557 dated May 14, 2014.
“A First Look: Predicting Market Demand for Food Retail using a Huff Analysis,” TRF Policy Solutions, Jul. 2012, pp. 30.
“A Word About Banks and the Laundering of Drug Money,” Aug. 18, 2012, http://www.golemxiv.co.uk/2012/08/a-word-about-banks-and-the-laundering-of-drug-money/.
About 80 Minutes, “Palantir in a Number of Parts—Part 6—Graph,” Mar. 21, 2013, pp. 1-6.
Acklen, Laura, “Absolute Beginner's Guide to Microsoft Word 2003,” Dec. 24, 2003, pp. 15-18, 34-41, 308-316.
Alur et al., “Chapter 2: IBM InfoSphere DataStage Stages,” IBM InfoSphere DataStage Data Flow and Job Design, Jul. 1, 2008, pp. 35-137.
Amnet, “5 Great Tools for Visualizing Your Twitter Followers,” posted Aug. 4, 2010, http://www.amnetblog.com/component/content/article/115-5-grate-tools-for-visualizing-your-twitter-followers.html.
Ananiev et al., “The New Modality API,” http://web.archive.org/web/20061211011958/http://java.sun.com/developer/technicalArticles/J2SE/Desktop/javase6/modality/ Jan. 21, 2006, pp. 8.
AppActs, “Smart Thinking for Super Apps,” http://www.appacts.com Printed Jul. 18, 2013 in 4 pages.
Apsalar, “Data Powered Mobile Advertising,” “Free Mobile App Analytics” and various analytics related screen shots http://apsalar.com Printed Jul. 18, 2013 in 8 pages.
Bluttman et al., “Excel Formulas and Functions for Dummies,” 2005, Wiley Publishing, Inc., pp. 280, 284-286.
Bugzilla@Mozilla, “Bug 18726—[feature] Long-click means of invoking contextual menus not supported,” http://bugzilla.mozilla.org/show—bug.cgi?id=18726 printed Jun. 13, 2013 in 11 pages.
Canese et al., “Chapter 2: PubMed: The Bibliographic Database,” The NCBI Handbook, Oct. 2002, pp. 1-10.
Capptain—Pilot Your Apps, http://www.capptain.com Printed Jul. 18, 2013 in 6 pages.
Celik, Tantek, “CSS Basic User Interface Module Level 3 (CSS3 UI),” Section 8 Resizing and Overflow, Jan. 17, 2012, retrieved from internet http://www.w3.org/TR/2012/WD-c553-ui-20120117/#resizing-amp-overflow retrieved on May 18, 2015.
Chaudhuri et al., “An Overview of Business Intelligence Technology,” Communications of the ACM, Aug. 2011, vol. 54, No. 8.
Chung, Chin-Wan, “Dataplex: An Access to Heterogeneous Distributed Databases,” Communications of the ACM, Association for Computing Machinery, Inc., vol. 33, No. 1, Jan. 1, 1990, pp. 70-80.
Cohn, et al., “Semi-supervised clustering with user feedback,” Constrained Clustering: Advances in Algorithms, Theory, and Applications 4.1 (2003): 17-32.
Countly Mobile Analytics, http://count.ly/ Printed Jul. 18, 2013 in 9 pages.
Definition “Identify”, downloaded Jan. 22, 2015, 1 page.
Definition “Overlay”, downloaded Jan. 22, 2015, 1 page.
Distimo—App Analytics, http://www.distimo.com/app-analytics Printed Jul. 18, 2013 in 5 pages.
Dramowicz, Ela, “Retail Trade Area Analysis Using the Huff Model,” Directions Magazine, Jul. 2, 2005 in 10 pages, http://www.directionsmag.com/articles/retail-trade-area-analysis-using-the-huff-model/123411.
Analytics, http://www.flurry.com/ Printed Jul. 18, 2013 in 14 pages.
GIS-Net 3 Public—Department of Regional Planning. Planning & Zoning Information for Unincorporated LA County. Retrieved Oct. 2, 2013 from http://gis.planning.lacounty.gov/GIS-NET3—Public/Viewer.html.
Google Analytics Official Website—Web Analytics & Reporting, http://www.google.com/analytics.index.html Printed Jul. 18, 2013 in 22 pages.
Gorr et al., “Crime Hot Spot Forecasting: Modeling and Comparative Evaluation”, Grant 98-IJ-CX-K005, May 6, 2002, 37 pages.
Griffith, Daniel A., “A Generalized Huff Model,” Geographical Analysis, Apr. 1982, vol. 14, No. 2, pp. 135-144.
Gu et al., “Record Linkage: Current Practice and Future Directions,” Jan. 15, 2004, pp. 32.
Hansen et al., “Analyzing Social Media Networks with NodeXL: Insights from a Connected World”, Chapter 4, pp. 53-67 and Chapter 10, pp. 143-164, published Sep. 2010.
Hardesty, “Privacy Challenges: Analysis: It's Surprisingly Easy to Identify Individuals from Credit-Card Metadata,” MIT News on Campus and Around the World, MIT News Office, Jan. 29, 2015, 3 pages.
Hibbert et al., “Prediction of Shopping Behavior Using a Huff Model Within a GIS Framework,” Healthy Eating in Context, Mar. 18, 2011, pp. 16.
Hogue et al., “Thresher: Automating the Unwrapping of Semantic Content from the World Wide Web,” 14th International Conference on World Wide Web, WWW 2005: Chiba, Japan, May 10-14, 2005, pp. 86-95.
Hua et al., “A Multi-attribute Data Structure with Parallel Bloom Filters for Network Services”, HiPC 2006 LNCS 4297, pp. 277-288, 2006.
Huang et al., “Systematic and Integrative Analysis of Large Gene Lists Using David Bioinformatics Resources,” Nature Protocols, 4.1, 2008, 44-57.
“HunchLab: Heat Map and Kernel Density Calculation for Crime Analysis,” Azavea Journal, printed from www.azavea.com/blogs/newsletter/v4i4/kernel-density-capabilities-added-to-hunchlab/ on Sep. 9, 2014, 2 pages.
Kahan et al., “Annotea: an Open RDF Infrastructure for Shared Web Annotations”, Computer Networks, Elsevier Science Publishers B.V., vol. 39, No. 5, dated Aug. 5, 2002, pp. 589-608.
Kontagent Mobile Analytics, http://www.kontagent.com/ Printed Jul. 18, 2013 in 9 pages.
Li et al., “Interactive Multimodal Visual Search on Mobile Device,” IEEE Transactions on Multimedia, vol. 15, No. 3, Apr. 1, 2013, pp. 594-607.
Liu, Tianshun, “Combining GIS and the Huff Model to Analyze Suitable Locations for a New Asian Supermarket in the Minneapolis and St. Paul, Minnesota USA,” Papers in Resource Analysis, 2012, vol. 14, pp. 8.
Localytics—Mobile App Marketing & Analytics, http://www.localytics.com/ Printed Jul. 18, 2013 in 12 pages.
Manske, “File Saving Dialogs,” http://www.mozilla.org/editor/ui—specs/FileSaveDialogs.html, Jan. 20, 1999, pp. 7.
Map Builder, “Rapid Mashup Development Tool for Google and Yahoo Maps!” http://web.archive.org/web/20090626224734/http://www.mapbuilder.net/ printed Jul. 20, 2012 in 2 pages.
Map of San Jose, CA. Retrieved Oct. 2, 2013 from http://maps.yahoo.com.
Map of San Jose, CA. Retrieved Oct. 2, 2013 from http://maps.bing.com.
Map of San Jose, CA. Retrieved Oct. 2, 2013 from http://maps.google.com.
