The present invention relates to a system for and method of providing accurate and predictable synchronized clock signals at a plurality of remote stations.
There is an increasing need in many transactions and processes to be able to obtain an accurate indication of time, for example in control situations, for commercial and financial transactions, for measuring and monitoring and so on. For this purpose, there is an established central Coordinated Universal Time (UTC) reference which is administered by the BIPM, the International Bureau of Weights and Measures, in France. This reference is used by a plurality of metrology laboratories to provide a local Coordinated Universal Time (UTC) within their region. Where two separate entities wish to synchronize their transactions or work on a common clock, the Coordinated Universal Time from one UTC supplier is used as the time reference. Synchronization of physically separated and unconnected users is carried out using GPS, using GPS time as the single source for each user network. This is viable but is vulnerable to manmade and natural interferences such as jamming, spoofing, meaconing and solar storms. Additionally, the latencies introduced by each component of the receiver chain: antennae, cables, amplifiers, distribution systems, receivers and so on, require careful calibration in order to understand the traceability offsets that must be implemented.
Synchronization requirements on a global scale are becoming critical, particularly in sectors such as the financial trading sector. Audit trails and forensic analyses of events such as flash crashes are important to understand the causes of these events.
Errors in a local time clock caused by the above-mentioned latencies and vulnerabilities can result in the local time clocks of separated users being offset from one another often by as much as 1 millisecond and sometimes more. Errors in clock synchronization of this nature are becoming increasingly critical in many transactional environments.
A system for providing a synchronized clock signal at a plurality of remote stations can include: a reference clock signal at a reference station, a clock signal indicator at each remote station, a two-way direct communication connection between the reference station and each remote station, a processing unit at the reference station, wherein the processing unit is operable to determine at least one latency in the clock signal indicator through each communication connection and to determine therefrom a remote station offset for each remote station, the processing unit being operable to store each remote station offset, and the reference station is operable to send to each remote station an individual clock signal based upon the reference clock and the associated station offset such that the clock signal indicators of most, if not all, the remote stations are synchronized.
Certain embodiments provide a system and apparatus able to provide accurate and predictable synchronized clock signals at a plurality of remote stations and which avoids many of the deficiencies of known systems.
The system in practice can provide a closed loop time synchronization environment in which the time indicator at each of a plurality of separate and remote stations is set and controlled by a reference station. In this manner, the reference station is able to aid, if not ensure, that the local time clocks of remote stations are synchronized, irrespective of their individual component of connection latencies. The system can also be robust in terms of communication between the reference station and the remote stations, utilizing in the preferred embodiment a direct cable link there between, thereby avoiding the vulnerabilities experienced with existing systems. It is not necessary for the remote stations to have involvement in the calculation of a synchronized time signal, itself liable to inaccuracies, as the control and provision of synchronized time signals is effected by the reference station. In practice, the reference station will determine for each remote station the latencies introduced by each component of the receiver chain: antennae, cables, amplifiers, distribution systems, receivers and so on, and generate from this a timing offset specific for that remote station.
In an embodiment, the two-way direct communication connection between the reference station and each remote station is a wired connection. Preferably, this connection is an optical fiber connection.
Advantageously, the processing unit of the reference station is operable to repeat at intervals the determination of the latency of each remote station and to adjust the remote station offsets on the basis of each determination.
In a preferred embodiment, the reference station is operable to determine a master offset in the reference clock signal on the basis of a master clock signal and to provide for adjustment of the reference time signal on the basis of the determined master offset. In a practical embodiment, the master clock signal is a local UTC, for example UTC (NPL) administered by the National Physical Laboratory in Teddington, England. Thus, the reference clock can be closely synchronized with UTC.
There can be a plurality of reference stations, each connected to its own set of remote stations, wherein the reference stations are operable to determine a reference time offset based on a difference between the reference times thereof, at least one of the reference stations being operable to adjust its reference time on the basis of the determined reference time offset. The system can therefore be spread to separate locations, with each location providing a network to local remote user stations which can be accurately synchronized. In practice, each reference station can be synchronized with a local UTC(x), thereby ensuring precise synchronization to Universal Time.
