The present disclosure relates to systems and techniques for querying databases and displaying queried data in an interactive user interface.
A database may store a large quantity of data. For example, a system may comprise a large number of sensors that each collect measurements at regular intervals, and the measurements may be stored in the database and/or a system of databases. The measurement data can be supplemented with other data, such as information regarding events that occurred while the system was operational, and the supplemental data can also be stored in the database and/or the system of databases.
In some cases, a user may attempt to analyze a portion of the stored data. For example, the user may attempt to analyze a portion of the stored data that is associated with a specific time period. However, as the number of measurements increases over time, it can become very difficult for the user to identify the relevant data and perform the analysis.
The systems, methods, and devices described herein each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this disclosure, several non-limiting features will now be discussed briefly.
Disclosed herein are various systems and methods for displaying various graphs in an interactive user interface in substantially real-time in response to input from a user in order to determine information related to measured data points and provide the determined information to the user in the interactive user interface. For example, a computing device may be configured to retrieve data from one or more databases and generate one or more interactive user interfaces. The one or more interactive user interfaces may display the retrieved data in one or more graphs, such as time-series or scatterplots. The user interface may be interactive in that a user may manipulate one graph, which causes an identical or nearly identical manipulation of another displayed graph in real-time. The manipulations may occur even if the displayed graphs include data across different time ranges. The user interface may also be interactive in that a user may select a portion of a graph (e.g., data across a certain time period) to view tangential data related to the selection (e.g., events that occurred during a time period represented by the selection).
The various systems described herein may maximize or enhance the speed and accuracy of data displayed in user interfaces using zoom level specific caching. For example, depending on a zoom level of data displayed, individual pixels represent different time ranges (e.g., 1 day in February, 1 week in February, 1 month in 2014, etc.). Over the time range of an individual pixel, the computing system may determine a maximum value and a minimum value of the data to be displayed in the graph. The determined minimum and maximum values may then be cached, such that they are available in the future when that same zoom level is requested by the user or other users, saving the system from recalculation of the same minimum and maximum value to include on the chart (possibly from multiple data points at each pixel time range). For each individual pixel, a line may be rendered from the maximum value to the minimum value. If the granularity of the measured data matches the time range of an individual pixel, then the maximum value and the minimum value may be the same. In one embodiment, the computing system may display the graph at the closest zoom level at which maximum and minimum values have been cached to ensure that the cached data can be used effectively.
One aspect of the disclosure provides a computing system configured to access one or more databases in substantially real-time in response to input from a user provided in an interactive user interface in order to determine information related to measured data points and provide the determined information to the user in the interactive user interface. The computing system comprises a computer processor. The computing system further comprises a database storing at least first sensor values for a first sensor at each of a plurality of times and second sensor values for a second sensor at each of a plurality of times. The computing system further comprises a computer readable storage medium storing program instructions configured for execution by the computer processor in order to cause the computing system to generate user interface data for rendering the interactive user interface on a computing device, the interactive user interface including a first container and a second container, where the first container includes a first graph and the second container includes a second graph, where the first container and the second container have a same width, where the first graph includes first sensor values for the first sensor over a first time period and the second graph includes second sensor values for the second sensor over a second time period that is shorter than the first time period, and wherein portions of the first graph and the second graph are each selectable by the user; receive an identification of a selection by the user of a first data point in the first graph, where the first data point corresponds to a first time range; update the user interface data such that the interactive user interface includes a first marker at a location of the first data point in the first graph; access the database to determine a second sensor value that corresponds to a beginning of the first time range and a second sensor value that corresponds to an end of the first time range; and update the user interface data to include a second marker at a location of a second data point in the second graph that corresponds to the beginning of the first time range and a third marker at a location of a third data point in the second graph that corresponds to the end of the first time range.
The computing system of the preceding paragraph can have any sub-combination of the following features: where the instructions are further configured to cause the computing system to: receive an indication from the user of a change to the first time period in the first graph, in response to receiving the indication from the user of the change to the first time period, adjust positions of the first and second markers indicating the first time period in the second graph; where the computer readable storage medium further stores program instructions that cause the computing system to update the user interface data to include a third container, where the third container includes a list of events that occurred within the first time range; where the first graph, for each event that occurred within the first time range, includes a mark that indicates a data point on the first graph that corresponds with a time that the respective event occurred; where the computer readable storage medium further stores program instructions that cause the computing system to update the user interface data to include a marker at a location in the first graph corresponding to a first event in the list of events in response to selection by the user of a location in the third container that corresponds to the first event; where the computer readable storage medium further stores program instructions that cause the computing system to: receive an indication by the user of a selection in the first graph at a fourth data point such that a new event is added at a time that corresponds with the fourth data point, and update the user interface data such that the third container includes an identification of the new event; where the computer readable storage medium further stores program instructions that cause the computing system to: receive an indication by the user that the new event corresponds with the first graph, and update the user interface data such that a first mark is displayed in the first graph at the time that corresponds with the fourth data point; where the computer readable storage medium further stores program instructions that cause the computing system to: receive an indication by the user that the new event corresponds with the second graph, and update the user interface data such that a first mark is displayed in the second graph at the time that corresponds with the fourth data point; where the computer readable storage medium further stores program instructions that cause the computing system to: receive an indication by the user that the new event corresponds with the first graph and the second graph, and update the user interface data such that a first mark is displayed in the first graph at the time that corresponds with the fourth data point and in the second graph at the time that corresponds with the fourth data point; where the computer readable storage medium further stores program instructions that cause the computing system to: receive an indication of selection by the user of a first event in the list of events, and update the user interface data such that the first graph includes an icon at a position of a data point in the first graph that corresponds with the first event; where the computer readable storage medium further stores program instructions that cause the computing system to: receive an indication of selection, by the user, of a first location corresponding to the first time in the first graph, and update the user interface data such that the first graph includes a marker at the location in the first graph corresponding to the first time; where the computer readable storage medium further stores program instructions that cause the computing system to update the user interface data such that the second graph includes a second marker at a location in the second graph corresponding to the first time; where the computer readable storage medium further stores program instructions that cause the computing system to: receive an indication of selection, by the user of a second location corresponding to a second time in the first graph, and update the user interface data such that the first graph includes the marker at the second location in the first graph corresponding to the second time; where the computer readable storage medium further stores program instructions that cause the computing system to update the user interface data such that the second graph includes the second marker at a location in the second graph corresponding to the second time; where the first data point comprises a line from a location in the first graph that corresponds with a highest value measured by the first sensor during the first time range to a location in the first graph that corresponds with a lowest value measured by the first sensor during the first time range; where the computer readable storage medium further stores program instructions that cause the computing system to receive an indication that a zoom level of the first graph is adjusted from a first zoom level to a second zoom level; where the computer readable storage medium further stores program instructions that cause the computing system to retrieve, from a cache, for a second time range that corresponds to a first pixel in an x-axis of the first graph, a highest value measured by the first sensor during the second time range and a lowest value measured by the first sensor during the second time range; where the computer readable storage medium further stores program instructions that cause the computing system to update the user interface data such that the first graph includes a line from a location in the first graph that corresponds with the highest value to a location in the first graph that corresponds with the lowest value; where the first sensor and the second sensor are oil well sensors; and where the first sensor values correspond to oil extracted from an oil well, and where the second sensor values correspond to water extracted from the oil well.
The present disclosure also comprises a computer program product, for example a non-transitory or transitory computer-readable medium, that comprises the program instructions recited in any of the appended claims, and/or comprises the program instructions disclosed in the present description. The present disclosure further comprises a method in which the steps recited in any of the appended claims, and/or the steps disclosed in the present description, are executed by one or more computing devices.
Overview
As described above, it can become very difficult for the user to identify relevant data and perform an analysis when a database and/or a system of databases includes a large amount of data. This may be especially true if the user would like to compare two or more data sets over a specific period of time, where the data sets correspond to measurements taken by sensors in a system. In conventional systems, user interfaces may be generated that allow the user to view graphs of the data sets. However, it may be difficult or burdensome for the user to try to identify trends in the data and/or determine the reasons why a sensor acted in a given manner.
Accordingly, disclosed herein are various systems and methods for displaying various graphs in an interactive user interface. For example, a computing device (e.g., the computing system 1400 of
The data in the graphs may be rendered in the interactive user interfaces according to a technique that efficiently uses the pixels that are available for displaying the graphs. For example, every individual pixel (in the x-axis of an x-y graph) may represent a time range (e.g., 1 day in February, 1 week in February, 1 month in 2014, etc.). Over the time range of an individual pixel, the computing system may determine a maximum value and a minimum value of the data to be displayed in the graph. If the granularity of the measured data matches the time range of an individual pixel (e.g., an individual pixel represents a time range of 1 hour and data was measured every hour), then the maximum value and the minimum value may be the same. For each individual pixel (in the x-axis), a line may be rendered from the maximum value to the minimum value (in the y-axis).
As described above, the graphs may be manipulated by the user. For example, the user may zoom into a portion of a graph. In an embodiment, the computing system predetermines each possible zoom level (or at least most commonly used zoom levels) and pre-calculates the maximum and minimum values for time periods associated with the minimum display resolution (e.g., each individual pixel in the x-axis may be associated with a time period) at separate possible zoom level. These pre-calculated maximum and minimum values may be cached, such that they may be retrieved as a user adjusts zoom levels in order to more rapidly update the graph to include the most granular data available at the particular zoom level. In one embodiment, if the user selects a zoom level having minimum time periods per pixel (or some other display unit) that has not been pre-cached, the computing system may display the graph at the closest zoom level at which maximum and minimum values have been cached to ensure that the cached data can be used effectively.
In some embodiments, the interactive user interfaces may include information about a system and sensors associated with the system. For example, the interactive user interfaces may include time-series graphs that display data measured by sensors associated with an oil well. The time-series (and/or any other graphs displayed in the user interface) may be manipulated by the user in any manner as described herein. While the disclosure is described herein with respect to time-series data measured by sensors associated with an oil well, this is not meant to be limiting. The various graphs described herein can depict any time-series data measured by sensors, not just sensors associated with an oil well. For example, the various graphs described herein can depict time-series data measured by outdoor or indoor temperature sensors, humidity sensors, sensors that measure water levels, sensors that measure traffic congestion, sensors that detect seismic activity, and/or the like. Furthermore, the various graphs described herein can depict any type of time-series data, not just time-series data derived from a sensor. For example, the various graphs described herein can depict healthcare data (e.g., pharmaceutical batch failure data over time, the number of claims filed over time, etc.), financial data (e.g., the price of a stock over time), polling data (e.g., the number of respondents that view an issue favorably in polls conducted over a period of time), census information (e.g., the population of a city over time), and/or the like. The time-series data depicted in the graphs and derived from any source can be manipulated by the user in any manner as described herein.
The systems and methods described herein may provide several benefits. For example, the systems and methods described herein may improve the usability of the user interface by providing graphs that can be manipulated by a user in a concurrent manner, thereby allowing the user to identify trends or other information associated with the graphs without having to separately manipulate each individual graph. As another example, the systems and methods described herein may reduce the processor load while the user is interacting with the user interfaces by predetermining each possible zoom level and pre-calculating the maximum and minimum values. The systems and methods described herein may also increase the processing speed as the computing system may not have to determine in real-time how a graph should be updated when the zoom level is changed. Rather, the computing system can retrieve the appropriate data from the cache to update the graph. As another example, the systems and methods described herein may reduce the latency in generating updated user interfaces as the zoom levels and maximum and minimum values may be predetermined and can be retrieved from cache rather than the databases that store the actual data (e.g., which could be located externally from the computing system). Thus, the systems and methods described herein may improve the usability of the user interface.
Examples of Manipulating Time-Series Graphs in an Interactive User Interface
In an embodiment, the water allocation data was measured at a granularity that matches each individual pixel in the x-axis of the time-series graph 110. Thus, the maximum and minimum values of the water allocation data at each individual pixel may be the same and a single point (the size of a pixel in the x and y direction) may represent each water allocation measurement.
The temperature data, however, may be measured at a granularity that does not match each individual pixel in the x-axis of the time-series graph 120. For example, the temperature may have been measured every day, yet each individual pixel may represent a 2 week time period. Thus, the computing system that generates the user interface 100 may calculate the maximum and minimum temperature values for each 2 week time period between the beginning and the end of the time range associated with the time-series graph 120 (e.g., 2010 to 2014). For each individual pixel in the x-axis of the time-series graph 120, a line may be rendered from the maximum temperature value to the minimum temperature value.
In an embodiment, selection of the portion of the time-series graph 120 at the location of the cursor 210 causes a marker 220 to appear at the selection in the time-series graph 120, as illustrated in
The user interface 200 may further include a window 240 where users can provide or view notes associated with a particular sensor data or with sensor data at a particular time or time period. In the example of
In an embodiment, as the selection of the end of the desired time period is made in graph 110, a second marker 310B appears in the time-series graph 110 to indicate an end of the time period, and marker 320 (or possibly two markers showing start and end of the time period, if the scale of graph 120 is such that the time period includes multiple pixels) is updated in response to changes in the time period selected in graph 110 such that the markers in each graph 110 and 120 indicate the same time period, even though the time series graphs are on a different time scale. Thus, the selected time period in the time-series graph 110 with reference to water allocation is automatically used to select a corresponding time period in the time-series graph 120 with reference to temperature values.
The user may indicate that all graphs or just a subset of graphs displayed in the user interface 300 should be synchronized or identically manipulated in a manner described herein (e.g., an identical manipulation such as a selection of a time period in one graph causing a selection of a corresponding time period in another graph). For example, if the user interface 300 displayed a third graph, the user may be provided with an option to synchronize the graph 110, the graph 120, and the third graph, the graph 110 and the third graph, or the graph 120 and the third graph. If, for example, the user selected to synchronize the graph 120 and the third graph, then any changes to the third graph by the user may also occur to the graph 120, but not to the graph 110. Likewise, any changes to the graph 110 by the user would not affect the graph 120 or the third graph.