Microsoft Office—Visio, “About connecting shapes,” http://office.microsoft.com/en-us/visio-help/about-connecting-shapes-HP085050369.aspx printed Aug. 4, 2011 in 6 pages.
Microsoft Office—Visio, “Add and glue connectors with the Connector tool,” http://office.microsoft.com/en-us/visio-help/add-and-glue-connectors-with-the-connector-tool-HA010048532.aspx?CTT=1 printed Aug. 4, 2011 in 1 page.
Mixpanel—Mobile Analytics, https://mixpanel.com/ Printed Jul. 18, 2013 in 13 pages.
“Money Laundering Risks and E-Gaming: A European Overview and Assessment,” 2009, http://www.cf.ac.uk/socsi/resources/Levi—Final—Money—Laundering—Risks—egaming.pdf.
Nierman, “Evaluating Structural Similarity in XML Documents”, 6 pages, 2002.
Nolan et al., “McArta: A Malicious Code Automated Run-Time Analysis Framework,” Homeland Security, 2012 IEEE Conference on Technologies for, Nov. 13, 2012, pp. 13-17.
Olanoff, Drew, “Deep Dive with the New Google Maps for Desktop with Google Earth Integration, It's More than Just a Utility,” May 15, 2013, pp. 1-6, retrieved from the internet: http://web.archive.org/web/20130515230641/http://techcrunch.com/2013/05/15/deep-dive-with-the-new-google-maps-for-desktop-with-google-earth-integration-its-more-than-just-a-utility/.
Open Web Analytics (OWA), http://www.openwebanalytics.com/ Printed Jul. 19, 2013 in 5 pages.
Palantir Technologies, “Palantir Labs—Timeline,” Oct. 1, 2010, retrieved from the internet https://www.youtube.com/watch?v=JCgDW5bru9M.
Palmas et al., “An Edge-Bunding Layout for Interactive Parallel Coordinates” 2014 IEEE Pacific Visualization Symposium, pp. 57-64.
Perdisci et al., “Behavioral Clustering of HTTP-Based Malware and Signature Generation Using Malicious Network Traces,” USENIX, Mar. 18, 2010, pp. 1-14.
Piwik—Free Web Analytics Software. http://piwik.org/ Printed Jul. 19, 2013 in18 pages.
“Potential Money Laundering Warning Signs,” snapshot taken 2003, https://web.archive.org/web/20030816090055/http:/finsolinc.com/anti-money%20laundering%20training%20guides.pdf.
Quest, “Toad for Oracle 11.6—Guide to Using Toad,” Sep. 24, 2012, pp. 1-162.
“Refresh CSS Ellipsis When Resizing Container—Stack Overflow,” Jul. 31, 2013, retrieved from internet http://stackoverflow.com/questions/17964681/refresh-css-ellipsis-when-resizing-container, retrieved on May 18, 2015.
Shi et al., “A Scalable Implementation of Malware Detection Based on Network Connection Behaviors,” 2013 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, IEEE, Oct. 10, 2013, pp. 59-66.
StatCounter—Free Invisible Web Tracker, Hit Counter and Web Stats, http://statcounter.com/ Printed Jul. 19, 2013 in 17 pages.
Symantec Corporation, “E-Security Begins with Sound Security Policies,” Announcement Symantec, Jun. 14, 2001.
TestFlight—Beta Testing on the Fly, http://testflightapp.com/ Printed Jul. 18, 2013 in 3 pages.
Thompson, Mick, “Getting Started with GEO,” Getting Started with GEO, Jul. 26, 2011.
Trak.io, http://trak.io/ printed Jul. 18, 2013 in 3 pages.
Umagandhi et al., “Search Query Recommendations Using Hybrid User Profile with Query Logs,” International Journal of Computer Applications, vol. 80, No. 10, Oct. 1, 2013, pp. 7-18.
UserMetrix, http://usermetrix.com/android-analytics printed Jul. 18, 2013 in 3 pages.
“Using Whois Based Geolocation and Google Maps API for Support Cybercrime Investigations,” http://wseas.us/e-library/conferences/2013/Dubrovnik/telecirc/telecirc-32.pdf.
Valentini et al., “Ensembles of Learning Machines”, M. Marinaro and R. Tagliaferri (Eds.): Wirn Vietri 2002, LNCS 2486, pp. 3-20.
Vose et al., “Help File for ModelRisk Version 5,” 2007, Vose Software, pp. 349-353. [Uploaded in 2 Parts].
Wang et al., “Research on a Clustering Data De-Duplication Mechanism Based on Bloom Filter,” IEEE 2010, 5 pages.
Wikipedia, “Federated Database System,” Sep. 7, 2013, retrieved from the internet on Jan. 27, 2015 http://en.wikipedia.org/w/index,php?title=Federated—database—system&oldid=571954221.
Wikipedia, “Multimap,” Jan. 1, 2013, https://en.wikipedia.org/w/index.php?title-Multimap&oldid=530800748.
Wright et al., “Palantir Technologies VAST 2010 Challenge Text Records—Investigations into Arms Dealing,” Oct. 29, 2010, pp. 1-10.
Yang et al., “HTML Page Analysis Based on Visual Cues”, A129, pp. 859-864, 2001.
Notice of Acceptance for Australian Patent Application No. 2014250678 dated Oct. 7, 2015.
Notice of Allowance for U.S. Appl. No. 12/556,318 dated Nov. 2, 2015.
Notice of Allowance for U.S. Appl. No. 14/102,394 dated Aug. 25, 2014.
Notice of Allowance for U.S. Appl. No. 14/108,187 dated Aug. 29, 2014.
Notice of Allowance for U.S. Appl. No. 14/135,289 dated Oct. 14, 2014.
Notice of Allowance for U.S. Appl. No. 14/148,568 dated Aug. 26, 2015.
Notice of Allowance for U.S. Appl. No. 14/192,767 dated Dec. 16, 2014.
Notice of Allowance for U.S. Appl. No. 14/225,084 dated May 4, 2015.
Notice of Allowance for U.S. Appl. No. 14/268,964 dated Dec. 3, 2014.
Notice of Allowance for U.S. Appl. No. 14/294,098 dated Dec. 29, 2014.
Notice of Allowance for U.S. Appl. No. 14/319,161 dated May 4, 2015.
Notice of Allowance for U.S. Appl. No. 14/323,935 dated Oct. 1, 2015.
Notice of Allowance for U.S. Appl. No. 14/326,738 dated Nov. 18, 2015.
Notice of Allowance for U.S. Appl. No. 14/473,552 dated Jul. 24, 2015.
Notice of Allowance for U.S. Appl. No. 14/473,860 dated Jan. 5, 2015.
Notice of Allowance for U.S. Appl. No. 14/479,863 dated Mar. 31, 2015.
Notice of Allowance for U.S. Appl. No. 14/504,103 dated May 18, 2015.
Notice of Allowance for U.S. Appl. No. 14/552,336 dated Nov. 3, 2015.
Notice of Allowance for U.S. Appl. No. 14/616,080 dated Apr. 2, 2015.
Notice of Allowance for U.S. Appl. No. 14/746,671 dated Jan. 21, 2016.
Notice of Allowance for U.S. Appl. No. 14/923,364 dated May 6, 2016.
Notice of Allowance for U.S. Appl. No. 14/486,991 dated May 1, 2015.
Official Communication for Australian Patent Application No. 2014201511 dated Feb. 27, 2015.
Official Communication for Australian Patent Application No. 2014202442 dated Mar. 19, 2015.
Official Communication for Australian Patent Application No. 2014210604 dated Jun. 5, 2015.
Official Communication for Australian Patent Application No. 2014210614 dated Jun. 5, 2015.
Official Communication for Australian Patent Application No. 2014213553 dated May 7, 2015.
