The present invention relates generally to network precision time protocol (PTP), and specifically to testing of PTP synchronization signals.
Precision Time Protocol is defined in IEEE standard 1588-2002 (and later versions). The standard is used to synchronize clocks throughout a computer network and may achieve sub-microsecond accuracy.
The IEEE 1588 standard describes a hierarchical master-slave architecture for clock distribution, wherein a time distribution system consists of one or more network segments, and one or more clocks, including a master clock. Network elements may comprise one or more Precision Time Protocol (PTP) hardware clock (PHC), which synchronize to the master clock.
U.S. Pat. No. 8,370,675 describes a method for clock synchronization which includes computing an offset value between a local clock time of a real-time clock circuit and a reference clock time and loading the offset value into a register that is associated with the real-time clock circuit. The local clock time is then summed with the value in the register so as to give an adjusted value of the local clock time that is synchronized with the reference clock.
U.S. Patent Application Publication 2016/0315756 describes a system for testing recovered clock quality and includes a test device for operating as a timing synchronization protocol master for communicating with a device under test functioning as a timing synchronization protocol slave or a timing synchronization protocol boundary clock to synchronize a clock of the device under test with a clock of the test device.
An embodiment of the present invention that is described herein provides a pluggable module for testing time-synchronization signals of network elements. The pluggable module includes a first connector for connecting to test equipment, a second connector for connecting to a network port of a network element, and at least one driver. The at least one driver is connected between the first and second connectors and is configured to buffer and relay a time-synchronization signal between the network element and the test equipment.
In an embodiment, the pluggable module further includes a pluggable-module-detection signaling circuit that is configured, when plugged into the network port of the network element, to send a transceiver-detection indication over the second connector to the network port. In some embodiments the time-synchronization signal includes a Pulse-Per-Second (PPS) signal. In a disclosed embodiment, the network port of the network element includes a mechanical cage, and the second connector is configured to fit in the mechanical cage and plug to the network port. In an example embodiment, the first connector includes a coaxial connector. In an example embodiment, the second connector includes a Small-Factor Pluggable (SFP) connector.
There is additionally provided, in accordance with an embodiment of the present invention, a network element including a network connector, time-synchronization circuitry and test-signal routing circuitry. The network connector is configured for communicating packets over a network. The time-synchronization circuitry is configured to time-synchronize the network element using a time-synchronization signal. The test-signal routing circuitry is configured, when a pluggable module is plugged into the network connector, to route the time-synchronization signal between the time-synchronization circuitry and the network connector, so as to communicate the time-synchronization signal between the network element and test equipment via the pluggable module.
In an embodiment, the network element further includes a plugged-in detection circuitry that is configured to detect a plugged-in indication through the network connector, the plugged-in indication indicating that the pluggable module is plugged into the network connector.
In an embodiment, the time-synchronization signal includes a Pulse-Per-Second (PPS) signal. In an embodiment, the network connector includes a Small-Factor Pluggable (SFP) connector.
In a disclosed embodiment, the time-synchronization circuitry is configured to generate the time-synchronization signal, and the test-signal routing circuitry is configured to output the time-synchronization signal to the network connector. In another embodiment, the time-synchronization circuitry is configured be synchronized by the time-synchronization signal, and the test-signal routing circuitry is configured to route the time-synchronization signal from the network connector as an input to the time-synchronization circuitry.
There is also provided, in accordance with an embodiment of the present invention, an apparatus including a first network adapter and a second network adapter. The first network adapter is configured to communicate data packets through a network connector with a first packet-data network (PDN). The second network adapter is configured to communicate data packets with a second PDN. The first and second network adapters are configured to connect to one another via respective dedicated connectors, and to transfer a time-synchronization signal between one another via the dedicated connectors. The first network adapter includes time-synchronization circuitry, plugged-in detection circuitry and test-signal routing circuitry. The time-synchronization circuitry is configured to time-synchronize the network adapter using the time-synchronization signal. The plugged-in detection circuitry is configured to detect a plugged-in indication through the network connector, the plugged-in indication indicating that a pluggable module is plugged into the network connector. The test-signal routing circuitry is configured to route the time-synchronization signal via the network connector responsively to the plugged-in indication, so as to communicate the time-synchronization signal between the network element and the pluggable module.