In further embodiments, the user may elect to synchronize certain manipulations of a graph, but not other manipulations of a graph. For example, the user may select an option to synchronize the zoom level in two or more graphs, but not the time period displayed within the graphs. As illustrated in
In an embodiment, as the user moves the cursor 210 to different locations within the time-series graph 120, the marker 410 may follow the cursor 210. Furthermore, as illustrated in
In an embodiment, events (e.g., a manufacturing failure, a contamination event, etc.) may have occurred during the time period associated with the selections in the time-series graph 110 and the time-series graph 120 and/or annotations may be marked. The events that occurred and/or the annotations may be associated with the sensor that measured the water allocation values, the sensor that measured the temperature values, and/or other sensors that measured other data (not shown). Marks 530, 540, and 550 may identify a time at which an event occurred and/or an annotation is marked and/or a time range during which an event occurred and/or an annotation is marked. For example, the mark 530 may indicate that an event occurred or an annotation was marked at a time corresponding to the location of the mark 530 in the time-series graph 110, where the event or annotation is associated with the sensor that measured the water allocation values. Likewise, the mark 540 may indicate that an event occurred or an annotation was marked at a time corresponding to the location of the mark 540 in the time-series graph 110 (e.g., where the event or annotation is associated with the sensor that measured the water allocation values) and the mark 550 may indicate that an event occurred or an annotation was marked at a time corresponding to the location of the mark 550 in the time-series graph 120 (e.g., where the event or annotation is associated with the sensor that measured the temperature values). The marks 530, 540, and/or 550 can be represented in various ways. For example, if the event occurs or the annotation is marked at a specific time instant, the marks 530, 540, and/or 550 can be represented as vertical lines. If the event occurs or an annotation is marked during a range of time, the marks 530, 540, and/or 550 can be represented as blocks (e.g., rectangular blocks) that encompass the time range.
Furthermore, the user interface 500 may include an event information pane or notebook 560. The event information pane 560 may include information on the events that occurred (and/or annotations made by the user) corresponding to the sensors that measured the water allocation data, the temperature data, and/or other data (not shown). The information may include a time-series graph or sensor that the event or annotation is associated with, a time-series within the time-series graph that the event or annotation is associated with, a time that the event occurred (or that the annotation is associated with), and a description of the event or annotation itself, such as a description of the event or annotation provided by a human operator. In an embodiment, the event information pane 560 includes event or annotation information for any event that occurred during a time range for which data was collected and/or for any annotation marked within a time range for which data was collected. In another embodiment, the information displayed in the event information pane 560 is for events that occurred during the entire time range displayed (e.g., March to June) and/or for annotations marked during the entire time range displayed. In another embodiment, the information displayed in the event information pane 560 is for events that occurred during the selected portions (e.g., late April to late May, as represented by the markers 510A-B and 520A-B) and/or for annotations marked within the selected portions. The user interface may include controls that allow the user to select the desired time period for which event information should be included in the event information pane 560.
The event information pane 560 may display event and/or annotation information for every available time-series graph or just selected time-series graphs. For example, the user may use cursor 210 to select the time-series graph 120 (e.g., also referred to as “Graph 2”) and not the time-series graph 110 (e.g., also referred to as “Graph 1”), as illustrated by the dark outline of time-series graph 120 in
As illustrated in
In an embodiment, the user can specify a description of the event and/or annotation and a time-series within the time-series graph 120 that the event and/or annotation corresponds to within the add event window 630. As described above, the time-series graph 120 can depict multiple time-series data. However, the time-series graph 120 as illustrated in
As illustrated in
As illustrated in
As illustrated in
In an embodiment, the abnormal performance of the physical component is represented by sensor values that are outside of an expected range and an alert may be triggered when the sensor values are outside of the expected range. For example, an alert may be generated for a sensor that measures temperature values for a physical component of an oil well if the measured temperature values exceed certain levels (e.g., 200° F.). Alerts may also be triggered based on a combination of sensor values. For example, an alert may be triggered if values associated with a first sensor (e.g., a temperature sensor) exceed certain values and values associated with a second sensor (e.g., a pressure sensor) do not exceed certain values. Triggering of alerts may initiate real-time (or substantially real-time) notifications to one or more users, such as via text messages, email, phone calls, etc. Thus, the alert may allow the user to make adjustments to the sensor and/or other system components in order to reduce impact of the physical component operating outside of its normal range. Alerts may be recorded and associated with a particular sensor and stored for display along side time-series graphs for the particular sensor in the future, such as in the notes or event information areas of the user interface.
The user interface 800 may display markers that indicate when an alert would be or should be triggered. For example, marker 810 may indicate an upper boundary at which point an alert may be triggered and marker 820 may indicate a lower boundary at which point an alert may be triggered. As illustrated in
As illustrated in
As illustrated in
In an embodiment, the water allocation values may be measured by a sensor associated with a system. The temperature values and the pressure values may also be measured by sensors associated with the same system.
As illustrated in
Once the user makes the selection in the scatterplot 950, the computing device may determine all times that the individual combinations of temperature and pressure values within the box 960 occurred. For example, while the combination of temperature and pressure values in the box 960 occurred during the time period between markers 920 and 930, the same combination of temperature and pressure values may have occurred at other times. Thus, the user interface 900 may indicate such times. As illustrated in
Example use Case of an Interactive User Interface with Time-Series Graphs
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
Row 1210 identifies the different rock layers at a vertical position of the drill bit over time. For example, between February and mid-March, the drill bit may be at a depth that falls within rock layer 1212 (except for times in which the drill bit is at the surface, which is indicated by a blank space in the row 1210). After mid-March, the drill bit may briefly be at a depth that falls within rock layer 1214. However, prior to the beginning of April, the drill bit may be slowly raised to the surface. During this time, the drill bit may pass from the rock layer 1214 to the rock layer 1212 before reaching the surface, as indicated in the row 1210. Likewise, in May, the drill bit may reach a depth below the surface that falls within rock layer 1216, as indicated in the row 1210.
Row 1220 identifies the different rock layers at the bottom of the oil well over time. For example, the row 1220 may identify the deepest rock layer reached by the drill bit (assuming that the oil well is not filled in and that the deepest region reached by the drill bit corresponds with the depth of the bottom of the oil well). Thus, while the drill bit may be raised to the surface in mid-May, the row 1220 indicates that the rock layer 1216 is the rock layer at the depth of the bottom of the oil well.
Row 1230 identifies a time or time range at which various events 1231-1238 may have occurred in the period of time viewed within the graph 1205. Information on one or more of the events 1231-1238 may be provided in the window 1240. For example, the window 1240 may identify an event, a time that the event occurred, and/or a description of the event. Accordingly, a user may be able to identify times in which an oil well is not being drilled, reasons why such delays have occurred, and/or possible solutions for reducing such delays.
In further embodiments, not shown, additional data or curves can be included in the graph 1205. For example, a curve indicating levels of gamma radiation at the vertical position of the drill bit (e.g., a curve in which the y-axis value represents gamma radiation levels at the vertical position of the drill bit at a time instant and the x-axis value represents time), a curve indicating levels of gamma radiation at the bottom of the oil well (e.g., a curve in which the y-axis value represents gamma radiation levels at the bottom of the oil well at a time instant and the x-axis value represents time), a curve indicating levels of gamma radiation at a static or dynamic depth within the oil well (e.g., a curve in which the y-axis value represents gamma radiation levels at the static or dynamic depth and the x-axis value represents time), and/or the like may be included in the graph 1205.
Example Process Flow
In block 1302, user interface data for rendering an interactive user interface is generated. The interactive user interface may include a first graph in a first container and a second graph in a second container that has a same width as the first container. The first graph may include first sensor values over a first time period and the second graph may include second sensor values over a second time period.
In block 1304, an identification of a selection of a first data point in the first graph that corresponds to a first time range is received. The first time range could be determined based on a time range that corresponds with each individual pixel in an x-axis.
In block 1306, the user interface data is updated such that the interactive user interface includes a first marker at a location of the first data point in the first graph. The marker may be a vertical line that is temporarily displayed in the interactive user interface.
In block 1308, the database is accessed to determine a second sensor value that corresponds to a beginning of the first time range and a second sensor value that corresponds to an end of the first time range. For example, the second sensor value that corresponds to a beginning of the first time range may be a sensor value that was measured at a time that corresponds with the beginning of the first time range.
In block 1310, the user interface data is updated to include a second marker at a location of a second data point in the second graph that corresponds to the beginning of the first time range and a third marker at a location of a third data point in the second graph that corresponds to the end of the first time range. Thus, the user may be able to view, within the interactive user interface, first sensor values and second sensor values that were measured at the same time.
Implementation Mechanisms
According to one embodiment, the techniques described herein are implemented by one or more special-purpose computing devices. The special-purpose computing devices may be hard-wired to perform the techniques, or may include digital electronic devices such as one or more application-specific integrated circuits (ASICs) or field programmable gate arrays (FPGAs) that are persistently programmed to perform the techniques, or may include one or more general purpose hardware processors programmed to perform the techniques pursuant to program instructions in firmware, memory, other storage, or a combination. Such special-purpose computing devices may also combine custom hard-wired logic, ASICs, or FPGAs with custom programming to accomplish the techniques. The special-purpose computing devices may be desktop computer systems, server computer systems, portable computer systems, handheld devices, networking devices or any other device or combination of devices that incorporate hard-wired and/or program logic to implement the techniques.
Computing device(s) are generally controlled and coordinated by operating system software, such as iOS, Android, Chrome OS, Windows XP, Windows Vista, Windows 7, Windows 8, Windows Server, Windows CE, Unix, Linux, SunOS, Solaris, iOS, Blackberry OS, VxWorks, or other compatible operating systems. In other embodiments, the computing device may be controlled by a proprietary operating system. Conventional operating systems control and schedule computer processes for execution, perform memory management, provide file system, networking, I/O services, and provide a user interface functionality, such as a graphical user interface (“GUI”), among other things.
For example,
Computer system 1400 includes a bus 1402 or other communication mechanism for communicating information, and a hardware processor, or multiple processors, 1404 coupled with bus 1402 for processing information. Hardware processor(s) 1404 may be, for example, one or more general purpose microprocessors.
Computer system 1400 also includes a main memory 1406, such as a random access memory (RAM), cache and/or other dynamic storage devices, coupled to bus 1402 for storing information and instructions to be executed by processor 1404. Main memory 1406 also may be used for storing temporary variables or other intermediate information during execution of instructions to be executed by processor 1404. Such instructions, when stored in storage media accessible to processor 1404, render computer system 1400 into a special-purpose machine that is customized to perform the operations specified in the instructions. Main memory 1406 may also store cached data, such as zoom levels and maximum and minimum sensor values at each zoom level.
Computer system 1400 further includes a read only memory (ROM) 1408 or other static storage device coupled to bus 1402 for storing static information and instructions for processor 1404. A storage device 1410, such as a magnetic disk, optical disk, or USB thumb drive (Flash drive), etc., is provided and coupled to bus 1402 for storing information and instructions. For example, the storage device 1410 may store measurement data obtained from a plurality of sensors.
Computer system 1400 may be coupled via bus 1402 to a display 1412, such as a cathode ray tube (CRT) or LCD display (or touch screen), for displaying information to a computer user. For example, the display 1412 can be used to display any of the user interfaces described herein with respect to
Computing system 1400 may include a user interface module to implement and/or update (e.g., in response to the graph manipulations described herein) a GUI that may be stored in a mass storage device as executable software codes that are executed by the computing device(s). This and other modules may include, by way of example, components, such as software components, object-oriented software components, class components and task components, processes, functions, attributes, procedures, subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables.
In general, the word “module,” as used herein, refers to logic embodied in hardware or firmware, or to a collection of software instructions, possibly having entry and exit points, written in a programming language, such as, for example, Java, Lua, C or C++. A software module may be compiled and linked into an executable program, installed in a dynamic link library, or may be written in an interpreted programming language such as, for example, BASIC, Perl, or Python. It will be appreciated that software modules may be callable from other modules or from themselves, and/or may be invoked in response to detected events or interrupts. Software modules configured for execution on computing devices may be provided on a computer readable medium, such as a compact disc, digital video disc, flash drive, magnetic disc, or any other tangible medium, or as a digital download (and may be originally stored in a compressed or installable format that requires installation, decompression or decryption prior to execution). Such software code may be stored, partially or fully, on a memory device of the executing computing device, for execution by the computing device. Software instructions may be embedded in firmware, such as an EPROM. It will be further appreciated that hardware modules may be comprised of connected logic units, such as gates and flip-flops, and/or may be comprised of programmable units, such as programmable gate arrays or processors. The modules or computing device functionality described herein are preferably implemented as software modules, but may be represented in hardware or firmware. Generally, the modules described herein refer to logical modules that may be combined with other modules or divided into sub-modules despite their physical organization or storage
Computer system 1400 may implement the techniques described herein using customized hard-wired logic, one or more ASICs or FPGAs, firmware and/or program logic which in combination with the computer system causes or programs computer system 1400 to be a special-purpose machine. According to one embodiment, the techniques herein are performed by computer system 1400 in response to processor(s) 1404 executing one or more sequences of one or more instructions contained in main memory 1406. Such instructions may be read into main memory 1406 from another storage medium, such as storage device 1410. Execution of the sequences of instructions contained in main memory 1406 causes processor(s) 1404 to perform the process steps described herein. In alternative embodiments, hard-wired circuitry may be used in place of or in combination with software instructions.
The term “non-transitory media,” and similar terms, as used herein refers to any media that store data and/or instructions that cause a machine to operate in a specific fashion. Such non-transitory media may comprise non-volatile media and/or volatile media. Non-volatile media includes, for example, optical or magnetic disks, such as storage device 1410. Volatile media includes dynamic memory, such as main memory 1406. Common forms of non-transitory media include, for example, a floppy disk, a flexible disk, hard disk, solid state drive, magnetic tape, or any other magnetic data storage medium, a CD-ROM, any other optical data storage medium, any physical medium with patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, NVRAM, any other memory chip or cartridge, and networked versions of the same.
Non-transitory media is distinct from but may be used in conjunction with transmission media. Transmission media participates in transferring information between non-transitory media. For example, transmission media includes coaxial cables, copper wire and fiber optics, including the wires that comprise bus 1402. Transmission media can also take the form of acoustic or light waves, such as those generated during radio-wave and infra-red data communications.
Various forms of media may be involved in carrying one or more sequences of one or more instructions to processor 1404 for execution. For example, the instructions may initially be carried on a magnetic disk or solid state drive of a remote computer. The remote computer can load the instructions into its dynamic memory and send the instructions over a telephone line using a modem. A modem local to computer system 1400 can receive the data on the telephone line and use an infra-red transmitter to convert the data to an infra-red signal. An infra-red detector can receive the data carried in the infra-red signal and appropriate circuitry can place the data on bus 1402. Bus 1402 carries the data to main memory 406, from which processor 1404 retrieves and executes the instructions. The instructions received by main memory 1406 may retrieve and execute the instructions. The instructions received by main memory 1406 may optionally be stored on storage device 1410 either before or after execution by processor 1404.