Official Communication for Australian Patent Application No. 2014250678 dated Jun. 17, 2015.
Official Communication for European Patent Application No. 14159464.8 dated Jul. 31, 2014.
Official Communication for European Patent Application No. 14159418.4 dated Oct. 8, 2014.
Official Communication for European Patent Application No. 14180142.3 dated Feb. 6, 2015.
Official Communication for European Patent Application No. 14180281.9 dated Jan. 26, 2015.
Official Communication for European Patent Application No. 14180321.3 dated Apr. 17, 2015.
Official Communication for European Patent Application No. 14180432.8 dated Jun. 23, 2015.
Official Communication for European Patent Application No. 14186225.0 dated Feb. 13, 2015.
Official Communication for European Patent Application No. 14187739.9 dated Jul. 6, 2015.
Official Communication for European Patent Application No. 14187996.5 dated Feb. 12, 2015.
Official Communication for European Patent Application No. 14189344.6 dated Feb. 20, 2015.
Official Communication for European Patent Application No. 14189347.9 dated Mar. 4, 2015.
Official Communication for European Patent Application No. 14189802.3 dated May 11, 2015.
Official Communication for European Patent Application No. 14191540.5 dated May 27, 2015.
Official Communication for European Patent Application No. 14197879.1 dated Apr. 28, 2015.
Official Communication for European Patent Application No. 14197895.7 dated Apr. 28, 2015.
Official Communication for European Patent Application No. 14197938.5 dated Apr. 28, 2015.
Official Communication for European Patent Application No. 14199182.8 dated Mar. 13, 2015.
Official Communication for European Patent Application No. 14200246.8 dated May 29, 2015.
Official Communication for European Patent Application No. 14200298.9 dated May 13, 2015.
Official Communication for European Patent Application No. 15155845.9 dated Oct. 6, 2015.
Official Communication for European Patent Application No. 15155846.7 dated Jul. 8, 2015.
Official Communication for European Patent Application No. 15165244.3 dated Aug. 27, 2015.
Official Communication for European Patent Application No. 15175106.2 dated Nov. 5, 2015.
Official Communication for European Patent Application No. 15175151.8 dated Nov. 25, 2015.
Official Communication for European Patent Application No. 15181419.1 dated Sep. 29, 2015.
Official Communication for European Patent Application No. 15183721.8 dated Nov. 23, 2015.
Official Communication for European Patent Application No. 15184764.7 dated Dec. 14, 2015.
Official Communication for Great Britain Patent Application No. 1404457.2 dated Aug. 14, 2014.
Official Communication for Great Britain Patent Application No. 1404486.1 dated May 21, 2015.
Official Communication for Great Britain Patent Application No. 1404486.1 dated Aug. 27, 2014.
Official Communication for Great Britain Patent Application No. 1404489.5 dated May 21, 2015.
Official Communication for Great Britain Patent Application No. 1404489.5 dated Aug. 27, 2014.
Official Communication for Great Britain Patent Application No. 1404499.4 dated Jun. 11, 2015.
Official Communication for Great Britain Patent Application No. 1404499.4 dated Aug. 20, 2014.
Official Communication for Great Britain Patent Application No. 1404574.4 dated Dec. 18, 2014.
Official Communication for Great Britain Patent Application No. 1408025.3 dated Nov. 6, 2014.
Official Communication for Great Britain Patent Application No. 1411984.6 dated Dec. 22, 2014.
Official Communication for Great Britain Patent Application No. 1413935.6 dated Jan. 27, 2015.
Official Communication for Netherlands Patent Application No. 2012417 dated Sep. 18, 2015.
Official Communication for Netherlands Patent Application No. 2012421 dated Sep. 18, 2015.
Official Communication for Netherlands Patent Application No. 2012437 dated Sep. 18, 2015.
Official Communication for Netherlands Patent Application No. 2012438 dated Sep. 21, 2015.
Official Communication for Netherlands Patent Application No. 2013306 dated Apr. 24, 2015.
Official Communication for New Zealand Patent Application No. 622473 dated Jun. 19, 2014.
Official Communication for New Zealand Patent Application No. 622473 dated Mar. 27, 2014.
Official Communication for New Zealand Patent Application No. 622513 dated Apr. 3, 2014.
Official Communication for New Zealand Patent Application No. 627962 dated Aug. 5, 2014.
Official Communication for New Zealand Patent Application No. 628161 dated Aug. 25, 2014.
Official Communication for New Zealand Patent Application No. 628263 dated Aug. 12, 2014.
Official Communication for New Zealand Patent Application No. 628495 dated Aug. 19, 2014.
Official Communication for New Zealand Patent Application No. 628585 dated Aug. 26, 2014.
Official Communication for New Zealand Patent Application No. 628840 dated Aug. 28, 2014.
Official Communication for U.S. Appl. No. 12/556,318 dated Jul. 2, 2015.
Official Communication for U.S. Appl. No. 13/247,987 dated Apr. 2, 2015.
Official Communication for U.S. Appl. No. 13/247,987 dated Sep. 22, 2015.
Official Communication for U.S. Appl. No. 13/827,491 dated Dec. 1, 2014.
Official Communication for U.S. Appl. No. 13/827,491 dated Jun. 22, 2015.
Official Communication for U.S. Appl. No. 13/827,491 dated Mar. 30, 2016.
Official Communication for U.S. Appl. No. 13/827,491 dated Oct. 9, 2015.
Official Communication for U.S. Appl. No. 13/831,791 dated Mar. 4, 2015.
Official Communication for U.S. Appl. No. 13/831,791 dated Aug. 6, 2015.
Official Communication for U.S. Appl. No. 13/835,688 dated Jun. 17, 2015.
Official Communication for U.S. Appl. No. 13/839,026 dated Aug. 4, 2015.
Official Communication for U.S. Appl. No. 14/134,558 dated Oct. 7, 2015.
Official Communication for U.S. Appl. No. 14/141,252 dated Oct. 8, 2015.
Official Communication for U.S. Appl. No. 14/148,568 dated Oct. 22, 2014.
Official Communication for U.S. Appl. No. 14/148,568 dated Mar. 26, 2015.
Official Communication for U.S. Appl. No. 14/196,814 dated May 5, 2015.
Official Communication for U.S. Appl. No. 14/225,006 dated Sep. 10, 2014.
Official Communication for U.S. Appl. No. 14/225,006 dated Sep. 2, 2015.
Official Communication for U.S. Appl. No. 14/225,006 dated Dec. 21, 2015.
Official Communication for U.S. Appl. No. 14/225,006 dated Feb. 27, 2015.
Official Communication for U.S. Appl. No. 14/225,084 dated Sep. 11, 2015.
Official Communication for U.S. Appl. No. 14/225,084 dated Sep. 2, 2014.
Official Communication for U.S. Appl. No. 14/225,084 dated Feb. 20, 2015.
Official Communication for U.S. Appl. No. 14/225,084 dated Jan. 4, 2016.
Official Communication for U.S. Appl. No. 14/225,160 dated Feb. 11, 2015.
Official Communication for U.S. Appl. No. 14/225,160 dated Aug. 12, 2015.
Official Communication for U.S. Appl. No. 14/225,160 dated May 20, 2015.
Official Communication for U.S. Appl. No. 14/225,160 dated Oct. 22, 2014.
Official Communication for U.S. Appl. No. 14/225,160 dated Jul. 29, 2014.
Official Communication for U.S. Appl. No. 14/268,964 dated Sep. 3, 2014.
Official Communication for U.S. Appl. No. 14/289,596 dated Jul. 18, 2014.
Official Communication for U.S. Appl. No. 14/289,596 dated Jan. 26, 2015.
Official Communication for U.S. Appl. No. 14/289,596 dated Apr. 30, 2015.