In some embodiments, there is a plurality of reference stations, each connected to its own set of remote stations, the plurality of reference stations including a master reference station and at least one slave reference station; wherein the reference stations are operable to determine a reference time offset for each slave reference station based on a difference between a reference clock signal thereof and a reference clock signal of the master reference station, each slave reference station being operable to adjust each remote station offset for its respective remote stations on the basis of the respective determined reference time offset.
In some embodiments, each slave reference station is operable to adjust each remote station offset for its respective remote stations on the basis of the respective determined reference time offset by adjusting its reference clock signal on the basis of the respective determined reference time offset.
A method of providing a synchronized clock signal at a plurality of remote stations, including the steps of: providing a reference clock signal at a reference station, providing a clock signal indicator at each remote station, providing a two-way direct communication connection between the reference station and each remote station, wherein the reference station determines at least one latency in the clock signal indicator through each communication connection and determines therefrom a remote station offset for each remote station, and the reference station sends to each remote station an individual clock signal based upon the reference clock and the associated station offset such that the clock signal indicators of the remote stations are synchronized.
Preferably, the two-way direct communication connection between the reference station and each remote station is a wired connection, most preferably an optical fiber connection.
In an embodiment, the reference station repeats at intervals the determination of the latency of each remote station and adjusts the remote station offsets on the basis of each determination.
In a preferred embodiment, the reference station determines a master offset in the reference clock signal on the basis of a master clock signal and provides for adjustment of the reference time signal on the basis of the determined master offset.
Advantageously, the method includes, for a plurality of reference stations, each connected to its own set of remote stations, the steps of determining a reference time offset based on a difference between the reference times of the plurality of reference stations, at least one of the reference stations adjusting its reference time on the basis of the determined reference time offset.
Referring first to
A first system (system 1) provides a reference clock signal to a plurality of local users, shown as the nodes in the left-hand box in
Synchronization requirements on a global scale are becoming critical, particularly in sectors such as the financial trading sector. Audit trails and forensic analyses of events such as flash crashes are important to understand the causes of these events. As a result, the system of
Referring to
Each network 10, 12 is provided with reference control unit 16a, 16b which includes a reference clock as well as a processing unit and a data memory. The reference clock can be synchronized to local Coordinated Universal Time (UTC) clock 18a, 18b, which itself is synchronized in accordance with the international protocol on UTC synchronization administered by the BIPM, the Bureau of Weights and Measures in France.
Coupled to each reference clock 16a, 16b by means of a two-way direct communication connection, preferably a cable and most preferably a fiber optic cable 20a1-20an and 20b1-20bn, are a plurality of user remote stations units 22a1-22an and 22b1-22bn. The user stations are typically clients desiring an accurate clock signal which is precisely and reliably synchronized with the local clock signal of other users within the network or interconnected networks. For instance, one set of user stations 22a can be branches of a bank and the other user stations 22b can be foreign branches of the same bank or of a different bank. The user station units 22a1-22an and 22b1-22bn are preferably in the form of a clock indicator unit which provides a clock signal for use by the internal client systems. That local clock signal, as described below, is certified as accurately synchronized within a defined margin of error, which can, in some applications, be of the order of a few tens of nanoseconds and in others even more precise, by reference station 16 or by master reference station 16 in the case that a plurality of networks 10, 12 are operated together.
Each network 10, 12 is a closed loop system between associated reference station 16a, 16b and associated remote user stations 22a, 22b. Specifically, each reference station 16a, 16b has a processor associated therewith which is operable to determine the latency associated with each remote user station 22a1-22an and 22b1-22bn, in practice the latencies introduced by each component of the receiver chain: antennas, cables, amplifiers, distribution systems, receivers and so on. Once determined the latency for each user station, reference station 16a, 16b determines an offset appropriate for each user station 22a1-22an and 22b1-22bn in order to have each user station 22a1-22an and 22b1-22bn indicate a time synchronized with the other user stations in network 10, 12. Those offsets are continuously re-evaluated and as appropriate stored in a memory associated with reference station 16a, 16b.
Each reference station 16a, 16b then generates a specific clock signal for each remote user station 22a1-22an and 22b1-22bn on the basis of its reference clock signal adjusted by the appropriate user station offset. Individual user stations 22a1-22an and 22b1-22bn are then supplied with their associated clock signal through communication lines 20a1-20an and 20b1-20bn such that they indicate the same time in synchronous fashion. This synchronization can be extremely accurate given the control by reference station 16a, 16b. Moreover, client user stations 22a1-22an and 22b1-22bn can be added at any time, with each new station having its latencies and associated offset determined by reference station 16a, 16b, thereby ensuring that the time indicator of the new client station is rapidly synchronized with the other client stations 22a1-22an and 22b1-22bn of network 10, 12.