Computer system 1400 also includes a communication interface 1418 coupled to bus 1402. Communication interface 1418 provides a two-way data communication coupling to a network link 1420 that is connected to a local network 1422. For example, communication interface 1418 may be an integrated services digital network (ISDN) card, cable modem, satellite modem, or a modem to provide a data communication connection to a corresponding type of telephone line. As another example, communication interface 1418 may be a local area network (LAN) card to provide a data communication connection to a compatible LAN (or WAN component to communicated with a WAN). Wireless links may also be implemented. In any such implementation, communication interface 1418 sends and receives electrical, electromagnetic or optical signals that carry digital data streams representing various types of information.
Network link 1420 typically provides data communication through one or more networks to other data devices. For example, network link 1420 may provide a connection through local network 1422 to a host computer 1424 or to data equipment operated by an Internet Service Provider (ISP) 1426. ISP 1426 in turn provides data communication services through the world wide packet data communication network now commonly referred to as the “Internet” 1428. Local network 1422 and Internet 1428 both use electrical, electromagnetic or optical signals that carry digital data streams. The signals through the various networks and the signals on network link 1420 and through communication interface 1418, which carry the digital data to and from computer system 1400, are example forms of transmission media.
Computer system 1400 can send messages and receive data, including program code, through the network(s), network link 1420 and communication interface 1418. In the Internet example, a server 1430 might transmit a requested code for an application program through Internet 1428, ISP 1426, local network 1422 and communication interface 1418.
The received code may be executed by processor 1404 as it is received, and/or stored in storage device 1410, or other non-volatile storage for later execution.
Each of the processes, methods, and algorithms described in the preceding sections may be embodied in, and fully or partially automated by, code modules executed by one or more computer systems or computer processors comprising computer hardware. The processes and algorithms may be implemented partially or wholly in application-specific circuitry.
The various features and processes described above may be used independently of one another, or may be combined in various ways. All possible combinations and subcombinations are intended to fall within the scope of this disclosure. In addition, certain method or process blocks may be omitted in some implementations. The methods and processes described herein are also not limited to any particular sequence, and the blocks or states relating thereto can be performed in other sequences that are appropriate. For example, described blocks or states may be performed in an order other than that specifically disclosed, or multiple blocks or states may be combined in a single block or state. The example blocks or states may be performed in serial, in parallel, or in some other manner. Blocks or states may be added to or removed from the disclosed example embodiments. The example systems and components described herein may be configured differently than described. For example, elements may be added to, removed from, or rearranged compared to the disclosed example embodiments.
Conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment.
Any process descriptions, elements, or blocks in the flow diagrams described herein and/or depicted in the attached figures should be understood as potentially representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process. Alternate implementations are included within the scope of the embodiments described herein in which elements or functions may be deleted, executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those skilled in the art.
It should be emphasized that many variations and modifications may be made to the above-described embodiments, the elements of which are to be understood as being among other acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure. The foregoing description details certain embodiments of the invention. It will be appreciated, however, that no matter how detailed the foregoing appears in text, the invention can be practiced in many ways. As is also stated above, it should be noted that the use of particular terminology when describing certain features or aspects of the invention should not be taken to imply that the terminology is being re-defined herein to be restricted to including any specific characteristics of the features or aspects of the invention with which that terminology is associated. The scope of the invention should therefore be construed in accordance with the appended claims and any equivalents thereof.
This application claims priority under 35 U.S.C. §119(e) to U.S. Provisional Application No. 62/059,601, entitled “CHRONICLE TIME-SERIES ANALYSIS SYSTEM” and filed on Oct. 3, 2014, and U.S. Provisional Application No. 62/206,159, entitled “TIME-SERIES ANALYSIS SYSTEM” and filed on Aug. 17, 2015, which are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4881179 | Vincent | Nov 1989 | A |
5109399 | Thompson | Apr 1992 | A |
5241625 | Epard et al. | Aug 1993 | A |
5329108 | Lamoure | Jul 1994 | A |
5632009 | Rao et al. | May 1997 | A |
5670987 | Doi et al. | Sep 1997 | A |
5781704 | Rossmo | Jul 1998 | A |
5798769 | Chiu et al. | Aug 1998 | A |
5845300 | Comer | Dec 1998 | A |
5999911 | Berg et al. | Dec 1999 | A |
6057757 | Arrowsmith et al. | May 2000 | A |
6065026 | Cornelia et al. | May 2000 | A |
6091956 | Hollenberg | Jul 2000 | A |
6161098 | Wallman | Dec 2000 | A |
6219053 | Tachibana et al. | Apr 2001 | B1 |
6232971 | Haynes | May 2001 | B1 |
6237138 | Hameluck et al. | May 2001 | B1 |
6243706 | Moreau et al. | Jun 2001 | B1 |
6247019 | Davies | Jun 2001 | B1 |
6279018 | Kudrolli et al. | Aug 2001 | B1 |
6341310 | Leshem et al. | Jan 2002 | B1 |
6366933 | Ball et al. | Apr 2002 | B1 |
6369835 | Lin | Apr 2002 | B1 |
6370538 | Lamping et al. | Apr 2002 | B1 |
6374251 | Fayyad et al. | Apr 2002 | B1 |
6430305 | Decker | Aug 2002 | B1 |
6456997 | Shukla | Sep 2002 | B1 |
6523019 | Borthwick | Feb 2003 | B1 |
6549944 | Weinberg et al. | Apr 2003 | B1 |
6560620 | Ching | May 2003 | B1 |
6581068 | Bensoussan et al. | Jun 2003 | B1 |
6594672 | Lampson et al. | Jul 2003 | B1 |
6631496 | Li et al. | Oct 2003 | B1 |
6642945 | Sharpe | Nov 2003 | B1 |
6665683 | Meltzer | Dec 2003 | B1 |
6674434 | Chojnacki et al. | Jan 2004 | B1 |
6714936 | Nevin, III | Mar 2004 | B1 |
6775675 | Nwabueze et al. | Aug 2004 | B1 |
6820135 | Dingman | Nov 2004 | B1 |
6828920 | Owen et al. | Dec 2004 | B2 |
6839745 | Dingari et al. | Jan 2005 | B1 |
6850317 | Mullins et al. | Feb 2005 | B2 |
6877137 | Rivette et al. | Apr 2005 | B1 |
6944777 | Belani et al. | Sep 2005 | B1 |
6944821 | Bates et al. | Sep 2005 | B1 |
6967589 | Peters | Nov 2005 | B1 |
6976210 | Silva et al. | Dec 2005 | B1 |
6978419 | Kantrowitz | Dec 2005 | B1 |
6980984 | Huffman et al. | Dec 2005 | B1 |
6985950 | Hanson et al. | Jan 2006 | B1 |
7036085 | Barros | Apr 2006 | B2 |
7043702 | Chi et al. | May 2006 | B2 |
7055110 | Kupka et al. | May 2006 | B2 |
7086028 | Davis et al. | Aug 2006 | B1 |
7139800 | Bellotti et al. | Nov 2006 | B2 |
7158878 | Rasmussen et al. | Jan 2007 | B2 |
7162475 | Ackerman | Jan 2007 | B2 |
7168039 | Bertram | Jan 2007 | B2 |
7171427 | Witkowski | Jan 2007 | B2 |
7174377 | Bernard et al. | Feb 2007 | B2 |
7194680 | Roy et al. | Mar 2007 | B1 |
7213030 | Jenkins | May 2007 | B1 |
7269786 | Malloy et al. | Sep 2007 | B1 |
7278105 | Kitts | Oct 2007 | B1 |
7290698 | Poslinski et al. | Nov 2007 | B2 |
7333998 | Heckerman et al. | Feb 2008 | B2 |
7370047 | Gorman | May 2008 | B2 |
7379811 | Rasmussen et al. | May 2008 | B2 |
7379903 | Caballero et al. | May 2008 | B2 |
7392254 | Jenkins | Jun 2008 | B1 |
7426654 | Adams et al. | Sep 2008 | B2 |
7441182 | Beilinson et al. | Oct 2008 | B2 |
7441219 | Perry et al. | Oct 2008 | B2 |
7454466 | Bellotti et al. | Nov 2008 | B2 |
7467375 | Tondreau et al. | Dec 2008 | B2 |
7487139 | Fraleigh et al. | Feb 2009 | B2 |
7502786 | Liu et al. | Mar 2009 | B2 |
7525422 | Bishop et al. | Apr 2009 | B2 |
7529727 | Arning et al. | May 2009 | B2 |
7529734 | Dirisala | May 2009 | B2 |
7558677 | Jones | Jul 2009 | B2 |
7574409 | Patinkin | Aug 2009 | B2 |
7574428 | Leiserowitz et al. | Aug 2009 | B2 |
7579965 | Bucholz | Aug 2009 | B2 |
7596285 | Brown et al. | Sep 2009 | B2 |
7614006 | Molander | Nov 2009 | B2 |
7617232 | Gabbert et al. | Nov 2009 | B2 |
7620628 | Kapur et al. | Nov 2009 | B2 |
7627812 | Chamberlain et al. | Dec 2009 | B2 |
7634717 | Chamberlain et al. | Dec 2009 | B2 |
7703021 | Flam | Apr 2010 | B1 |
7706817 | Bamrah et al. | Apr 2010 | B2 |
7712049 | Williams et al. | May 2010 | B2 |
7716077 | Mikurak | May 2010 | B1 |
7716140 | Nielsen et al. | May 2010 | B1 |
7725530 | Sah et al. | May 2010 | B2 |
7725547 | Albertson et al. | May 2010 | B2 |
7730082 | Sah et al. | Jun 2010 | B2 |
7730109 | Rohrs et al. | Jun 2010 | B2 |
7765489 | Shah et al. | Jul 2010 | B1 |
7770100 | Chamberlain et al. | Aug 2010 | B2 |
7805457 | Viola et al. | Sep 2010 | B1 |
7809703 | Balabhadrapatruni et al. | Oct 2010 | B2 |
7818291 | Ferguson et al. | Oct 2010 | B2 |
7818658 | Chen | Oct 2010 | B2 |
7870493 | Pall et al. | Jan 2011 | B2 |
7877421 | Berger et al. | Jan 2011 | B2 |
7880921 | Dattilo et al. | Feb 2011 | B2 |
7894984 | Rasmussen et al. | Feb 2011 | B2 |
7899611 | Downs et al. | Mar 2011 | B2 |
7899796 | Borthwick et al. | Mar 2011 | B1 |
7917376 | Bellin et al. | Mar 2011 | B2 |
7920963 | Jouline et al. | Apr 2011 | B2 |
7933862 | Chamberlain et al. | Apr 2011 | B2 |
7941336 | Robin-Jan | May 2011 | B1 |
7958147 | Turner et al. | Jun 2011 | B1 |
7962281 | Rasmussen et al. | Jun 2011 | B2 |
7962495 | Jain et al. | Jun 2011 | B2 |
7962848 | Bertram | Jun 2011 | B2 |
7966199 | Frasher | Jun 2011 | B1 |
7970240 | Chao et al. | Jun 2011 | B1 |
7971150 | Raskutti et al. | Jun 2011 | B2 |
7984374 | Caro et al. | Jul 2011 | B2 |
8001465 | Kudrolli et al. | Aug 2011 | B2 |
8001482 | Bhattiprolu et al. | Aug 2011 | B2 |
8010507 | Poston et al. | Aug 2011 | B2 |
8010545 | Stefik et al. | Aug 2011 | B2 |
8015487 | Roy et al. | Sep 2011 | B2 |
8024778 | Cash et al. | Sep 2011 | B2 |
8036632 | Cona et al. | Oct 2011 | B1 |
8042110 | Kawahara et al. | Oct 2011 | B1 |
8073857 | Sreekanth | Dec 2011 | B2 |
8103543 | Zwicky | Jan 2012 | B1 |
8134457 | Velipasalar et al. | Mar 2012 | B2 |
8145703 | Frishert et al. | Mar 2012 | B2 |
8185819 | Sah et al. | May 2012 | B2 |
8191005 | Baier et al. | May 2012 | B2 |
8214361 | Sandler et al. | Jul 2012 | B1 |
8214764 | Gemmell et al. | Jul 2012 | B2 |
8225201 | Michael | Jul 2012 | B2 |
8229947 | Fujinaga | Jul 2012 | B2 |
8230333 | Decherd et al. | Jul 2012 | B2 |
8271461 | Pike et al. | Sep 2012 | B2 |
8280880 | Aymeloglu et al. | Oct 2012 | B1 |
8290838 | Thakur et al. | Oct 2012 | B1 |