Official Communication for U.S. Appl. No. 14/289,599 dated Jul. 22, 2014.
Official Communication for U.S. Appl. No. 14/289,599 dated May 29, 2015.
Official Communication for U.S. Appl. No. 14/289,599 dated Sep. 4, 2015.
Official Communication for U.S. Appl. No. 14/294,098 dated Aug. 15, 2014.
Official Communication for U.S. Appl. No. 14/294,098 dated Nov. 6, 2014.
Official Communication for U.S. Appl. No. 14/306,138 dated Sep. 14, 2015.
Official Communication for U.S. Appl. No. 14/306,138 dated Feb. 18, 2015.
Official Communication for U.S. Appl. No. 14/306,138 dated Sep. 23, 2014.
Official Communication for U.S. Appl. No. 14/306,138 dated Dec. 24, 2015.
Official Communication for U.S. Appl. No. 14/306,138 dated May 26, 2015.
Official Communication for U.S. Appl. No. 14/306,138 dated Dec. 3, 2015.
Official Communication for U.S. Appl. No. 14/306,147 dated Feb. 19, 2015.
Official Communication for U.S. Appl. No. 14/306,147 dated Dec. 24, 2015.
Official Communication for U.S. Appl. No. 14/306,147 dated Aug. 7, 2015.
Official Communication for U.S. Appl. No. 14/306,147 dated Sep. 9, 2014.
Official Communication for U.S. Appl. No. 14/306,154 dated Mar. 11, 2015.
Official Communication for U.S. Appl. No. 14/306,154 dated May 15, 2015.
Official Communication for U.S. Appl. No. 14/306,154 dated Nov. 16, 2015.
Official Communication for U.S. Appl. No. 14/306,154 dated Jul. 6, 2015.
Official Communication for U.S. Appl. No. 14/306,154 dated Sep. 9, 2014.
Official Communication for U.S. Appl. No. 14/319,161 dated Jan. 23, 2015.
Official Communication for U.S. Appl. No. 14/319,765 dated Sep. 10, 2015.
Official Communication for U.S. Appl. No. 14/319,765 dated Jun. 16, 2015.
Official Communication for U.S. Appl. No. 14/319,765 dated Nov. 25, 2014.
Official Communication for U.S. Appl. No. 14/319,765 dated Feb. 4, 2015.
Official Communication for U.S. Appl. No. 14/323,935 dated Jun. 22, 2015.
Official Communication for U.S. Appl. No. 14/323,935 dated Nov. 28, 2014.
Official Communication for U.S. Appl. No. 14/323,935 dated Mar. 31, 2015.
Official Communication for U.S. Appl. No. 14/326,738 dated Dec. 2, 2014.
Official Communication for U.S. Appl. No. 14/326,738 dated Jul. 31, 2015.
Official Communication for U.S. Appl. No. 14/326,738 dated Mar. 31, 2015.
Official Communication for U.S. Appl. No. 14/451,221 dated Oct. 21, 2014.
Official Communication for U.S. Appl. No. 14/463,615 dated Sep. 10, 2015.
Official Communication for U.S. Appl. No. 14/463,615 dated Nov. 13, 2014.
Official Communication for U.S. Appl. No. 14/463,615 dated May 21, 2015.
Official Communication for U.S. Appl. No. 14/463,615 dated Jan. 28, 2015.
Official Communication for U.S. Appl. No. 14/463,615 dated Dec. 9, 2015.
Official Communication for U.S. Appl. No. 14/473,552 dated Feb. 24, 2015.
Official Communication for U.S. Appl. No. 14/479,863 dated Dec. 26, 2014.
Official Communication for U.S. Appl. No. 14/483,527 dated Jun. 22, 2015.
Official Communication for U.S. Appl. No. 14/483,527 dated Jan. 28, 2015.
Official Communication for U.S. Appl. No. 14/483,527 dated Oct. 28, 2015.
Official Communication for U.S. Appl. No. 14/486,991 dated Mar. 10, 2015.
Official Communication for U.S. Appl. No. 14/490,612 dated Aug. 18, 2015.
Official Communication for U.S. Appl. No. 14/504,103 dated Mar. 31, 2015.
Official Communication for U.S. Appl. No. 14/504,103 dated Feb. 5, 2015.
Official Communication for U.S. Appl. No. 14/516,386 dated Feb. 24, 2016.
Official Communication for U.S. Appl. No. 14/552,336 dated Jul. 20, 2015.
Official Communication for U.S. Appl. No. 14/562,524 dated Nov. 10, 2015.
Official Communication for U.S. Appl. No. 14/562,524 dated Sep. 14, 2015.
Official Communication for U.S. Appl. No. 14/571,098 dated Nov. 10, 2015.
Official Communication for U.S. Appl. No. 14/571,098 dated Mar. 11, 2015.
Official Communication for U.S. Appl. No. 14/571,098 dated Aug. 24, 2015.
Official Communication for U.S. Appl. No. 14/571,098 dated Aug. 5, 2015.
Official Communication for U.S. Appl. No. 14/579,752 dated Aug. 19, 2015.
Official Communication for U.S. Appl. No. 14/579,752 dated May 26, 2015.
Official Communication for U.S. Appl. No. 14/631,633 dated Sep. 10, 2015.
Official Communication for U.S. Appl. No. 14/639,606 dated Oct. 16, 2015.
Official Communication for U.S. Appl. No. 14/639,606 dated May 18, 2015.
Official Communication for U.S. Appl. No. 14/639,606 dated Jul. 24, 2015.
Official Communication for U.S. Appl. No. 14/676,621 dated Oct. 29, 2015.
Official Communication for U.S. Appl. No. 14/676,621 dated Jul. 30, 2015.
Official Communication for U.S. Appl. No. 14/726,353 dated Sep. 10, 2015.
Official Communication for U.S. Appl. No. 14/746,671 dated Nov. 12, 2015.
Official Communication for U.S. Appl. No. 14/800,447 dated Dec. 10, 2015.
Official Communication for U.S. Appl. No. 14/813,749 dated Sep. 28, 2015.
Official Communication for U.S. Appl. No. 14/842,734 dated Nov. 19, 2015.
Official Communication for U.S. Appl. No. 14/923,374 dated May 23, 2016.
Official Communication for U.S. Appl. No. 14/923,374 dated Feb. 9, 2016.
Official Communication for U.S. Appl. No. 15/017,324 dated Apr. 22, 2016.
Restriction Requirement for U.S. Appl. No. 13/839,026 dated Apr. 2, 2015.
Boyce, Jim, “Microsoft Outlook 2010 Inside Out,” Aug. 1, 2010, retrieved from the internet https://capdtron.files.wordpress.com/2013/01/outlook-2010-inside—out, pdf, in 1111 pages.
Gesher, Ari, “Palantir Screenshots in the Wild: Swing Sightings,” The Palantir Blog, Sep. 11, 2007, in 6 pages.
Official Communication for European Patent Application No. 14158861.6 dated Nov. 2, 2016.
“A Tour of Pinboard,” <http://pinboard.in/tour> as printed May 15, 2014 in 6 pages.
Abbey, Kristen, “Review of Google Docs,” May 1, 2007, pp. 2.
Adams et al., “Worklets: A Service-Oriented Implementation of Dynamic Flexibility in Workflows,” R. Meersman, Z. Tani et al. (Eds.): OTM 2006, LNCS, 4275, pp. 291-308, 2006.
Anonymous, “A Real-World Problem of Matching Records,” Nov. 2006, <http://grupoweb.upf.es/bd-web/slides/ullman.pdf> pp. 1-16.
Anonymous, “Frequently Asked Questions about Office Binder 97,” http://web.archive.org/web/20100210112922/http://support.microsoft.com/kb/843147 printed Dec. 18, 2006 in 5 pages.