The distribution of specific clock signals for each remote user station can utilize public domain techniques of synchronization, such as IEEE 1588.
It is to be understood that each local Coordinated Universal Time Clock 18a, 18b can still transmit its clock signal in conventional manner for less critical clock synchronization, as occurs presently.
In the example shown in
The UTC formulation process is a monthly process whereby each UTC lab contributes its clock data to the BIPM in Paris. This data is used to form the weighted average timescale that is UTC. The offset UTC-UTC(k) of each lab's timescale from UTC, is disseminated via a newsletter called Circular T. The process of formulation and the publication effectively offers information of offsets one month in arrears. The offsets between labs could be several nanoseconds to hundreds of nanoseconds.
In the embodiment of
The offsets determined can be used by one of the reference stations 16a, 16b to ensure synchronization of their respective reference clocks. In practice, one of the reference stations 18a, 18b will be designated a master reference station to which other reference stations will calibrate. In other words, if in the example of
UTC (18a)±Offset (client 22an)
On the other hand the clock signal sent by each associated or slave reference station will be:
UTC (18n)±Offset (UTC(18a to UTC18n)±Offset (client 22nn)
Thus, the clock signal for reference station 18b will be:
UTC (18b)±Offset (UTC(18a to UTC18b)±Offset (client 22bn)
It is not necessary for the communication link between reference stations 16a, 16b to be robust as they are able to rely on their local Coordinated Universal Time Clock and require only occasional calibration reference.
An example of this arrangement can be seen in
If the timescale UTC(A), from lab A, is distributed to a network of users 22a, the replication of UTC(A) at lab B, via the transfer mechanism described above, allows for UTC(B), at lab B, to be distributed to a second network 22b, physically un-connected from that at lab A, via high resolution offset generators implementing the offset UTC(B)-UTC(A), thereby providing a large scale, un-connected, synchronized network.
It is to be noted that this differs from a physical point to point and bespoke synchronization methodology. Certain embodiments are able to scale as per the number of UTC labs in the consortium already submitting their data to the UTC formulation process via two time and frequency transfer.
In some embodiments, it is not necessary for reference stations 16a, 16b to have their own clock signal separate from Coordinated Universal Time Clocks 18a, 18b. In some embodiments, reference stations 16a, 16b can utilize time signals from the respective Coordinated Universal Time Clock, and calculate specific clock signals for remote user stations directly from the time signal from the respective Coordinated Universal Time Clock using the calculated offset described above without calculating an intermediate reference clock signal.
It is to be understood that in some embodiments it is not necessary for each reference clock 16a, 16b to transmit separate clock signals to each client station 22a1-22an and 22b1-22bn. In another embodiment, each reference station 16a, 16b transmits the same reference clock signal which is then adjusted by the associated client offset, which can be stored either at reference station 16a, 16b or in associated client station 22a1-22an and 22b1-22bn. It is preferred, though, that all control of the client clock signals is performed exclusively by associated reference station 16a, 16b to ensure reliability. This, moreover, can allow each reference station 16a, 16b and, in the case of a plurality of interconnected networks 10, 12, the master reference station, to certify the clock signal to a given synchronization accuracy.
All optional and preferred features and modifications of the described embodiments and dependent claims are usable in all aspects of the invention taught herein. Furthermore, the individual features of the dependent claims, as well as all optional and preferred features and modifications of the described embodiments are combinable and interchangeable with one another.
Number | Date | Country | Kind |
---|---|---|---|
1310114.2 | Jun 2013 | GB | national |
This application is a continuation of International Application No. PCT/GB2014/051761 having a filing date of Jun. 6, 2014, entitled “Time Synchronisation Control Apparatus and Method”, which is related to and claims priority benefits from UK patent application No. GB1310114.2 filed on Jun. 6, 2013. This application also claims foreign priority benefits from the GB1310114.2 application. The '761 international application is hereby incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/GB2014/051761 | Jun 2014 | US |
Child | 14960260 | US |