8290926 | Ozzie et al. | Oct 2012 | B2 |
8290942 | Jones et al. | Oct 2012 | B2 |
8301464 | Cave et al. | Oct 2012 | B1 |
8301904 | Gryaznov | Oct 2012 | B1 |
8302855 | Ma et al. | Nov 2012 | B2 |
8312367 | Foster | Nov 2012 | B2 |
8312546 | Alme | Nov 2012 | B2 |
8352881 | Champion et al. | Jan 2013 | B2 |
8368695 | Howell et al. | Feb 2013 | B2 |
8386377 | Xiong et al. | Feb 2013 | B1 |
8397171 | Klassen et al. | Mar 2013 | B2 |
8412707 | Mianji | Apr 2013 | B1 |
8447722 | Ahuja et al. | May 2013 | B1 |
8452790 | Mianji | May 2013 | B1 |
8463036 | Ramesh et al. | Jun 2013 | B1 |
8489331 | Kopf et al. | Jul 2013 | B2 |
8489641 | Seefeld et al. | Jul 2013 | B1 |
8494984 | Ito et al. | Jul 2013 | B2 |
8510743 | Hackborn et al. | Aug 2013 | B2 |
8514082 | Cova et al. | Aug 2013 | B2 |
8515207 | Chau | Aug 2013 | B2 |
8527949 | Pleis et al. | Sep 2013 | B1 |
8554579 | Tribble et al. | Oct 2013 | B2 |
8554653 | Falkenborg et al. | Oct 2013 | B2 |
8554709 | Goodson et al. | Oct 2013 | B2 |
8560413 | Quarterman | Oct 2013 | B1 |
8577911 | Stepinski et al. | Nov 2013 | B1 |
8589273 | Creeden et al. | Nov 2013 | B2 |
8595234 | Siripurapu et al. | Nov 2013 | B2 |
8620641 | Farnsworth et al. | Dec 2013 | B2 |
8646080 | Williamson et al. | Feb 2014 | B2 |
8676857 | Adams et al. | Mar 2014 | B1 |
8682696 | Shanmugam | Mar 2014 | B1 |
8688573 | Rukonic et al. | Apr 2014 | B1 |
8689108 | Duffield et al. | Apr 2014 | B1 |
8713467 | Goldenberg et al. | Apr 2014 | B1 |
8726379 | Stiansen et al. | May 2014 | B1 |
8732574 | Burr et al. | May 2014 | B2 |
8739278 | Varghese | May 2014 | B2 |
8742934 | Sarpy et al. | Jun 2014 | B1 |
8744890 | Bernier | Jun 2014 | B1 |
8745516 | Mason et al. | Jun 2014 | B2 |
8781169 | Jackson et al. | Jul 2014 | B2 |
8787939 | Papakipos et al. | Jul 2014 | B2 |
8788407 | Singh et al. | Jul 2014 | B1 |
8798354 | Bunzel et al. | Aug 2014 | B1 |
8799313 | Satlow | Aug 2014 | B2 |
8799799 | Cervelli et al. | Aug 2014 | B1 |
8807948 | Luo et al. | Aug 2014 | B2 |
8812960 | Sun et al. | Aug 2014 | B1 |
8830322 | Nerayoff et al. | Sep 2014 | B2 |
8832594 | Thompson et al. | Sep 2014 | B1 |
8868537 | Colgrove et al. | Oct 2014 | B1 |
8917274 | Ma et al. | Dec 2014 | B2 |
8924872 | Bogomolov et al. | Dec 2014 | B1 |
8930874 | Duff et al. | Jan 2015 | B2 |
8937619 | Sharma et al. | Jan 2015 | B2 |
8938686 | Erenrich et al. | Jan 2015 | B1 |
8984390 | Aymeloglu et al. | Mar 2015 | B2 |
9009171 | Grossman et al. | Apr 2015 | B1 |
9009827 | Albertson et al. | Apr 2015 | B1 |
9021260 | Falk et al. | Apr 2015 | B1 |
9021384 | Beard et al. | Apr 2015 | B1 |
9043696 | Meiklejohn et al. | May 2015 | B1 |
9043894 | Dennison et al. | May 2015 | B1 |
9058315 | Burr et al. | Jun 2015 | B2 |
9069842 | Melby | Jun 2015 | B2 |
9116975 | Shankar et al. | Aug 2015 | B2 |
9165100 | Begur et al. | Oct 2015 | B2 |
20010021936 | Bertram | Sep 2001 | A1 |
20020032677 | Morgenthaler et al. | Mar 2002 | A1 |
20020033848 | Sciammarella et al. | Mar 2002 | A1 |
20020065708 | Senay et al. | May 2002 | A1 |
20020091707 | Keller | Jul 2002 | A1 |
20020095360 | Joao | Jul 2002 | A1 |
20020095658 | Shulman | Jul 2002 | A1 |
20020103705 | Brady | Aug 2002 | A1 |
20020116120 | Ruiz et al. | Aug 2002 | A1 |
20020174201 | Ramer et al. | Nov 2002 | A1 |
20020194119 | Wright et al. | Dec 2002 | A1 |
20020196229 | Chen | Dec 2002 | A1 |
20030028560 | Kudrolli et al. | Feb 2003 | A1 |
20030036848 | Sheha | Feb 2003 | A1 |
20030036927 | Bowen | Feb 2003 | A1 |
20030039948 | Donahue | Feb 2003 | A1 |
20030093755 | O'Carroll | May 2003 | A1 |
20030126102 | Borthwick | Jul 2003 | A1 |
20030140106 | Raguseo | Jul 2003 | A1 |
20030144868 | MacIntyre et al. | Jul 2003 | A1 |
20030163352 | Surpin et al. | Aug 2003 | A1 |
20030200217 | Ackerman | Oct 2003 | A1 |
20030225755 | Iwayama et al. | Dec 2003 | A1 |
20030229848 | Arend et al. | Dec 2003 | A1 |
20040032432 | Baynger | Feb 2004 | A1 |
20040034570 | Davis | Feb 2004 | A1 |
20040044648 | Anfindsen et al. | Mar 2004 | A1 |
20040064256 | Barinek et al. | Apr 2004 | A1 |
20040085318 | Hassler et al. | May 2004 | A1 |
20040095349 | Bito et al. | May 2004 | A1 |
20040111410 | Burgoon et al. | Jun 2004 | A1 |
20040126840 | Cheng et al. | Jul 2004 | A1 |
20040143602 | Ruiz et al. | Jul 2004 | A1 |
20040143796 | Lerner et al. | Jul 2004 | A1 |
20040163039 | Gorman | Aug 2004 | A1 |
20040193600 | Kaasten et al. | Sep 2004 | A1 |
20040205492 | Newsome | Oct 2004 | A1 |
20040221223 | Yu et al. | Nov 2004 | A1 |
20040236688 | Bozeman | Nov 2004 | A1 |
20040236711 | Nixon et al. | Nov 2004 | A1 |
20040260702 | Cragun et al. | Dec 2004 | A1 |
20040267746 | Marcjan et al. | Dec 2004 | A1 |
20050010472 | Quatse et al. | Jan 2005 | A1 |
20050027705 | Sadri et al. | Feb 2005 | A1 |
20050028094 | Allyn | Feb 2005 | A1 |
20050039116 | Slack-Smith | Feb 2005 | A1 |
20050039119 | Parks et al. | Feb 2005 | A1 |
20050065811 | Chu et al. | Mar 2005 | A1 |
20050078858 | Yao et al. | Apr 2005 | A1 |
20050080769 | Gemmell | Apr 2005 | A1 |
20050086207 | Heuer et al. | Apr 2005 | A1 |
20050091186 | Elish | Apr 2005 | A1 |
20050125715 | Franco et al. | Jun 2005 | A1 |
20050154628 | Eckart et al. | Jul 2005 | A1 |
20050154769 | Eckart et al. | Jul 2005 | A1 |
20050162523 | Darrell et al. | Jul 2005 | A1 |
20050166144 | Gross | Jul 2005 | A1 |
20050180330 | Shapiro | Aug 2005 | A1 |
20050182793 | Keenan et al. | Aug 2005 | A1 |
20050183005 | Denoue et al. | Aug 2005 | A1 |
20050210409 | Jou | Sep 2005 | A1 |
20050246327 | Yeung et al. | Nov 2005 | A1 |
20050251786 | Citron et al. | Nov 2005 | A1 |
20060026120 | Carolan et al. | Feb 2006 | A1 |
20060026170 | Kreitler et al. | Feb 2006 | A1 |
20060026561 | Bauman et al. | Feb 2006 | A1 |
20060031779 | Theurer et al. | Feb 2006 | A1 |
20060045470 | Poslinski et al. | Mar 2006 | A1 |
20060053097 | King et al. | Mar 2006 | A1 |
20060053170 | Hill et al. | Mar 2006 | A1 |
20060059139 | Robinson | Mar 2006 | A1 |
20060059423 | Lehmann et al. | Mar 2006 | A1 |
20060074866 | Chamberlain et al. | Apr 2006 | A1 |
20060074881 | Vembu et al. | Apr 2006 | A1 |
20060080139 | Mainzer | Apr 2006 | A1 |
20060080283 | Shipman | Apr 2006 | A1 |
20060080619 | Carlson et al. | Apr 2006 | A1 |
20060093222 | Saffer et al. | May 2006 | A1 |
20060129746 | Porter | Jun 2006 | A1 |
20060136513 | Ngo et al. | Jun 2006 | A1 |
20060139375 | Rasmussen et al. | Jun 2006 | A1 |
20060142949 | Helt | Jun 2006 | A1 |
20060143034 | Rothermel | Jun 2006 | A1 |
20060143075 | Carr et al. | Jun 2006 | A1 |
20060149596 | Surpin et al. | Jul 2006 | A1 |
20060155654 | Plessis et al. | Jul 2006 | A1 |
20060178915 | Chao | Aug 2006 | A1 |
20060203337 | White | Sep 2006 | A1 |
20060218637 | Thomas et al. | Sep 2006 | A1 |
20060241974 | Chao et al. | Oct 2006 | A1 |
20060242040 | Rader | Oct 2006 | A1 |
20060242630 | Koike et al. | Oct 2006 | A1 |
20060265417 | Amato et al. | Nov 2006 | A1 |
20060271277 | Hu et al. | Nov 2006 | A1 |
20060277460 | Forstall et al. | Dec 2006 | A1 |
20060279630 | Aggarwal et al. | Dec 2006 | A1 |
20070000999 | Kubo et al. | Jan 2007 | A1 |
20070011150 | Frank | Jan 2007 | A1 |
20070016363 | Huang et al. | Jan 2007 | A1 |
20070018986 | Hauser | Jan 2007 | A1 |
20070038646 | Thota | Feb 2007 | A1 |
20070038962 | Fuchs et al. | Feb 2007 | A1 |
20070043686 | Teng et al. | Feb 2007 | A1 |
20070057966 | Ohno et al. | Mar 2007 | A1 |
20070061752 | Cory | Mar 2007 | A1 |
20070078832 | Ott et al. | Apr 2007 | A1 |
20070083541 | Fraleigh et al. | Apr 2007 | A1 |
20070088596 | Berkelhamer et al. | Apr 2007 | A1 |
20070094389 | Nussey et al. | Apr 2007 | A1 |
20070113164 | Hansen et al. | May 2007 | A1 |
20070136095 | Weinstein | Jun 2007 | A1 |
20070150369 | Zivin | Jun 2007 | A1 |
20070162454 | D' Albora et al. | Jul 2007 | A1 |
20070168871 | Jenkins | Jul 2007 | A1 |
20070174760 | Chamberlain et al. | Jul 2007 | A1 |
20070185850 | Walters et al. | Aug 2007 | A1 |
20070192122 | Routson et al. | Aug 2007 | A1 |
20070192265 | Chopin et al. | Aug 2007 | A1 |
20070198571 | Ferguson et al. | Aug 2007 | A1 |
20070208497 | Downs et al. | Sep 2007 | A1 |
20070208498 | Barker et al. | Sep 2007 | A1 |
20070208736 | Tanigawa et al. | Sep 2007 | A1 |
20070233709 | Abnous | Oct 2007 | A1 |
20070240062 | Christena et al. | Oct 2007 | A1 |
20070245339 | Bauman et al. | Oct 2007 | A1 |
20070266336 | Nojima et al. | Nov 2007 | A1 |
20070284433 | Domenica et al. | Dec 2007 | A1 |
20070294643 | Kyle | Dec 2007 | A1 |
20070299697 | Friedlander et al. | Dec 2007 | A1 |
20080016155 | Khalatian | Jan 2008 | A1 |
20080040275 | Paulsen et al. | Feb 2008 | A1 |
20080040684 | Crump | Feb 2008 | A1 |
20080051989 | Welsh | Feb 2008 | A1 |
20080052142 | Bailey et al. | Feb 2008 | A1 |
20080077597 | Butler | Mar 2008 | A1 |
20080077642 | Carbone et al. | Mar 2008 | A1 |
20080082486 | Lermant et al. | Apr 2008 | A1 |
20080091693 | Murthy | Apr 2008 | A1 |
20080104019 | Nath | May 2008 | A1 |
20080109714 | Kumar et al. | May 2008 | A1 |
20080126951 | Sood et al. | May 2008 | A1 |
20080148398 | Mezack et al. | Jun 2008 | A1 |
20080155440 | Trevor et al. | Jun 2008 | A1 |
20080162616 | Gross et al. | Jul 2008 | A1 |
20080172607 | Baer | Jul 2008 | A1 |
20080177782 | Poston et al. | Jul 2008 | A1 |
20080186904 | Koyama et al. | Aug 2008 | A1 |
20080195417 | Surpin et al. | Aug 2008 | A1 |
20080195608 | Clover | Aug 2008 | A1 |
20080208735 | Balet et al. | Aug 2008 | A1 |
20080222295 | Robinson et al. | Sep 2008 | A1 |
20080249820 | Pathria et al. | Oct 2008 | A1 |
20080249983 | Meisels et al. | Oct 2008 | A1 |
20080255973 | El Wade et al. | Oct 2008 | A1 |
20080263468 | Cappione et al. | Oct 2008 | A1 |
20080267107 | Rosenberg | Oct 2008 | A1 |
20080270328 | Lafferty et al. | Oct 2008 | A1 |
20080276167 | Michael | Nov 2008 | A1 |
20080278311 | Grange et al. | Nov 2008 | A1 |
20080281819 | Tenenbaum et al. | Nov 2008 | A1 |
20080288306 | Maclntyre et al. | Nov 2008 | A1 |
20080288475 | Kim et al. | Nov 2008 | A1 |
20080301042 | Patzer | Dec 2008 | A1 |
20080301559 | Martinsen et al. | Dec 2008 | A1 |
20080301643 | Appleton et al. | Dec 2008 | A1 |
20080313132 | Hao et al. | Dec 2008 | A1 |
20080313243 | Poston et al. | Dec 2008 | A1 |
20080313281 | Scheidl et al. | Dec 2008 | A1 |
20090002492 | Velipasalar et al. | Jan 2009 | A1 |
20090027418 | Maru et al. | Jan 2009 | A1 |
20090030915 | Winter et al. | Jan 2009 | A1 |
20090031401 | Cudich et al. | Jan 2009 | A1 |
20090037912 | Stoitsev et al. | Feb 2009 | A1 |
20090043801 | LeClair et al. | Feb 2009 | A1 |
20090055251 | Shah et al. | Feb 2009 | A1 |
20090070162 | Leonelli et al. | Mar 2009 | A1 |
20090088964 | Schaaf et al. | Apr 2009 | A1 |
20090089651 | Herberger et al. | Apr 2009 | A1 |
20090094270 | Alirez et al. | Apr 2009 | A1 |
20090106178 | Chu | Apr 2009 | A1 |
20090112678 | Luzardo | Apr 2009 | A1 |
20090112745 | Stefanescu | Apr 2009 | A1 |
20090119309 | Gibson et al. | May 2009 | A1 |
20090125359 | Knapic | May 2009 | A1 |
20090125369 | Kloostra et al. | May 2009 | A1 |
20090125459 | Norton et al. | May 2009 | A1 |
20090132921 | Hwangbo et al. | May 2009 | A1 |
20090132953 | Reed et al. | May 2009 | A1 |
20090143052 | Bates et al. | Jun 2009 | A1 |
20090144262 | White et al. | Jun 2009 | A1 |
20090144274 | Fraleigh et al. | Jun 2009 | A1 |
20090150868 | Chakra et al. | Jun 2009 | A1 |