Ashraf, “Protect your Google Account (Gmail) by enabling SMS (text message) notifications for Suspicious Activity,” online article from dotTech, Jan. 24, 2013, https://dottech.org/94405/how-to-setup-text-message-sms-google-notifications-for-suspicious-activity/.
Azad, Khalid, “A Visual Guide to Version Control,” <http://betterexplained.com/articles/a-visual-guide-to-version-control/>, Sep. 27, 2007 in 11 pages.
Bae et al., “Partitioning Algorithms for the Computation of Average Iceberg Queries,” DaWaK 2000, LNCS 1874, pp. 276-286.
Ballesteros et al., “Batching: A Design Pattern for Efficient and Flexible Client/Server Interaction,” Transactions on Pattern Languages of Programming, Springer Berlin Heildeberg, 2009, pp. 48-66.
Beverley, Bill, “Windows Tips & Tricks,” <http://alamopc.org/pcalamode/columns/beverley/bb0301.shtml>, Mar. 2001 in 5 pages.
Bogle et al., “Reducing Cross-Domain Call Overhead Using Batched Futures,” SIGPLAN No. 29, Oct. 10, 1994) pp. 341-354.
Bogle, Phillip Lee, “Reducing Cross-Domain Call Overhead Using Batched Futures,” May 1994, Massachusetts Institute of Technology, pp. 96.
Bouajjani et al., “Analysis of Recursively Parallel Programs,” PLDI09: Proceedings of the 2009 ACM Sigplan Conference on Programming Language Design and Implementation, Jun. 15-20, 2009, Dublin, Ireland, pp. 203-214.
Bradbard, Matthew, “Technical Analysis Applied,” <http://partners.futuresource.com/fastbreak/2007/0905.htm>, Sep. 5, 2007, pp. 6.
Brandel, Mary, “Data Loss Prevention Dos and Don'ts,” <http://web.archive.org/web/20080724024847/http://www.csoonline.com/article/221272/Dos—and—Don—ts—for—Data—Loss—Prevention>, Oct. 10, 2007, pp. 5.
Breierova et al., “An Introduction to Sensitivity Analysis,” Publsihed by Massachusetts Institute of Technology, Cambridge, MA, Oct. 2001, pp. 67.
Chazelle et al., “The Bloomier Filter: An Efficient Data Structure for Static Support Lookup Tables,” Soda '04 Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 2004, pp. 30-39.
Chen et al., “A Novel Emergency Vehicle Dispatching System,” 2013 IEEE 77th Vehicular Technology Conference, IEEE, Jun. 2, 2013, 5 pages.
CMSC 341, “Introduction to Trees,” <http://www.csee.umbc.edu/courses/undergraduate/341/fall07/Lectures/Trees/Treelntro.pdf>, Power Point Presentation, Baltimore, Maryland, Aug. 3, 2007, pp. 29.
Delicious, <http://delicious.com/> as printed May 15, 2014 in 1 page.
Devanbu et al., “Authentic Third-party Data Publication”, http://www.cs.ucdavis.edu/˜devanbu/authdbpub.pdf, p. 19, 2000.
Donjerkovic et al., “Probabilistic Optimization of Top N Queries,” Proceedings of the 25th VLDB Conference, Edinburgh, Scotland, 1999, pp. 411-422.
Dreyer et al., “An Object-Oriented Data Model for a Time Series Management System,” Proceedings of the 7th International Working Conference on Scientific and Statistical Database Management, Charlottesville, Virginia USA, Sep. 28-30, 1994, pp. 12.
Eklund et al., “A Dynamic Multi-source Dijkstra's Algorithm for Vehicle Routing,” Intelligent Information Systems, 1996, pp. 329-333.
“E-MailRelay,” <http://web.archive.org/web/20080821175021/http://emailrelay.sourceforge.net/> Aug. 21, 2008, pp. 2.
Fang et al., “Computing Iceberg Queries Efficiently,” Proceedings of the 24th VLDB Conference New York, 1998, pp. 299-310.
Fischer et al., “Populating a Release History Database From Version Control and Bug Tracking Systems,” Software Maintenance, 2003, ICSM 2003, Proceedings International Conference, pp. 1-10.
Galliford, Miles, “Snaglt Versus Free Screen Capture Software: Critical Tools for Website Owners,” <http://www.subhub.com/articles/free-screen-capture-software>, Mar. 27, 2008, pp. 11.
Goldstein et al., “Stacks Lazy Threads: Implementing a Fast Parallel Call,” Journal of Parallel and Distributed Computing, Jan. 1, 1996, pp. 5-20.
“GrabUp—What a Timesaver!” <http://atlchris.com/191/grabup/>, Aug. 11, 2008, pp. 3.
Han et al., “Efficient Computation of Iceberg Cubes with Complex Measures,” ACM Sigmod, May 21-24, 2001, pp. 1-12.
Hart et al., “A Formal Basis for the Heuristic Determination of Minimum Cost Paths,” IEEE Transactions on Systems Science and Cybernetics, IEEE, vol. 1, No. 2, Jul. 1, 1968, pp. 100-107.
Ivanova et al., “An Architecture for Recycling Intermediates in a Column-Store,” Proceedings of the 35th Sigmod International Conference on Management of Data, Sigmod '09, Jun. 29, 2009, p. 309.
Jacques, M., “An extensible math expression parser with plug-ins,” Code Project, Mar. 13, 2008. Retrieved on Jan. 30, 2015 from the internet: <http://www.codeproject.com/Articles/7335/An-extensible-math-expression-parser-with-plug-ins>.
“Java Remote Method Invocation: 7—Remote Object Activation,” Dec. 31, 2010, retrieved from the internet Mar. 15, 2016 https://docs.oracle.com/javase/7/docs/platform/rmi/spec/rmi-activation2.html, 2 pages.
Jenks et al., “Nomadic Threads: A Migrating Multithreaded Approach to Remote Memory Accesses in Multiprocessors,” Parallel Architectures and Compilation Techniques, 1996, Oct. 20, 1996, pp. 2-11.
JetScreenshot.com, “Share Screenshots via Internet in Seconds,” <http://web.archive.org/web/20130807164204/http://www.jetscreenshot.com/>, Aug. 7, 2013, pp. 1.
Johnson, Maggie, “Introduction to YACC and Bison,” CS143, Handout 13, Jul. 8, 2005, pp. 11.
Johnson, Steve, “Access 2013 on demand,” Access 2013 on Demand, 9 May 2013, Que Publishing.
Jotshi et al., “Dispatching and Routing of Emergency Vehicles in Disaster Mitigation Using Data Fusion.” Socio-Economic Planning Sciences, Pergamon, Amsterdam, Netherlands, vol. 43, No. 1, Mar. 1, 2009, 24 pages.
Karp et al., “A Simple Algorithm for Finding Frequent Elements in Streams and Bags,” ACM Transactions on Database Systems, vol. 28, No. 1, Mar. 2003, pp. 5155.
Kwout, <http://web.archive.org/web/20080905132448/http://www.kwout.com/> Sep. 5, 2008, pp. 2.
Leela et al., “On Incorporating Iceberg Queries in Query Processors,” Technical Report, TR-2002-01, Database Systems for Advanced Applications Lecture Notes in Computer Science, 2004, vol. 2973.
Lim et al., “Resolving Attribute Incompatibility in Database Integration: An Evidential Reasoning Approach,” Department of Computer Science, University of Minnesota, 1994, <http://reference.kfupm.edu.sa/content/r/e/resolving—attribute—incompatibility—in—d—531691.pdf> pp. 1-10.
Litwin et al., “Multidatabase Interoperability,” IEEE Computer, Dec. 1986, vol. 19, No. 12, http://www.lamsade.dauphine.fr/˜litwin/mdb-interoperability.pdf, pp. 10-18.
Liu et al., “Methods for Mining Frequent Items in Data Streams: An Overview,” Knowledge and Information Systems, vol. 26, No. 1, Jan. 2011, pp. 1-30.
Mendes et al., “TcruziKB: Enabling Complex Queries for Genomic Data Exploration,” IEEE International Conference on Semantic Computing, Aug. 2008, pp. 432-439.
Mentzas et al. “An Architecture for Intelligent Assistance in the Forecasting Process,” Proceedings of the Twenty-Eighth Hawaii International Conference on System Sciences, Jan. 3-6, 1995, vol. 3, pp. 167-176.
Microsoft Windows, “Microsoft Windows Version 2002 Print Out 2,” 2002, pp. 1-6.
Microsoft, “Introduction to Versioning,” http://office.microsoft.com/en-us/sharepointtechnolgy/HA010021576.aspx?mode=print>, 2007 in 3 pages.
Microsoft, “How Word Creates and Recovers the AutoRecover files,” <http://support.microsoft.com/kb/107686>, Article ID: 107686, printed Feb. 11, 2010 in 3 pages.
Microsoft, “Managing Versions and Checking Documents in and Out (Windows SharePoint Services 2.0),” <http://technet.microsoft.com/en-us/library/cc287876.aspx>, Aug. 22, 2005 in 2 pages.
Microsoft, “Registering an Application to a URI Scheme,” <http://msdn.microsoft.com/en-us/library/aa767914.aspx>, printed Apr. 4, 2009 in 4 pages.
Microsoft, “Using the Clipboard,” <http://msdn.microsoft.com/en-us/library/ms649016.aspx>, printed Jun. 8, 2009 in 20 pages.
Mitzenmacher, Michael, “Compressed Bloom Filters,” IEEE/ACM Tranactions on Networking, vol. 10, No. 5, Oct. 2002, pp. 604-612.
Mohring et al., “Partitioning Graphs to Speedup Dijkstra's Algorithm,” ACM Journal of Experimental Algorithmics, Association of Computing Machinery, New York, New York, vol. 11, Jan. 1, 2006, 29 pages.
Nadeau et al., “A Survey of Named Entity Recognition and Classification,” Jan. 15, 2004, pp. 20.
Nin et al., “On the Use of Semantic Blocking Techniques for Data Cleansing and Integration,” 11th International Database Engineering and Applications Symposium, 2007, pp. 9.
Nitro, “Trick: How to Capture a Screenshot as PDF, Annotate, Then Share It,” <http://blog.nitropdf.com/2008/03/04/trick-how-to-capture-a-screenshot-as-pdf-annotate-it-then-share/>, Mar. 4, 2008, pp. 2.
Online Tech Tips, “Clip2Net—Share files, folders and screenshots easily,” <http://www.online-tech-tips.com/free-software-downloads/share-files-folders-screenshots/>, Apr. 2, 2008, pp. 5.
O'Reilly.com, http://oreilly.com/digitalmedia/2006/01/01/mac-os-x-screenshot-secrets.html published Jan. 1, 2006 in 10 pages.
Pythagoras Communications Ltd., “Microsoft CRM Duplicate Detection,” Sep. 13, 2011, https://www.youtube.com/watch?v=j-7Qi0D0Kc.
Qiang et al., “A Mutual-Information-Based Approach to Entity Reconciliation in Heterogeneous Databases,” Proceedings of 2008 International Conference on Computer Science & Software Engineering, IEEE Computer Society, New York, NY, Dec. 12-14, 2008, pp. 666-669.
Reedy, Sarah, “Policy and Charging Rules Function (PCRF),” Sep. 13, 2010, http://www.lightreading.com/document.asp?doc—id=680015 printed Dec. 10, 2013 in 4 pages.
Russell et al., “NiteLight: A Graphical Tool for Semantic Query Construction,” 2008, pp. 10.
Schroder, Stan, “15 Ways to Create Website Screenshots,” <http://mashable.com/2007/08/24/web-screenshots/>, Aug. 24, 2007, pp. 2.
Schwieger, V., “Sensitivity Analysis as a General Tool for Model Optimisation-Examples for Trajectory Estimation,” 3rd IAG/12th FIG Symposium, Baden, Germany, May 22-24, 2006, Published by IAG, 2006, pp. 10.
Schwieger, V., “Variance-Based Sensitivity Analysis for Model Evaluation in Engineering Surveys,” INGEO 2004 and FIG Regional Central and Eastern European Conference on Engineering Surveying, Nov. 11-13, 2004, Published by INGEO, Bratislava, Slovakia, 2004, pp. 10.
Sekine et al., “Definition, Dictionaries and Tagger for Extended Named Entity Hierarchy,” May 2004, pp. 1977-1980.
Smart et al., “A Visual Approach to Semantic Query Design Using a Web-Based Graphical Query Designer,” 16th International Conference on Knowledge Engineering and Knowledge Management (EKAW 2008),ÊAcitrezza, Catania, Italy, Sep. 29-Oct. 3, 2008, pp. 16.
SnagIt, “SnagIt 8.1.0 Print Out 2,” Software release date Jun. 15, 2006, pp. 1-3.
SnagIt, “SnagIt 8.1.0 Print Out,” Software release date Jun. 15, 2006, pp. 6.
SnagIt, “Snag It Online Help Guide,” <http://download.techsmith.com/snagit/docs/onlinehelp/enu/snagit—help.pdf>, TechSmith Corp., Version 8.1, printed Feb. 7, 2007, pp. 284.
Stamos et al., “Remote Evaluation,” Journal ACM Transactions on Programming Languages and Systems (TOPLAS), vol. 12, Issue 4, Oct. 1990, pp. 537-564.
Traichal et al., “Forecastable Default Risk Premia and Innovations,” Journal of Economics and Finance, Fall 1999, vol. 23, No. 3, pp. 214-225.
Wagner et al., “Dynamic Shortest Paths Containers,” Electronic Notes in Theoretical Computer Science, vol. 92, No. 1, 2003, pp. 1-19.
Warren, Christina, “TUAW Faceoff: Screenshot apps on the firing line,” <http://www.tuaw.com/2008/05/05/tuaw-faceoff-screenshot-apps-on-the-firing-line/>, May 5, 2008, pp. 11.
Wikipedia, “Machine Code”, p. 1-5, printed Aug. 11, 2014.
Wollrath et al., “A Distributed Object Model for the Java System,” Proceedings of the 2nd Conference on USENEX, Conference on Object-Oriented Technologies (COOTS), Jun. 17, 1996, pp. 219-231.
Xobni, “Blog,” http://blog.xobni.com/ printed Jun. 26, 2014 in 11 pages.
Xobni, http://www.xobni.com/ printed Jun. 26, 2014 in 5 pages.
Yahoo, <http://web.archive.org/web/20020124161606/http://finance.yahoo.com/q?s=%5eIXIC&d=c . . . > printed Mar. 6, 2012 in 2 pages.
Yang et al., “An Enhanced Routing Method with Dijkstra Algorithm and AHP Analysis in GIS-based Emergency Plan,” Geoinformatics, 2010 18th International Conference on, IEEE, Piscataway, New Jersey, Jun. 18, 2010, 6 pages.
Zhao et al., “Entity Matching Across Heterogeneous Data Sources: An Approach Based on Constrained Cascade Generalization,” Data & Knowledge Engineering, vol. 66, No. 3, Sep. 2008, pp. 368-381.
IBM Predictive Analytics, https://www.ibm.com/analytics/us/en/technology/predictive-analytics/, as printed Feb. 15, 2017 in 12 pages.