20090157732 | Hao et al. | Jun 2009 | A1 |
20090164934 | Bhattiprolu et al. | Jun 2009 | A1 |
20090171939 | Athsani et al. | Jul 2009 | A1 |
20090172511 | Decherd et al. | Jul 2009 | A1 |
20090172821 | Daira et al. | Jul 2009 | A1 |
20090177962 | Gusmorino et al. | Jul 2009 | A1 |
20090179892 | Tsuda et al. | Jul 2009 | A1 |
20090187464 | Bai et al. | Jul 2009 | A1 |
20090187546 | Whyte | Jul 2009 | A1 |
20090199106 | Jonsson et al. | Aug 2009 | A1 |
20090222400 | Kupershmidt et al. | Sep 2009 | A1 |
20090222759 | Drieschner | Sep 2009 | A1 |
20090222760 | Halverson et al. | Sep 2009 | A1 |
20090228365 | Tomchek et al. | Sep 2009 | A1 |
20090234720 | George et al. | Sep 2009 | A1 |
20090248757 | Havewala et al. | Oct 2009 | A1 |
20090249178 | Ambrosino et al. | Oct 2009 | A1 |
20090249244 | Robinson et al. | Oct 2009 | A1 |
20090254970 | Agarwal et al. | Oct 2009 | A1 |
20090271343 | Vaiciulis et al. | Oct 2009 | A1 |
20090281839 | Lynn et al. | Nov 2009 | A1 |
20090282068 | Shockro et al. | Nov 2009 | A1 |
20090287470 | Farnsworth et al. | Nov 2009 | A1 |
20090292626 | Oxford | Nov 2009 | A1 |
20090300589 | Watters et al. | Dec 2009 | A1 |
20090307049 | Elliott et al. | Dec 2009 | A1 |
20090313463 | Pang et al. | Dec 2009 | A1 |
20090318775 | Michelson et al. | Dec 2009 | A1 |
20090319891 | Mackinlay et al. | Dec 2009 | A1 |
20100004857 | Pereira et al. | Jan 2010 | A1 |
20100011282 | Dollard et al. | Jan 2010 | A1 |
20100042922 | Bradateanu et al. | Feb 2010 | A1 |
20100057622 | Faith et al. | Mar 2010 | A1 |
20100057716 | Stefik et al. | Mar 2010 | A1 |
20100070523 | Delgo et al. | Mar 2010 | A1 |
20100070842 | Aymeloglu et al. | Mar 2010 | A1 |
20100070844 | Aymeloglu et al. | Mar 2010 | A1 |
20100070845 | Facemire et al. | Mar 2010 | A1 |
20100070897 | Aymeloglu et al. | Mar 2010 | A1 |
20100098318 | Anderson | Apr 2010 | A1 |
20100100963 | Mahaffey | Apr 2010 | A1 |
20100103124 | Kruzeniski et al. | Apr 2010 | A1 |
20100106752 | Eckardt et al. | Apr 2010 | A1 |
20100114887 | Conway et al. | May 2010 | A1 |
20100122152 | Chamberlain et al. | May 2010 | A1 |
20100131457 | Heimendinger | May 2010 | A1 |
20100162176 | Dunton | Jun 2010 | A1 |
20100191563 | Schlaifer et al. | Jul 2010 | A1 |
20100198684 | Eraker et al. | Aug 2010 | A1 |
20100199225 | Coleman et al. | Aug 2010 | A1 |
20100223260 | Wu | Sep 2010 | A1 |
20100228812 | Uomini | Sep 2010 | A1 |
20100238174 | Haub | Sep 2010 | A1 |
20100250412 | Wagner | Sep 2010 | A1 |
20100262901 | Disalvo | Oct 2010 | A1 |
20100280851 | Merkin | Nov 2010 | A1 |
20100280857 | Liu et al. | Nov 2010 | A1 |
20100293174 | Bennett et al. | Nov 2010 | A1 |
20100306713 | Geisner et al. | Dec 2010 | A1 |
20100306722 | LeHoty et al. | Dec 2010 | A1 |
20100313119 | Baldwin et al. | Dec 2010 | A1 |
20100313239 | Chakra et al. | Dec 2010 | A1 |
20100318924 | Frankel et al. | Dec 2010 | A1 |
20100321399 | Ellren et al. | Dec 2010 | A1 |
20100325526 | Ellis et al. | Dec 2010 | A1 |
20100325581 | Finkelstein et al. | Dec 2010 | A1 |
20100330801 | Rouh | Dec 2010 | A1 |
20110004498 | Readshaw | Jan 2011 | A1 |
20110004626 | Naeymi-Rad et al. | Jan 2011 | A1 |
20110029526 | Knight et al. | Feb 2011 | A1 |
20110047159 | Baid et al. | Feb 2011 | A1 |
20110047540 | Williams et al. | Feb 2011 | A1 |
20110060753 | Shaked et al. | Mar 2011 | A1 |
20110061013 | Bilicki et al. | Mar 2011 | A1 |
20110066933 | Ludwig | Mar 2011 | A1 |
20110074788 | Regan et al. | Mar 2011 | A1 |
20110074811 | Hanson et al. | Mar 2011 | A1 |
20110078055 | Faribault et al. | Mar 2011 | A1 |
20110078173 | Seligmann et al. | Mar 2011 | A1 |
20110093327 | Fordyce, III et al. | Apr 2011 | A1 |
20110099133 | Chang et al. | Apr 2011 | A1 |
20110107196 | Foster | May 2011 | A1 |
20110117878 | Barash et al. | May 2011 | A1 |
20110119100 | Ruhl et al. | May 2011 | A1 |
20110137766 | Rasmussen et al. | Jun 2011 | A1 |
20110153384 | Horne et al. | Jun 2011 | A1 |
20110161096 | Buehler et al. | Jun 2011 | A1 |
20110161409 | Nair et al. | Jun 2011 | A1 |
20110167105 | Ramakrishnan et al. | Jul 2011 | A1 |
20110170799 | Carrino et al. | Jul 2011 | A1 |
20110173032 | Payne et al. | Jul 2011 | A1 |
20110173093 | Psota et al. | Jul 2011 | A1 |
20110179048 | Satlow | Jul 2011 | A1 |
20110185316 | Reid et al. | Jul 2011 | A1 |
20110208565 | Ross et al. | Aug 2011 | A1 |
20110208724 | Jones et al. | Aug 2011 | A1 |
20110213655 | Henkin | Sep 2011 | A1 |
20110218934 | Elser | Sep 2011 | A1 |
20110219450 | McDougal et al. | Sep 2011 | A1 |
20110225198 | Edwards et al. | Sep 2011 | A1 |
20110225482 | Chan et al. | Sep 2011 | A1 |
20110225586 | Bentley et al. | Sep 2011 | A1 |
20110225650 | Margolies et al. | Sep 2011 | A1 |
20110238495 | Kang | Sep 2011 | A1 |
20110238553 | Raj et al. | Sep 2011 | A1 |
20110251951 | Kolkowitz | Oct 2011 | A1 |
20110258158 | Resende et al. | Oct 2011 | A1 |
20110270705 | Parker | Nov 2011 | A1 |
20110289397 | Eastmond et al. | Nov 2011 | A1 |
20110289407 | Naik et al. | Nov 2011 | A1 |
20110289420 | Morioka et al. | Nov 2011 | A1 |
20110291851 | Whisenant | Dec 2011 | A1 |
20110310005 | Chen et al. | Dec 2011 | A1 |
20110314007 | Dassa et al. | Dec 2011 | A1 |
20120004894 | Butler et al. | Jan 2012 | A1 |
20120004904 | Shin et al. | Jan 2012 | A1 |
20120019559 | Siler et al. | Jan 2012 | A1 |
20120022945 | Falkenborg et al. | Jan 2012 | A1 |
20120036013 | Neuhaus et al. | Feb 2012 | A1 |
20120036434 | Oberstein | Feb 2012 | A1 |
20120050293 | Carlhian et al. | Mar 2012 | A1 |
20120059853 | Jagota | Mar 2012 | A1 |
20120066296 | Appleton et al. | Mar 2012 | A1 |
20120072825 | Sherkin et al. | Mar 2012 | A1 |
20120079363 | Folting et al. | Mar 2012 | A1 |
20120084117 | Tavares et al. | Apr 2012 | A1 |
20120084118 | Bai et al. | Apr 2012 | A1 |
20120084184 | Raleigh et al. | Apr 2012 | A1 |
20120106801 | Jackson | May 2012 | A1 |
20120117082 | Koperda et al. | May 2012 | A1 |
20120123989 | Yu et al. | May 2012 | A1 |
20120131512 | Takeuchi et al. | May 2012 | A1 |
20120137235 | T S et al. | May 2012 | A1 |
20120144335 | Abeln et al. | Jun 2012 | A1 |
20120159307 | Chung et al. | Jun 2012 | A1 |
20120159362 | Brown et al. | Jun 2012 | A1 |
20120159399 | Bastide et al. | Jun 2012 | A1 |
20120170847 | Tsukidate | Jul 2012 | A1 |
20120173985 | Peppel | Jul 2012 | A1 |
20120180002 | Campbell et al. | Jul 2012 | A1 |
20120188252 | Law | Jul 2012 | A1 |
20120196557 | Reich et al. | Aug 2012 | A1 |
20120196558 | Reich et al. | Aug 2012 | A1 |
20120197651 | Robinson et al. | Aug 2012 | A1 |
20120197657 | Prodanovich | Aug 2012 | A1 |
20120197660 | Prodanovich | Aug 2012 | A1 |
20120203708 | Psota et al. | Aug 2012 | A1 |
20120208636 | Feige | Aug 2012 | A1 |
20120215784 | King et al. | Aug 2012 | A1 |
20120221511 | Gibson et al. | Aug 2012 | A1 |
20120221553 | Wittmer et al. | Aug 2012 | A1 |
20120221580 | Barney | Aug 2012 | A1 |
20120226590 | Love et al. | Sep 2012 | A1 |
20120245976 | Kumar et al. | Sep 2012 | A1 |
20120246148 | Dror | Sep 2012 | A1 |
20120254129 | Wheeler et al. | Oct 2012 | A1 |
20120266245 | McDougal et al. | Oct 2012 | A1 |
20120284345 | Costenaro et al. | Nov 2012 | A1 |
20120284670 | Kashik et al. | Nov 2012 | A1 |
20120290879 | Shibuya et al. | Nov 2012 | A1 |
20120296907 | Long et al. | Nov 2012 | A1 |
20120304244 | Xie et al. | Nov 2012 | A1 |
20120311684 | Paulsen et al. | Dec 2012 | A1 |
20120323829 | Stokes et al. | Dec 2012 | A1 |
20120323888 | Osann, Jr. | Dec 2012 | A1 |
20120330801 | McDougal et al. | Dec 2012 | A1 |
20120330973 | Ghuneim et al. | Dec 2012 | A1 |
20130006426 | Healey et al. | Jan 2013 | A1 |
20130006725 | Simanek et al. | Jan 2013 | A1 |
20130006916 | McBride et al. | Jan 2013 | A1 |
20130016106 | Yip et al. | Jan 2013 | A1 |
20130018796 | Kolhatkar et al. | Jan 2013 | A1 |
20130024268 | Manickavelu | Jan 2013 | A1 |
20130046635 | Grigg et al. | Feb 2013 | A1 |
20130046842 | Muntz et al. | Feb 2013 | A1 |
20130060786 | Serrano et al. | Mar 2013 | A1 |
20130061169 | Pearcy et al. | Mar 2013 | A1 |
20130073377 | Heath | Mar 2013 | A1 |
20130073454 | Busch | Mar 2013 | A1 |
20130078943 | Biage et al. | Mar 2013 | A1 |
20130086482 | Parsons | Apr 2013 | A1 |
20130097482 | Marantz et al. | Apr 2013 | A1 |
20130101159 | Chao et al. | Apr 2013 | A1 |
20130110822 | Ikeda et al. | May 2013 | A1 |
20130110877 | Bonham et al. | May 2013 | A1 |
20130111320 | Campbell et al. | May 2013 | A1 |
20130117651 | Waldman et al. | May 2013 | A1 |
20130124567 | Balinsky et al. | May 2013 | A1 |
20130150004 | Rosen | Jun 2013 | A1 |
20130151148 | Parundekar et al. | Jun 2013 | A1 |
20130151305 | Akinola et al. | Jun 2013 | A1 |
20130151388 | Falkenborg et al. | Jun 2013 | A1 |
20130151453 | Bhanot et al. | Jun 2013 | A1 |
20130157234 | Gulli et al. | Jun 2013 | A1 |
20130166348 | Scotto | Jun 2013 | A1 |
20130166480 | Popescu et al. | Jun 2013 | A1 |
20130166550 | Buchmann et al. | Jun 2013 | A1 |
20130176321 | Mitchell et al. | Jul 2013 | A1 |
20130179420 | Park et al. | Jul 2013 | A1 |
20130197925 | Blue | Aug 2013 | A1 |
20130208565 | Orji et al. | Aug 2013 | A1 |
20130224696 | Wolfe et al. | Aug 2013 | A1 |
20130225212 | Khan | Aug 2013 | A1 |
20130226318 | Procyk | Aug 2013 | A1 |
20130226953 | Markovich et al. | Aug 2013 | A1 |
20130232045 | Tai | Sep 2013 | A1 |
20130238616 | Rose et al. | Sep 2013 | A1 |
20130246170 | Gross et al. | Sep 2013 | A1 |
20130251233 | Yang et al. | Sep 2013 | A1 |
20130262527 | Hunter et al. | Oct 2013 | A1 |
20130262528 | Foit | Oct 2013 | A1 |
20130263019 | Castellanos et al. | Oct 2013 | A1 |
20130267207 | Hao et al. | Oct 2013 | A1 |
20130268520 | Fisher et al. | Oct 2013 | A1 |
20130279757 | Kephart | Oct 2013 | A1 |
20130282696 | John et al. | Oct 2013 | A1 |
20130288719 | Alonzo | Oct 2013 | A1 |
20130290011 | Lynn et al. | Oct 2013 | A1 |
20130290825 | Arndt et al. | Oct 2013 | A1 |
20130297619 | Chandrasekaran et al. | Nov 2013 | A1 |
20130311375 | Priebatsch | Nov 2013 | A1 |
20130325826 | Agarwal et al. | Dec 2013 | A1 |
20140019936 | Cohanoff | Jan 2014 | A1 |
20140032506 | Hoey et al. | Jan 2014 | A1 |
20140033010 | Richardt et al. | Jan 2014 | A1 |
20140040371 | Gurevich et al. | Feb 2014 | A1 |
20140047319 | Eberlein | Feb 2014 | A1 |
20140047357 | Alfaro et al. | Feb 2014 | A1 |
20140058763 | Zizzamia et al. | Feb 2014 | A1 |
20140059038 | McPherson et al. | Feb 2014 | A1 |
20140067611 | Adachi et al. | Mar 2014 | A1 |
20140068487 | Steiger et al. | Mar 2014 | A1 |
20140074855 | Zhao et al. | Mar 2014 | A1 |
20140081685 | Thacker et al. | Mar 2014 | A1 |
20140095273 | Tang et al. | Apr 2014 | A1 |
20140095363 | Caldwell | Apr 2014 | A1 |
20140095509 | Patton | Apr 2014 | A1 |
20140108068 | Williams | Apr 2014 | A1 |
20140108380 | Gotz et al. | Apr 2014 | A1 |
20140108985 | Scott et al. | Apr 2014 | A1 |
20140129261 | Bothwell et al. | May 2014 | A1 |
20140129936 | Richards | May 2014 | A1 |
20140149436 | Bahrami et al. | May 2014 | A1 |
20140156484 | Chan et al. | Jun 2014 | A1 |
20140156527 | Grigg et al. | Jun 2014 | A1 |
20140157172 | Peery et al. | Jun 2014 | A1 |
20140164502 | Khodorenko et al. | Jun 2014 | A1 |
20140189536 | Lange et al. | Jul 2014 | A1 |
20140195515 | Baker et al. | Jul 2014 | A1 |
20140195887 | Ellis et al. | Jul 2014 | A1 |
20140208281 | Ming | Jul 2014 | A1 |
20140214579 | Shen et al. | Jul 2014 | A1 |
20140222521 | Chait | Aug 2014 | A1 |