IBM SPSS Modeler, https://www.ibm.com/us-en/marketplace/spss-modeler, as printed Feb. 15, 2017 in 5 pages.
IBM Analytics, “IBM SPSS software and Watson Analytics: A powerful combo for the cognitive age,” available at https://www.youtube.com/watch?v=AvYctzFf8gc, as published on Apr. 14, 2016.
Armand Ruiz, “Watson Analytics, SPSS Modeler and Esri ArcGIS,” available at https://www.youtube.com/watch?v=fk49hw4OrN4, as published on Jul. 28, 2015.
IBM Knowledge Center, “Merge Node,” https://www.ibm.com/support/knowledgecenter/en/SS3RA7—15.0.0/com.ibm.spss.modeler.help/merge—overview.htm[ibm.com], as printed Feb. 14, 2017 in 1 page.
IBM Knowledge Center, “Overview—What's new in IBM Watson Explorer Content Analytics Version 10.0,” https://www.ibm.com/support/knowledgecenter/en/SS8NLW—10.0.0/com.ibm.discovery.es.nav.doc/iiysawhatsnew.htm, as printed Mar. 6, 2017 in 4 pages.
Yates, Rob, “Introducing the IBM Watson Natural Language Classifier,” IBM developerWorks/Developer Centers, posted Jul. 10, 2015 in 4 pages, https://developer.ibm.com/watson/blog/2015/07/10/the-ibm-watson-natural-language-classifier/.
Goyal, Manish, “Announcing our largest release of Watson Developer Cloud services,” IBM developerWorks/Developer Centers, posted Sep. 24, 2015 in 6 pages, https://developer.ibm.com/watson/blog/2015/09/24/announcing-our-largest-release-of-watson-developer-cloud-services/.
IBM Analytics Communities, “Is IBM SPSS statistics now integrated to WatsonAnalytics?” https://community.watsonanalytics.com/discussions/questions/1464/is-ibm-spss-statistics-now-integrated-to-watsonana.html, as printed Mar. 7, 2017 in 2 pages.
IBM Support, “Software lifecycle—Watson Explorer 10.0.0,” https://www-01.ibm.com/software/support/lifecycleapp/PLCDetail.wss?q45=T283072T66911H98, as printed Mar. 7, 2017 in 1 page.
IBM Analytics Communities, “Creating a map visualization for UK coordinates,” https://community.watsonanalytics.com/discussions/questions/3753/creating-a-map-visualisation-for-uk-coordinates.html, as printed Mar. 9, 2017 in 1 page.
Esri News, “IBM and Esri Team Up to Offer Cognitive Analyrics and loT in the IBM Cloud,” http://www.esri.com/esri-news/releases/16-4qtr/ibm-and-esri-team-up-to-offer-cognitive-analytics-and-iot-in-the-ibm-cloud, as published on Oct. 26, 2016, in 2 pages.
International Search Report and Written Opinion for Patent Application No. PCT/US2008/056439 dated Jun. 8, 2009.
International Search Report and Written Opinion for Patent Application No. PCT/US2008/077244 dated Nov. 28, 2008.
International Search Report and Written Opinion for Patent Application No. PCT/US2009/056700 dated Apr. 15, 2010.
International Search Report and Written Opinion for Patent Application No. PCT/US2009/056705 dated Mar. 26, 2010.
International Search Report and Written Opinion for Patent Application No. PCT/US2009/056707 dated Mar. 2, 2010.
International Search Report and Written Opinion for Patent Application No. PCT/US2009/056738 dated Mar. 29, 2010.
International Search Report and Written Opinion for Patent Application No. PCT/US2009/056742 dated Apr. 19, 2010.
Notice of Acceptance for New Zealand Patent Application No. 616212 dated Jan. 23, 2015.
Notice of Acceptance for New Zealand Patent Application No. 616299 dated Apr. 7, 2015.
Notice of Acceptance for New Zealand Patent Application No. 622485 dated Nov. 24, 2014.
Notice of Allowance for U.S. Appl. No. 13/196,788 dated Dec. 18, 2015.
Notice of Allowance for U.S. Appl. No. 13/411,291 dated Apr. 22, 2016.
Notice of Allowance for U.S. Appl. No. 13/657,635 dated Jan. 29, 2016.
Notice of Allowance for U.S. Appl. No. 13/657,656 dated May 10, 2016.
Notice of Allowance for U.S. Appl. No. 13/767,779 dated Mar. 17, 2015.
Notice of Allowance for U.S. Appl. No. 13/826,228 dated Mar. 27, 2015.
Notice of Allowance for U.S. Appl. No. 13/827,627 dated Apr. 11, 2016.
Notice of Allowance for U.S. Appl. No. 13/922,212 dated Mar. 9, 2016.
Notice of Allowance for U.S. Appl. No. 14/019,534 dated Feb. 4, 2016.
Notice of Allowance for U.S. Appl. No. 14/149,608 dated Aug. 5, 2014.
Notice of Allowance for U.S. Appl. No. 14/254,757 dated Sep. 10, 2014.
Notice of Allowance for U.S. Appl. No. 14/254,773 dated Aug. 20, 2014.
Notice of Allowance for U.S. Appl. No. 14/265,637 dated Feb. 13, 2015.
Notice of Allowance for U.S. Appl. No. 14/302,279 dated Apr. 5, 2016.
Notice of Allowance for U.S. Appl. No. 14/304,741 dated Apr. 7, 2015.
Notice of Allowance for U.S. Appl. No. 14/581,902 dated Nov. 13, 2015.
Notice of Allowance for U.S. Appl. No. 15/066,970 dated Jun. 29, 2016.
Official Communication for Australian Patent Application No. 2013237658 dated Feb. 2, 2015.
Official Communication for Australian Patent Application No. 2013237710 dated Jan. 16, 2015.
Official Communication for Australian Patent Application No. 2014201506 dated Feb. 27, 2015.
Official Communication for Australian Patent Application No. 2014201507 dated Feb. 27, 2015.
Official Communication for Australian Patent Application No. 2014201580 dated Feb. 27, 2015.
Official Communication for Australian Patent Application No. 2014203669 dated May 29, 2015.
Official Communication for Canadian Patent Application No. 2807899 dated Jul. 20, 2015.
Official Communication for Canadian Patent Application No. 2807899 dated Oct. 24, 2014.
Official Communication for Canadian Patent Application No. 2828264 dated Apr. 11, 2016.
Official Communication for Canadian Patent Application No. 2828264 dated Apr. 28, 2015.
Official Communication for Canadian Patent Application No. 2829266 dated Apr. 1, 2016.
Official Communication for Canadian Patent Application No. 2829266 dated Apr. 28, 2015.
Official Communication for Canadian Patent Application No. 2846414 dated Apr. 13, 2016.
Official Communication for European Patent Application No. 08730336.8 dated Jun. 6, 2012.
Official Communication for European Patent Application No. 08839003.4 dated Aug. 14, 2012.
Official Communication for European Patent Application No. 09813700.3 dated Apr. 3, 2014.
Official Communication for European Patent Application No. 09813693.0 dated Apr. 8, 2014.
Official Communication for European Patent Application No. 13157474.1 dated May 28, 2013.
Official Communication for European Patent Application No. 13157474.1 dated Apr. 29, 2016.
Official Communication for European Patent Application No. 13157474.1 dated Oct. 30, 2015.
Official Communication for European Patent Application No. 14158958.0 dated Apr. 16, 2015.
Official Communication for European Patent Application No. 14158958.0 dated Jun. 3, 2014.
Official Communication for European Patent Application No. 14158977.0 dated Jun. 10, 2014.
Official Communication for European Patent Application No. 14158977.0 dated Apr. 16, 2015.