20140222793 | Sadkin et al. | Aug 2014 | A1 |
20140244284 | Smith | Aug 2014 | A1 |
20140244388 | Manouchehri et al. | Aug 2014 | A1 |
20140258246 | Lo Faro et al. | Sep 2014 | A1 |
20140267294 | Ma | Sep 2014 | A1 |
20140267295 | Sharma | Sep 2014 | A1 |
20140279824 | Tamayo | Sep 2014 | A1 |
20140310266 | Greenfield | Oct 2014 | A1 |
20140316911 | Gross | Oct 2014 | A1 |
20140333651 | Cervelli et al. | Nov 2014 | A1 |
20140337772 | Cervelli et al. | Nov 2014 | A1 |
20140344230 | Krause et al. | Nov 2014 | A1 |
20140351070 | Christner et al. | Nov 2014 | A1 |
20140358829 | Hurwitz | Dec 2014 | A1 |
20150019394 | Unser et al. | Jan 2015 | A1 |
20150026622 | Roaldson et al. | Jan 2015 | A1 |
20150046870 | Goldenberg et al. | Feb 2015 | A1 |
20150073929 | Psota et al. | Mar 2015 | A1 |
20150073954 | Braff | Mar 2015 | A1 |
20150089353 | Folkening | Mar 2015 | A1 |
20150089424 | Duffield et al. | Mar 2015 | A1 |
20150100897 | Sun et al. | Apr 2015 | A1 |
20150100907 | Erenrich et al. | Apr 2015 | A1 |
20150106379 | Elliot et al. | Apr 2015 | A1 |
20150134666 | Gattiker et al. | May 2015 | A1 |
20150169709 | Kara et al. | Jun 2015 | A1 |
20150169726 | Kara et al. | Jun 2015 | A1 |
20150170077 | Kara et al. | Jun 2015 | A1 |
20150178825 | Huerta | Jun 2015 | A1 |
20150178877 | Bogomolov et al. | Jun 2015 | A1 |
20150186483 | Tappan et al. | Jul 2015 | A1 |
20150186821 | Wang et al. | Jul 2015 | A1 |
20150187036 | Wang et al. | Jul 2015 | A1 |
20150212663 | Papale et al. | Jul 2015 | A1 |
20150227295 | Meiklejohn et al. | Aug 2015 | A1 |
20150242401 | Liu | Aug 2015 | A1 |
20150254220 | Burr et al. | Sep 2015 | A1 |
20150309719 | Ma et al. | Oct 2015 | A1 |
20150317342 | Grossman et al. | Nov 2015 | A1 |
20150324868 | Kaftan et al. | Nov 2015 | A1 |
20160062555 | Ward et al. | Mar 2016 | A1 |
20160098176 | Cervelli et al. | Apr 2016 | A1 |
20160110369 | Cervelli et al. | Apr 2016 | A1 |
20160162519 | Stowe et al. | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
2013251186 | Nov 2015 | AU |
102054015 | May 2014 | CN |
102014103482 | Sep 2014 | DE |
102014215621 | Feb 2015 | DE |
1672527 | Jun 2006 | EP |
2551799 | Jan 2013 | EP |
2560134 | Feb 2013 | EP |
2778977 | Sep 2014 | EP |
2835745 | Feb 2015 | EP |
2835770 | Feb 2015 | EP |
2838039 | Feb 2015 | EP |
2846241 | Mar 2015 | EP |
2851852 | Mar 2015 | EP |
2858014 | Apr 2015 | EP |
2858018 | Apr 2015 | EP |
2863326 | Apr 2015 | EP |
2863346 | Apr 2015 | EP |
2869211 | May 2015 | EP |
2881868 | Jun 2015 | EP |
2884439 | Jun 2015 | EP |
2884440 | Jun 2015 | EP |
2891992 | Jul 2015 | EP |
2911078 | Aug 2015 | EP |
2911100 | Aug 2015 | EP |
2940603 | Nov 2015 | EP |
2940609 | Nov 2015 | EP |
2993595 | Mar 2016 | EP |
3002691 | Apr 2016 | EP |
2516155 | Jan 2015 | GB |
2518745 | Apr 2015 | GB |
2012778 | Nov 2014 | NL |
2013306 | Feb 2015 | NL |
624557 | Dec 2014 | NZ |
WO 0009529 | Feb 2000 | WO |
WO 0125906 | Apr 2001 | WO |
WO 0188750 | Nov 2001 | WO |
WO 02065353 | Aug 2002 | WO |
WO 2005104736 | Nov 2005 | WO |
WO 2007133206 | Nov 2007 | WO |
WO 2008064207 | May 2008 | WO |
WO 2009061501 | May 2009 | WO |
WO 2010000014 | Jan 2010 | WO |
WO 2010030913 | Mar 2010 | WO |
WO 2010030914 | Mar 2010 | WO |
WO 2012119008 | Sep 2012 | WO |
WO 2013010157 | Jan 2013 | WO |
WO 2013102892 | Jul 2013 | WO |
Entry |
---|
“A First Look: Predicting Market Demand for Food Retail using a Huff Analysis,” TRF Policy Solutions, Jul. 2012, pp. 30. |
“A Quick Guide to UniProtKB Swiss-Prot & TrEMBL,” Sep. 2011, pp. 2. |
“A Word About Banks and the Laundering of Drug Money,” Aug. 18, 2012, http://www.golemxiv.co.uk/2012/08/a-word-about-banks-and-the-laundering-of-drug-money/. |
“Potential Money Laundering Warning Signs,” snapshot taken 2003, https://web.archive.org/web/20030816090055/http:/finsolinc.com/ANTI-MONEY%20LAUNDERING%20TRAINING%20GUIDES.pdf. |
“Refresh CSS Ellipsis When Resizing Container—Stack Overflow,” Jul. 31, 2013, retrieved from internet http://stackoverflow.com/questions/17964681/refresh-css-ellipsis-when-resizing-container, retrieved on May 18, 2015. |
“The FASTA Program Package,” fasta-36.3.4, Mar. 25, 2011, pp. 29. |
Acklen, Laura, “Absolute Beginner's Guide to Microsoft Word 2003,” Dec. 24, 2003, pp. 15-18, 34-41, 308-316. |
Amnet, “5 Great Tools for Visualizing Your Twitter Followers,” posted Aug. 4, 2010, http://www.amnetblog.com/component/content/article/115-5-grate-tools-for-visualizing-your-twitter-followers.html. |
Ananiev et al., “The New Modality API,” http://web.archive.org/web/20061211011958/http://java.sun.com/developer/technicalArticies/J2SE/Desktop/javase6/modality/ Jan. 21, 2006, pp. 8. |
Bluttman et al., “Excel Formulas and Functions for Dummies,” 2005, Wiley Publishing, Inc., pp. 280, 284-286. |
Boyce, Jim, “Microsoft Outlook 2010 Inside Out,” Aug. 1, 2010, retrieved from the internet https://capdtron.files.wordpress.com/2013/01/outlock-2010-inside—out.pdf. |
Bugzilla@Mozilla, “Bug 18726—[feature] Long-click means of invoking contextual menus not supported,” http://bugzilla.mozilla.org/show—bug.cgi?id=18726 printed Jun. 13, 2013 in 11 pages . |
Canese et al., “Chapter 2: PubMed: The Bibliographic Database,” The NCBI Handbook, Oct. 2002, pp. 1-10. |
Celik, Tantek, “CSS Basic User Interface Module Level 3 (CSS3 UI),” Secion 8 Resizing and Overflow, Jan. 17, 2012, retrieved from internet http://www.3.org/TR/2012/WD-css3-ui-20120117/#resizing-amp-overflow retrieved on May 18, 2015. |
Chen et al., “Bringing Order to the Web: Automatically Categorizing Search Results,” CHI 2000, Proceedings of the SIGCHI conference on Human Factors in Computing Systems, Apr. 1-6, 2000, The Hague, The Netherlands, pp. 145-152. |
Chung, Chin-Wan, “Dataplex: An Access to Heterogeneous Distributed Databases,” Communications of the ACM, Association for Computing Machinery, Inc., vol. 33, No. 1, Jan. 1, 1990, pp. 70-80. |
Definition “Identify” downloaded Jan. 22, 2015, 1 page. |
Definition “Overlay” downloaded Jan. 22, 2015, 1 page. |
Delcher et al., “Identifying Bacterial Genes and Endosymbiont DNA with Glimmer,” Biolnformatics, vol. 23, No. 6, 2007, pp. 673-679. |
Dramowicz, Ela, “Retail Trade Area Analysis Using the Huff Model,” Directions Magazine, Jul. 2, 2005 in 10 pages, http://www.directionsmag.com/articles/retail-trade-area-analysis-using-the-huff-model/123411. |
Goswami, Gautam, “Quite Writly Said!,” One Brick at a Time, Aug. 21, 2005, pp. 7. |
Griffith, Daniel A., “A Generalized Huff Model,” Geographical Analysis, Apr. 1982, vol. 14, No. 2, pp. 135-144. |
Hansen et al. “Analyzing Social Media Networks with NodeXL: Insights from a Connected World”, Chapter 4, pp. 53-67 and Chapter 10, pp. 143-164, published Sep. 2010. |
Hardesty, “Privacy Challenges: Analysis: It's Surprisingly Easy to Identify Individuals from Credit-Card Metadata,” MIT News on Campus and Around the World, MIT News Office, Jan. 29, 2015, 3 pages. |
Hibbert et al., “Prediction of Shopping Behavior Using a Huff Model Within a GIS Framework,” Healthy Eating in Context, Mar. 18, 2011, pp. 16. |
Hogue et al., “Thresher: Automating the Unwrapping of Semantic Content from the World Wide Web,” 14th International Conference on World Wide Web, WWW 2005: Chiba, Japan, May 10-14, 2005, pp. 86-95. |
Huang et al., “Systematic and Integrative Analysis of Large Gene Lists Using DAVID Bioinformatics Resources,” Nature Protocols, 4.1, 2009, 44-57. |
Huff et al., “Calibrating the Huff Model Using ArcGIS Business Analyst,” ESRI, Sep. 2008, pp. 33. |
Huff, David L., “Parameter Estimation in the Huff Model,” ESRI, ArcUser, Oct.-Dec. 2003, pp. 34-36. |
Kahan et al., “Annotea: an open RDF infrastructure for shared WEB annotations”, Computer Networks 39, pp. 589-608, 2002. |
Keylines.com, “An Introduction to KeyLines and Network Visualization,” Mar. 2014, http://keylines.com/wp-content/upoloads/2014/03/KeyLines-White-Paper.pdf downloaded May 12, 2014 in 8 pages. |
Keylines.com, “KeyLines Datasheet,” Mar. 2014, <http://keylines.com/wp-content/uploads/2014/03/KeyLines-datasheet.pdf> downloaded May 12, 2014 in 2 pages. |
Keylines.com, “Visualizing Threats: Improved Cyber Security Through Network Visualization,” Apr. 2014, http://keylines.com/wp-content/uploads/2014/04/Visualizing-Threats1.pdf downloaded May 12, 2014 in 10 pages. |
Kitts, Paul, “Chapter 14: Genome Assembly and Annotation Process,” The NCBI Handbook, Oct. 2002, pp. 1-21. |
Li et al., “Interactive Multimodal Visual Search on Mobile Device,” IEEE Transactions on Multimedia, vol. 15, No. 3, Apr. 1, 2013, pp. 594-607. |
Liu, Tianshun, “Combining GIS and the Huff Model to Analyze Suitable Locations for a New Asian Supermarket in the Minneapolis and St. Paul, Minnesota USA,” Papers in Resource Analysis, 2012, vol. 14, pp. 8. |
Madden, Tom, “Chapter 16: The BLAST Sequence Analysis Tool,” The NCBI Handbook, Oct. 2002, pp. 1-15. |
Manno et al., “Introducing Collaboration in Single-user Applications through the Centralized Control Architecture,” 2010, pp. 10. |
Manske, “File Saving Dialogs,” http://www.mozilla.org/editor/ui—specs/FileSaveDialogs.html, Jan. 20, 1999, pp. 7. |
Map of San Jose, CA. Retrieved Oct. 2, 2013 from http://maps.yahoo.com. |
Map of San Jose, CA. Retrieved Oct. 2, 2013 from http://maps.bing.com. |
Map of San Jose, CA. Retrieved Oct. 2, 2013 from http://maps.google.com. |
Microsoft—Developer Network, “Getting Started with VBA in Word 2010,” Apr. 2010, http://msdn.microsoft.com/en-us/library/ff604039%28v=office.14%29.aspx as printed Apr. 4, 2014 in 17 pages. |
Microsoft Office—Visio, “About connecting shapes,” http://office.microsoft.com/en-us/visio-help/about-connecting-shapes-HP085050369.aspx printed Aug. 4, 2011 in 6 pages. |
Microsoft Office—Visio, “Add and glue connectors with the Connector tool,” http://office.microsoft.com/en-us/visio-help/add-and-glue-connectors-with-the-connector-tool-HA010048532.aspx?CTT=1 printed Aug. 4, 2011 in 1 page. |
Mizrachi, Ilene, “Chapter 1: GenBank: The Nuckeotide Sequence Database,” The NCBI Handbook, Oct. 2002, pp. 1-14. |
Nierman, “Evaluating Structural Similarity in XML Documents,” 2002, 6 pages. |
Olanoff, Drew, “Deep Dive with the New Google Maps for Desktop with Google Earth Integration, It's More than Just a Utlity,” May 15, 2013, pp. 1-6, retrieved from the internet: http://web.archive.org/web/20130515230641/http://techcrunch.com/2013/05/15/deep-dive-with-the-new-google-maps-for-desktop-with-google-earth-integration-its-more-than-just-a-utility/. |
Palmas et al., “An Edge-Bunding Layout for Interactive Parallel Coordinates” 2014 IEEE Pacific Visualization Symposium, pp. 57-64. |
Sigrist, et al., “PROSITE, a Protein Domain Database for Functional Characterization and Annotation,” Nucleic Acids Research, 2010, vol. 38, pp. D161-D166. |
Sirotkin et al., “Chapter 13: Thr Processing of Biological Sequence Data at NCBI,” The NCBI Handbook, Oct. 2001, pp. 1-11. |
Thompson, Mick, “Getting Started with GEO,” Getting Started with GEO, Jul. 26, 2011. |
Umagandhi et al., “Search Query Recommendations Using Hybrid User Profile with Query Logs,” International Journal of Computer Applications, vol. 80, No. 10, Oct. 1, 2013, pp. 7-18. |
Wikipedia, “Federated Database System,” Sep. 7, 2013, retrieved from the internet on Jan. 27, 2015 http://en.wikipedia.org/w/index.php?title=Federated—database—system&oldid=571954221. |
Notice of Allowance for U.S. Appl. No. 14/102,394 dated Aug. 25, 2014. |
Notice of Allowance for U.S. Appl. No. 14/108,187 dated Aug. 29, 2014. |
Notice of Allowance for U.S. Appl. No. 14/135,289 dated Oct. 14, 2014. |
Notice of Allowance for U.S. Appl. No. 14/148,568 dated Aug. 26, 2015. |
Notice of Allowance for U.S. Appl. No. 14/192,767 dated Dec. 16, 2014. |
Notice of Allowance for U.S. Appl. No. 14/225,084 dated May 4, 2015. |
Notice of Allowance for U.S. Appl. No. 14/268,964 dated Dec. 3, 2014. |
Notice of Allowance for U.S. Appl. No. 14/294,098 dated Dec. 29, 2014. |
Notice of Allowance for U.S. Appl. No. 14/473,552 dated Jul. 24, 2015. |
Notice of Allowance for U.S. Appl. No. 14/473,860 dated Jan. 5, 2015. |
Notice of Allowance for U.S. Appl. No. 14/486,991 dated May 1, 2015. |
Notice of Allowance for U.S. Appl. No. 14/504,103 dated May 18, 2015. |
Notice of Allowance for U.S. Appl. No. 14/616,080 dated Apr. 2, 2015. |
Official Communication for Australian Patent Application No. 2014201511 dated Feb. 27, 2015. |
Official Communication for Australian Patent Application No. 2014202442 dated Mar. 19, 2015. |
Official Communication for Australian Patent Application No. 2014210604 dated Jun. 5, 2015. |
Official Communication for Australian Patent Application No. 2014210614 dated Jun. 5, 2015. |
Official Communication for Australian Patent Application No. 2014213553 dated May 7, 2015. |
Official Communication for Australian Patent Application No. 2014250678 dated Jun. 17, 2015. |
Official Communication for European Patent Application No. 14158861.6 dated Jun. 16, 2014. |
Official Communication for European Patent Application No. 14159464.8 dated Jul. 31, 2014. |
Official Communication for European Patent Application No. 14180142.3 dated Feb. 6, 2015. |
Official Communication for European Patent Application No. 14180281.9 dated Jan. 26, 2015. |
Official Communication for European Patent Application No. 14180321.3 dated Apr. 17, 2015. |
Official Communication for European Patent Application No. 14180432.8 dated Jun. 23, 2015. |
Official Communication for European Patent Application No. 14186225.0 dated Feb. 13, 2015. |
Official Communication for European Patent Application No. 14187739.9 dated Jul. 6, 2015. |
Official Communication for European Patent Application No. 14187996.5 dated Feb. 12, 2015. |
Official Communication for European Patent Application No. 14189344.6 dated Feb. 20, 2015. |
Official Communication for European Patent Application No. 14189347.9 dated Mar. 4, 2015. |
Official Communication for European Patent Application No. 14189802.3 dated May 11, 2015. |
Official Communication for European Patent Application No. 14191540.5 dated May 27, 2015. |
Official Communication for European Patent Application No. 14197879.1 dated Apr. 28, 2015. |
Official Communication for European Patent Application No. 14197895.7 dated Apr. 28, 2015. |
Official Communication for European Patent Application No. 14199182.8 dated Mar. 13, 2015. |
Official Communication for Great Britain Patent Application No. 1404457.2 dated Aug. 14, 2014. |
Official Communication for Great Britain Patent Application No. 1404574.4 dated Dec. 18, 2014. |
Official Communication for Great Britain Patent Application No. 1408025.3 dated Nov. 6, 2014. |
Official Communication for Great Britain Patent Application No. 1411984.6 dated Dec. 22, 2014. |
Official Communication for Great Britain Patent Application No. 1413935.6 dated Jan. 27, 2015. |
Official Communication for Netherlands Patent Application No. 2013306 dated Apr. 24, 2015. |
Official Communication for New Zealand Patent Application No. 622513 dated Apr. 3, 2014. |
Official Communication for New Zealand Patent Application No. 622517 dated Apr. 3, 2014. |
Official Communication for New Zealand Patent Application No. 624557 dated May 14, 2014. |
Official Communication for New Zealand Patent Application No. 627962 dated Aug. 5, 2014. |
Official Communication for New Zealand Patent Application No. 628161 dated Aug. 25, 2014. |
Official Communication for New Zealand Patent Application No. 628263 dated Aug. 12, 2014. |
Official Communication for New Zealand Patent Application No. 628495 dated Aug. 19, 2014. |
Official Communication for New Zealand Patent Application No. 628585 dated Aug. 26, 2014. |
Official Communication for New Zealand Patent Application No. 628840 dated Aug. 28, 2014. |
Official Communication for U.S. Appl. No. 12/556,318 dated Jul. 2, 2015. |
Official Communication for U.S. Appl. No. 13/247,987 dated Apr. 2, 2015. |
Official Communication for U.S. Appl. No. 13/247,987 dated Sep. 22, 2015. |
Official Communication for U.S. Appl. No. 13/831,791 dated Mar. 4, 2015. |
Official Communication for U.S. Appl. No. 13/831,791 dated Aug. 6, 2015. |
Official Communication for U.S. Appl. No. 13/835,688 dated Jun. 17, 2015. |
Official Communication for U.S. Appl. No. 13/839,026 dated Aug. 4, 2015. |
Official Communication for U.S. Appl. No. 14/148,568 dated Oct. 22, 2014. |
Official Communication for U.S. Appl. No. 14/148,568 dated Mar. 26, 2015. |
Official Communication for U.S. Appl. No. 14/196,814 dated May 5, 2015. |
Official Communication for U.S. Appl. No. 14/225,006 dated Sep. 10, 2014. |
Official Communication for U.S. Appl. No. 14/225,006 dated Sep. 2, 2015. |
Official Communication for U.S. Appl. No. 14/225,006 dated Feb. 27, 2015. |
Official Communication for U.S. Appl. No. 14/225,084 dated Sep. 11, 2015. |
Official Communication for U.S. Appl. No. 14/225,084 dated Sep. 2, 2014. |
Official Communication for U.S. Appl. No. 14/225,084 dated Feb. 20, 2015. |
Official Communication for U.S. Appl. No. 14/225,160 dated Feb. 11, 2015. |
Official Communication for U.S. Appl. No. 14/225,160 dated Aug. 12, 2015. |
Official Communication for U.S. Appl. No. 14/225,160 dated May 20, 2015. |
Official Communication for U.S. Appl. No. 14/225,160 dated Oct. 22, 2014. |
Official Communication for U.S. Appl. No. 14/225,160 dated Jul. 29, 2014. |
Official Communication for U.S. Appl. No. 14/268,964 dated Sep. 3, 2014. |
Official Communication for U.S. Appl. No. 14/289,596 dated Jul. 18, 2014. |
Official Communication for U.S. Appl. No. 14/289,596 dated Jan. 26, 2015. |
Official Communication for U.S. Appl. No. 14/289,596 dated Apr. 30, 2015. |
Official Communication for U.S. Appl. No. 14/289,599 dated Jul. 22, 2014. |
Official Communication for U.S. Appl. No. 14/289,599 dated May 29, 2015. |
Official Communication for U.S. Appl. No. 14/294,098 dated Aug. 15, 2014. |
Official Communication for U.S. Appl. No. 14/294,098 dated Nov. 6, 2014. |
Official Communication for U.S. Appl. No. 14/306,138 dated Sep. 14, 2015. |
Official Communication for U.S. Appl. No. 14/306,138 dated Feb. 18, 2015. |
Official Communication for U.S. Appl. No. 14/306,138 dated Sep. 23, 2014. |
Official Communication for U.S. Appl. No. 14/306,138 dated May 26, 2015. |
Official Communication for U.S. Appl. No. 14/306,147 dated Feb. 19, 2015. |
Official Communication for U.S. Appl. No. 14/306,147 dated Aug. 7, 2015. |
Official Communication for U.S. Appl. No. 14/306,147 dated Sep. 9, 2014. |
Official Communication for U.S. Appl. No. 14/306,154 dated Mar. 11, 2015. |
Official Communication for U.S. Appl. No. 14/306,154 dated May 15, 2015. |
Official Communication for U.S. Appl. No. 14/306,154 dated Jul. 6, 2015. |
Official Communication for U.S. Appl. No. 14/306,154 dated Sep. 9, 2014. |
Official Communication for U.S. Appl. No. 14/319,765 dated Sep. 10, 2015. |
Official Communication for U.S. Appl. No. 14/319,765 dated Jun. 16, 2015. |
Official Communication for U.S. Appl. No. 14/319,765 dated Nov. 25, 2014. |
Official Communication for U.S. Appl. No. 14/319,765 dated Feb. 4, 2015. |
Official Communication for U.S. Appl. No. 14/323,935 dated Jun. 22, 2015. |
Official Communication for U.S. Appl. No. 14/323,935 dated Nov. 28, 2014. |
Official Communication for U.S. Appl. No. 14/323,935 dated Mar. 31, 2015. |
Official Communication for U.S. Appl. No. 14/326,738 dated Dec. 2, 2014. |
Official Communication for U.S. Appl. No. 14/326,738 dated Jul. 31, 2015. |
Official Communication for U.S. Appl. No. 14/326,738 dated Mar. 31, 2015. |
Official Communication for U.S. Appl. No. 14/473,552 dated Feb. 24, 2015. |
Official Communication for U.S. Appl. No. 14/486,991 dated Mar. 10, 2015. |
Official Communication for U.S. Appl. No. 14/490,612 dated Aug. 18, 2015. |
Official Communication for U.S. Appl. No. 14/504,103 dated Mar. 31, 2015. |
Official Communication for U.S. Appl. No. 14/504,103 dated Feb. 5, 2015. |
Official Communication for U.S. Appl. No. 14/579,752 dated Aug. 19, 2015. |
Official Communication for U.S. Appl. No. 14/579,752 dated May 26, 2015. |
Official Communication for U.S. Appl. No. 14/631,633 dated Sep. 10, 2015. |
Official Communication for U.S. Appl. No. 14/639,606 dated May 18, 2015. |
Official Communication for U.S. Appl. No. 14/639,606 dated Jul. 24, 2015. |
Official Communication for U.S. Appl. No. 14/726,353 dated Sep. 10, 2015. |
Official Communication for U.S. Appl. No. 14/813,749 dated Sep. 28, 2015. |
Abbey, Kristen, “Review of Google Docs,” May 1, 2007, pp. 2. |
About 80 Minutes, “Palantir in a No. of Parts—Part 6—Graph,” Mar. 21, 2013, pp. 1-6. |
Adams et al., “Worklets: A Service-Oriented Implementation of Dynamic Flexibility in Workflows,” R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS, 4275, pp. 291-308, 2006. |
Alur et al., “Chapter 2: IBM InfoSphere DataStage Stages,” IBM InfoSphere DataStage Data Flow and Job Design, Jul. 1, 2008, pp. 35-137. |
Chaudhuri et al., “An Overview of Business Intelligence Technology,” Communications of the ACM, Aug. 2011, vol. 54, No. 8. |
Galliford, Miles, “Snaglt Versus Free Screen Capture Software: Critical Tools for Website Owners,” http://www.subhub.com/articles/free-screen-capture-software, Mar. 27, 2008, pp. 11. |
Gesher, Ari, “Palantir Screenshots in the Wild: Swing Sightings,” The Palantir Blog, Sep. 11, 2007, pp. 1- 12. |
Glaab et al., “EnrichNet: Network-Based Gene Set Enrichment Analysis,” Bioinformatics 28.18 (2012): pp. i451-i457. |
“GrabUp—What a Timesaver!” http://atlchris.com/191/grabup/, Aug. 11, 2008, pp. 3. |
Gu et al., “Record Linkage: Current Practice and Future Directions,” Jan. 15, 2004, pp. 32. |
Hua et al., “A Multi-attribute Data Structure with Parallel Bloom Filters for Network Services” HiPC 2006, LNCS 4297, pp. 277-288, 2006. |
Hur et al., “SciMiner: web-based literature mining tool for target identification and functional enrichment analysis,” Bioinformatics 25.6 (2009): pp. 838-840. |
IBM, “Determining Business Object Structure,” IBM, 2004, 9 pages. |
JetScreenshot.com, “Share Screenshots via Internet in Seconds,” http://web.archive.org/web/20130807164204/http://www.jetscreenshot.com/, Aug. 7, 2013, pp. 1. |
Kwout, http://web.archive.org/web/20080905132448/http://www.kwoutcom/ Sep. 5, 2008, pp. 2. |
Microsoft Windows, “Microsoft Windows Version 2002 Print Out 2,” 2002, pp. 1-6. |
Microsoft, “Registering an Application to a URI Scheme,” http://msdn.microsoft.com/en-us/library/aa767914.aspx, printed Apr. 4, 2009 in 4 pages. |
Microsoft, “Using the Clipboard,” http://msdn.microsoft.com/en-us/library/ms649016.aspx, printed Jun. 8, 2009 in 20 pages. |