Official Communication for European Patent Application No. 14159175.0 dated Jul. 17, 2014.
Official Communication for European Patent Application No. 14159175.0 dated Feb. 4, 2016.
Official Communication for European Patent Application No. 14159464.8 dated Feb. 18, 2016.
Official Communication for European Patent Application No. 14159629.6 dated Sep. 22, 2014.
Official Communication for European Patent Application No. 14159629.6 dated Jul. 31, 2014.
Official Communication for European Patent Application No. 14162372.8 dated Apr. 30, 2015.
Official Communication for European Patent Application No. 15159520.4 dated Jul. 15, 2015.
Official Communication for German Patent Application No. 10 2013 221 052.3 dated Mar. 24, 2015.
Official Communication for German Patent Application No. 10 2013 221 057.4 dated Mar. 23, 2015.
Official Communication for Great Britain Patent Application No. 1318666.3 dated Mar. 25, 2014.
Official Communication for Great Britain Patent Application No. 1318667.1 dated Mar. 28, 2014.
Official Communication for Netherlands Patent Application No. 2011613 dated Aug. 13, 2015.
Official Communication for Netherlands Patent Application No. 2011627 dated Aug. 14, 2015.
Official Communication for Netherlands Patent Application No. 2012436 dated Nov. 6, 2015.
Official Communication for Netherlands Patent Application No. 2013134 dated Apr. 20, 2015.
Official Communication for New Zealand Patent Application No. 616212 dated May 7, 2014.
Official Communication for New Zealand Patent Application No. 616212 dated Oct. 9, 2013.
Official Communication for New Zealand Patent Application No. 616299 dated Jan. 26, 2015.
Official Communication for New Zealand Patent Application No. 622389 dated Mar. 20, 2014.
Official Communication for New Zealand Patent Application No. 622404 dated Mar. 20, 2014.
Official Communication for New Zealand Patent Application No. 622414 dated Mar. 24, 2014.
Official Communication for New Zealand Patent Application No. 622439 dated Mar. 24, 2014.
Official Communication for New Zealand Patent Application No. 622439 dated Jun. 6, 2014.
Official Communication for New Zealand Patent Application No. 622484 dated Apr. 2, 2014.
Official Communication for New Zealand Patent Application No. 622485 dated Nov. 21, 2014.
Official Communication for New Zealand Patent Application No. 623323 dated Apr. 17, 2014.
Official Communication for New Zealand Patent Application No. 623323 dated Jun. 6, 2014.
Official Communication for U.S. Appl. No. 12/210,947 dated Jul. 1, 2013.
Official Communication for U.S. Appl. No. 12/210,947 dated Aug. 19, 2014.
Official Communication for U.S. Appl. No. 12/210,947 dated Nov. 28, 2014.
Official Communication for U.S. Appl. No. 12/210,947 dated Apr. 8, 2011.
Official Communication for U.S. Appl. No. 12/210,980 dated Mar. 10, 2015.
Official Communication for U.S. Appl. No. 12/556,321 dated Feb. 25, 2016.
Official Communication for U.S. Appl. No. 12/556,321 dated Oct. 6, 2016.
Official Communication for U.S. Appl. No. 12/556,321 dated Jul. 7, 2015.
Official Communication for U.S. Appl. No. 13/079,690 dated Sep. 11, 2013.
Official Communication for U.S. Appl. No. 13/079,690 dated Jan. 29, 2014.
Official Communication for U.S. Appl. No. 13/079,690 dated Mar. 5, 2015.
Official Communication for U.S. Appl. No. 13/196,788 dated Oct. 23, 2015.
Official Communication for U.S. Appl. No. 13/196,788 dated Nov. 25, 2015.
Official Communication for U.S. Appl. No. 13/218,238 dated Nov. 21, 2013.
Official Communication for U.S. Appl. No. 13/218,238 dated Oct. 25, 2013.
Official Communication for U.S. Appl. No. 13/218,238 dated Jul. 29, 2013.
Official Communication for U.S. Appl. No. 13/218,238 dated Jan. 6, 2014.
Official Communication for U.S. Appl. No. 13/411,291 dated Oct. 1, 2015.
Official Communication for U.S. Appl. No. 13/411,291 dated Jul. 15, 2015.
Official Communication for U.S. Appl. No. 13/608,864 dated Mar. 17, 2015.
Official Communication for U.S. Appl. No. 13/608,864 dated Jun. 8, 2015.
Official Communication for U.S. Appl. No. 13/657,635 dated Jul. 10, 2014.
Official Communication for U.S. Appl. No. 13/657,635 dated Mar. 30, 2015.
Official Communication for U.S. Appl. No. 13/657,635 dated Oct. 7, 2015.
Official Communication for U.S. Appl. No. 13/657,656 dated May 6, 2015.
Official Communication for U.S. Appl. No. 13/657,656 dated Oct. 7, 2014.
Official Communication for U.S. Appl. No. 13/669,274 dated May 6, 2015.
Official Communication for U.S. Appl. No. 13/728,879 dated Mar. 17, 2015.
Official Communication for U.S. Appl. No. 13/799,535 dated Jul. 29, 2014.
Official Communication for U.S. Appl. No. 13/799,535 dated Feb. 3, 2014.
Official Communication for U.S. Appl. No. 13/827,627 dated Mar. 2, 2015.
Official Communication for U.S. Appl. No. 13/827,627 dated Oct. 20, 2015.
Official Communication for U.S. Appl. No. 13/827,627 dated Dec. 22, 2015.
Official Communication for U.S. Appl. No. 13/827,627 dated Aug. 26, 2015.
Official Communication for U.S. Appl. No. 13/922,212 dated Jan. 5, 2015.
Official Communication for U.S. Appl. No. 13/937,063 dated Apr. 22, 2016.
Official Communication for U.S. Appl. No. 14/134,558 dated May 16, 2016.
Official Communication for U.S. Appl. No. 14/019,534 dated Jul. 20, 2015.
Official Communication for U.S. Appl. No. 14/019,534 dated Sep. 4, 2015.
Official Communication for U.S. Appl. No. 14/025,653 dated Mar. 3, 2016.
Official Communication for U.S. Appl. No. 14/025,653 dated Oct. 6, 2015.
Official Communication for U.S. Appl. No. 14/265,637 dated Nov. 18, 2014.
Official Communication for U.S. Appl. No. 14/265,637 dated Sep. 26, 2014.
Official Communication for U.S. Appl. No. 14/302,279 dated Sep. 24, 2015.
Official Communication for U.S. Appl. No. 14/304,741 dated Mar. 3, 2015.
Official Communication for U.S. Appl. No. 14/304,741 dated Aug. 6, 2014.
Official Communication for U.S. Appl. No. 14/562,524 dated Feb. 18, 2016.
Official Communication for U.S. Appl. No. 14/618,213 dated May 16, 2017.
Official Communication for U.S. Appl. No. 14/715,834 dated Apr. 13, 2016.
Official Communication for U.S. Appl. No. 14/715,834 dated Jun. 28, 2016.
Official Communication for U.S. Appl. No. 14/715,834 dated Feb. 19, 2016.
Official Communication for U.S. Appl. No. 14/726,211 dated Apr. 5, 2016.
Official Communication for U.S. Appl. No. 14/816,599 dated Dec. 22, 2016.
Official Communication for U.S. Appl. No. 14/816,599 dated May 31, 2017.
Official Communication for U.S. Appl. No. 14/877,229 dated Mar. 22, 2016.
Related Publications (1)
Number Date Country
20150039554 A1 Feb 2015 US
Provisional Applications (1)
Number Date Country
61789225 Mar 2013 US
Continuations (1)
Number Date Country
Parent 14102394 Dec 2013 US
Child 14516386 US