“Money Laundering Risks and E-Gaming: A European Overview and Assessment,” 2009, http://www.cf.ac.uk/socsi/resoures/Levi—Final—Money—Laundering—Risks—egaming.pdf. |
Nitro, “Trick: How to Capture a Screenshot as PDF, Annotate, Then Share It,” http://blog.nitropdf.com/2008/03104/trick-how-to-capture-a-screenshot-as-pdf-annotate-it-then-share/, Mar. 4, 2008, pp. 2. |
Nolan et al., “MCARTA: A Malicious Code Automated Run-Time Analysis Framework,” Homeland Security, 2012 IEEE Conference on Technologies for, Nov. 13, 2012, pp. 13-17. |
Online Tech Tips, “Clip2Net—Share files, folders and screenshots easily,” http://www.online-tech-tips.com/free-software-downloads/share-files-folders-screenshots/, Apr. 2, 2008, pp. 5. |
O'Reilly.com, http://oreilly.com/digitalmedia/2006/01/01/mac-os-x-screenshot-secrets.html published Jan. 1, 2006 in 10 pages. |
Palantir Technologies, “Palantir Labs—Timeline,” Oct. 1, 2010, retrieved from the internet https://www.youtube.com/watch?v=JCgDW5bru9M. |
Perdisci et al., “Behavioral Clustering of HTTP-Based Malware and Signature Generation Using Malicious Network Traces,” USENIX, Mar. 18, 2010, pp. 1-14. |
Quest, “Toad for Oracle 11.6—Guide to Using Toad,” Sep. 24, 2012, pp. 1-162. |
Schroder, Stan, “15 Ways to Create Website Screenshots,” http://mashable.com/2007/08/24/web-screenshots/, Aug. 24, 2007, pp. 2. |
Shi et al., “A Scalable Implementation of Malware Detection Based on Network Connection Behaviors,” 2013 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, IEEE, Oct. 10, 2013, pp. 59-66. |
SnagIt, “SnagIt 8.1.0 Print Out 2,” Software release date Jun. 15, 2006, pp. 1-3. |
Snagit, “Snagit 8.1.0 Print Out,” Software release date Jun. 15, 2006, pp. 6. |
SnagIt, “SnagIt Online Help Guide,” http://download.techsmith.com/snagit/doc/onlinehelp/enu/snagit—help.pdf, TechSmith Corp., Version 8.1, printed Feb. 7, 2007, pp. 284. |
Symantec Corporation, “E-Security Begins with Sound Security Policies,” Announcement Symantec, Jun. 14, 2001. |
“Using Whois Based Geolocation and Google Maps API for Support Cybercrime Investigations,” http://wseas.us/e-library/conferences/2013/Dubrovnik/TELECIRC/TELECIRC-32.pdf. |
Wang et al., “Research on a Clustering Data De-Duplication Mechanism Based on Bloom Filter,” IEEE 2010, 5 pages. |
Warren, Christina, “TUAW Faceoff: Screenshot apps on the firing line” http://www.tuaw.com/2008/05/05/tuaw-faceoff-screenshot-apps-on-the-firing-line/, May 5, 2008, pp. 11. |
Wright, et al., “Palantir Technologies VAST 2010 Challenge Text Records—Investigations into Arms Dealing,” Oct. 29, 2010, pp. 1-10. |
Yang et al., “HTML Page Analysis Based on Visual Cues,” 2001, pp. 859-864. |
Zheng et al., “GOEAST: a wed-based software toolkit for Gene Ontology enrichment analysis,” Nucleic acids research 36.suppl 2 (2008): pp. W385-W363. |
Notice of Acceptance for Australian Patent Application No. 2013251186 dated Nov. 6, 2015. |
Notice of Acceptance for Australian Patent Application No. 2014250678 dated Oct. 7, 2015. |
Notice of Allowance for U.S. Appl. No. 12/556,318 dated Nov. 2, 2015. |
Notice of Allowance for U.S. Appl. No. 13/247,987 dated Mar. 17, 2016. |
Notice of Allowance for U.S. Appl. No. 14/192,767 dated Apr. 20, 2015. |
Notice of Allowance for U.S. Appl. No. 14/265,637 dated Feb. 13, 2015. |
Notice of Allowance for U.S. Appl. No. 14/323,935 dated Oct. 1, 2015. |
Notice of Allowance for U.S. Appl. No. 14/326,738 dated Nov. 18, 2015. |
Notice of Allowance for U.S. Appl. No. 14/473,860 dated Feb. 27, 2015. |
Notice of Allowance for U.S. Appl. No. 14/552,336 dated Nov. 3, 2015. |
Notice of Allowance for U.S. Appl. No. 14/579,752 dated Apr. 4, 2016. |
Notice of Allowance for U.S. Appl. No. 14/676,621 dated Feb. 10, 2016. |
Notice of Allowance for U.S. Appl. No. 14/961,481 dated May 2, 2016. |
Official Communication for Australian Patent Application No. 2013251186 dated Mar. 12, 2015. |
Official Communication for Canadian Patent Application No. 2831660 dated Jun. 9, 2015. |
Official Communication for European Patent Application No. 12181585.6 dated Sep. 4, 2015. |
Official Communication for European Patent Application No. 14187996.5 dated Feb. 19, 2016. |
Official Communication for European Patent Application No. 14189344.6 dated Feb. 29, 2016. |
Official Communication for European Patent Application No. 15155845.9 dated Oct. 6, 2015. |
Official Communication for European Patent Application No. 15155846.7 dated Jul. 8, 2015. |
Official Communication for European Patent Application No. 15165244.3 dated Aug. 27, 2015. |
Official Communication for European Patent Application No. 15175106.2 dated Nov. 5, 2015. |
Official Communication for European Patent Application No. 15175151.8 dated Nov. 25, 2015. |
Official Communication for European Patent Application No. 15183721.8 dated Nov. 23, 2015. |
Official Communication for European Patent Application No. 15188106.7 dated Feb. 3, 2016. |
Official Communication for European Patent Application No. 15190307.7 dated Feb. 19, 2016. |
Official Communication for Great Britain Patent Application No. 1404486.1 dated May 21, 2015. |
Official Communication for Great Britain Patent Application No. 1404486.1 dated Aug. 27, 2014. |
Official Communication for Great Britain Patent Application No. 1404489.5 dated May 21, 2015. |
Official Communication for Great Britain Patent Application No. 1404489.5 dated Aug. 27, 2014. |
Official Communication for Great Britain Patent Application No. 1404499.4 dated Aug. 20, 2014. |
Official Communication for Netherlands Patent Application No. 2011729 dated Aug. 13, 2015. |
Official Communication for Netherlands Patent Application No. 2012437 dated Sep. 18, 2015. |
Official Communication for Netherlands Patent Application No. 2012438 dated Sep. 21, 2015. |
Official Communication for New Zealand Patent Application No. 622473 dated Jun. 19, 2014. |
Official Communication for New Zealand Patent Application No. 622473 dated Mar. 27, 2014. |
Official Communication for U.S. Appl. No. 12/556,321 dated Feb. 25, 2016. |
Official Communication for U.S. Appl. No. 12/556,321 dated Jun. 6, 2012. |
Official Communication for U.S. Appl. No. 12/556,321 dated Dec. 7, 2011. |
Official Communication for U.S. Appl. No. 12/556,321 dated Jul. 7, 2015. |
Official Communication for U.S. Appl. No. 13/669,274 dated May 2, 2016. |
Official Communication for U.S. Appl. No. 13/669,274 dated Aug. 26, 2015. |
Official Communication for U.S. Appl. No. 13/669,274 dated May 6, 2015. |
Official Communication for U.S. Appl. No. 13/827,491 dated Dec. 1, 2014. |
Official Communication for U.S. Appl. No. 13/827,491 dated Jun. 22, 2015. |
Official Communication for U.S. Appl. No. 13/827,491 dated Mar. 30, 2016. |
Official Communication for U.S. Appl. No. 13/827,491 dated Oct. 9, 2015. |
Official Communication for U.S. Appl. No. 13/831,791 dated Feb. 11, 2016. |
Official Communication for U.S. Appl. No. 13/835,688 dated Sep. 30, 2015. |
Official Communication for U.S. Appl. No. 14/102,394 dated Mar. 27, 2014. |
Official Communication for U.S. Appl. No. 14/108,187 dated Apr. 17, 2014. |
Official Communication for U.S. Appl. No. 14/108,187 dated Mar. 20, 2014. |
Official Communication for U.S. Appl. No. 14/134,558 dated Oct. 7, 2015. |
Official Communication for U.S. Appl. No. 14/135,289 dated Apr. 16, 2014. |
Official Communication for U.S. Appl. No. 14/135,289 dated Jul. 7, 2014. |
Official Communication for U.S. Appl. No. 14/148,568 dated Mar. 27, 2014. |
Official Communication for U.S. Appl. No. 14/192,767 dated Sep. 24, 2014. |
Official Communication for U.S. Appl. No. 14/192,767 dated May 6, 2014. |
Official Communication for U.S. Appl. No. 14/196,814 dated Aug. 13, 2014. |
Official Communication for U.S. Appl. No. 14/196,814 dated Oct. 7, 2015. |
Official Communication for U.S. Appl. No. 14/222,364 dated Dec. 9, 2015. |
Official Communication for U.S. Appl. No. 14/225,006 dated Sep. 21, 2015. |
Official Communication for U.S. Appl. No. 14/225,084 dated Feb. 26, 2016. |
Official Communication for U.S. Appl. No. 14/225,084 dated Jan. 4, 2016. |
Official Communication for U.S. Appl. No. 14/225,160 dated Jan. 25, 2016. |
Official Communication for U.S. Appl. No. 14/265,637 dated Sep. 26, 2014. |
Official Communication for U.S. Appl. No. 14/268,964 dated Jul. 11, 2014. |
Official Communication for U.S. Appl. No. 14/289,596 dated Aug. 5, 2015. |
Official Communication for U.S. Appl. No. 14/289,599 dated Sep. 4, 2015. |
Official Communication for U.S. Appl. No. 14/306,138 dated Mar. 17, 2016. |
Official Communication for U.S. Appl. No. 14/306,138 dated Dec. 24, 2015. |
Official Communication for U.S. Appl. No. 14/306,138 dated Dec. 3, 2015. |
Official Communication for U.S. Appl. No. 14/306,147 dated Dec. 24, 2015. |
Official Communication for U.S. Appl. No. 14/306,154 dated Feb. 1, 2016. |
Official Communication for U.S. Appl. No. 14/306,154 dated Nov. 16, 2015. |
Official Communication for U.S. Appl. No. 14/306,154 dated Mar. 17, 2016. |
Official Communication for U.S. Appl. No. 14/319,765 dated Feb. 1, 2016. |
Official Communication for U.S. Appl. No. 14/473,860 dated Nov. 4, 2014. |
Official Communication for U.S. Appl. No. 14/479,160 dated Apr. 20, 2016. |
Official Communication for U.S. Appl. No. 14/490,612 dated Jan. 27, 2015. |
Official Communication for U.S. Appl. No. 14/490,612 dated Mar. 31, 2015. |
Official Communication for U.S. Appl. No. 14/552,336 dated Jul. 20, 2015. |
Official Communication for U.S. Appl. No. 14/571,098 dated Nov. 10, 2015. |
Official Communication for U.S. Appl. No. 14/571,098 dated Mar. 11, 2015. |
Official Communication for U.S. Appl. No. 14/571,098 dated Feb. 23, 2016. |
Official Communication for U.S. Appl.No. 14/571,098 dated Aug. 24, 2015. |
Official Communication for U.S. Appl. No. 14/571,098 dated Aug. 5, 2015. |
Official Communication for U.S. Appl. No. 14/579,752 dated Dec. 9, 2015. |
Official Communication for U.S. Appl. No. 14/631,633 dated Feb. 3, 2016. |
Official Communication for U.S. Appl. No. 14/639,606 dated Oct. 16, 2015. |
Official Communication for U.S. Appl. No. 14/639,606 dated Apr. 5, 2016. |
Official Communication for U.S. Appl. No. 14/676,621 dated Oct. 29, 2015. |
Official Communication for U.S. Appl. No. 14/676,621 dated Jul. 30, 2015. |
Official Communication for U.S. Appl. No. 14/715,834 dated Apr. 13, 2016. |
Official Communication for U.S. Appl. No. 14/715,834 dated Feb. 19, 2016. |
Official Communication for U.S. Appl. No. 14/726,353 dated Mar. 1, 2016. |
Official Communication for U.S. Appl. No. 14/741,256 dated Feb. 9, 2016. |
Official Communication for U.S. Appl. No. 14/800,447 dated Dec. 10, 2015. |
Official Communication for U.S. Appl. No. 14/800,447 dated Mar. 3, 2016. |
Official Communication for U.S. Appl. No. 14/813,749 dated Apr. 8, 2016. |
Official Communication for U.S. Appl. No. 14/841,338 dated Feb. 18, 2016. |
Official Communication for U.S. Appl. No. 14/842,734 dated Nov. 19, 2015. |
Official Communication for U.S. Appl. No. 14/883,498 dated Mar. 17, 2016. |
Official Communication for U.S. Appl. No. 14/883,498 dated Dec. 24, 2015. |
Official Communication for U.S. Appl. No. 14/961,481 dated Mar. 2, 2016. |
Restriction Requirement for U.S. Appl. No. 13/839,026 dated Apr. 2, 2015. |
Number | Date | Country | |
---|---|---|---|
20160098176 A1 | Apr 2016 | US |
Number | Date | Country | |
---|---|---|---|
62206159 | Aug 2015 | US | |
62059601 | Oct 2014 | US |