There is further provided, in accordance with an embodiment of the present invention, a method for testing time-synchronization signals of network elements. The method includes connecting a first connector of a pluggable module to test equipment, and connecting a second connector of the pluggable module to a network port of a network element. Using at least one driver, which is connected in the pluggable module between the first and second connectors, a time-synchronization signal is buffered and relayed between the network element and the test equipment.
There is also provided, in accordance with an embodiment of the present invention, a method in a network element. The method includes communicating packets over a network via a network connector of the network element. The network element time-synchronizing using a time-synchronization signal, by time-synchronization circuitry in the network element. When a pluggable module is plugged into the network connector, the time-synchronization signal is routed between the time-synchronization circuitry and the network connector, so as to communicate the time-synchronization signal between the network element and test equipment via the pluggable module.
There is additionally provided, in accordance with an embodiment of the present invention, a pluggable module for time-synchronization of network elements. The pluggable module includes a first connector for connecting to an external synchronization-signal source, a second connector for connecting to a network port of a network element, and at least one driver. The driver is connected between the first and second connectors and is configured to buffer and relay a time-synchronization signal from the external synchronization-signal source to the network element.
There is further provided, in accordance with an embodiment of the present invention, a network element including a network connector for communicating packets over a network, time-synchronization circuitry configured to time-synchronize the network element using a time-synchronization signal, and synchronization-signal routing circuitry. The synchronization-signal routing circuitry is configured, when a pluggable module is plugged into the network connector, to route the time-synchronization signal from the network connector to the time-synchronization circuitry, so as to synchronize the network element to the time-synchronization signal.
The present invention will be more fully understood from the following detailed description of the embodiments thereof, taken together with the drawings in which:
Network elements such as Network Interface Controllers (NICs) typically connect to a packet switched network through electric or optical cables. The network element may comprise slots (which will be referred to as cages hereinbelow), and the network is coupled to the network element through cable adapters that are configured to fit in the cages and connect to the network element circuitry through one or more sockets that are mounted at the end of the cage.
A network element often comprises a Precision Hardware Clock (PHC) that is synchronized to a master time base in the network. Circuits and modules in the network elements may be time-synchronized to each other by exchanging precise Pulse-Per-Second (PPS) signals, as defined in IEEE 1588-2002 (referenced above). For testing, it may be desirable to connect the PPS signals to a general-purpose or a dedicated test equipment (e.g., an oscilloscope), through high quality connectors (e.g., coaxial connectors such as Subminiature type A (SMA)). However, the PPS signals are not always accessible by a test equipment; for example, in some network elements, the panel size is limited, and additional connectors cannot be added.
Embodiments of the present invention that are described herein provide methods and apparatuses for the testing of PPS signals using the existing cages of the network element that are otherwise used for connection to the network. In an embodiment, a pluggable module is configured to plug into a cage of the network element and to send a “plugged-in” indication to the network element; the network element then routes a PPS-IN and/or a PPS-OUT signal to the pluggable module, which, in turn, routes the PPS-IN and/or PPS-OUT signal to a test equipment; for example, to an oscilloscope for PPS-OUT testing, or to a pulse generator for PPS-IN testing.
In some embodiments, the pluggable module drives a plugged-in-indication pin of the network element connector to logic-0; the network element comprises a pull-up resistor that pulls the pin to logic high when the pluggable module is not plugged. The network element can thus detect that the pluggable module is connected by sensing logic-0 on the plugged-in-indication pin.
In an embodiment, the pluggable module comprises buffers that buffer a PPS-OUT signal from the network element to the test equipment, and/or buffer a PPS-IN signal that the test equipment sends to the network element. In some embodiments, the buffer comprises an hysteresis stage.
In an embodiment, the network element comprises a plugged-in detection circuit that is configured to detect when the pluggable module is plugged into the socket; in some embodiments, the network element is configured, responsively to the detection of a pluggable module, to multiplex a pin of the network socket that is otherwise used for other purposes (or not used) to be used as a PPS-IN pin; in another embodiment the network element is configured, responsively to the detection of a pluggable module, to send a mirror of the PPS-OUT signal to a pin of the network socket that is otherwise used for network signals (or not used).
In yet another embodiment, a synchronizing apparatus is configured to synchronize two networks and comprises a first network interface circuit (NIC) to connect to a first network and a second NIC to connect to a second network. The apparatus is tested by plugging pluggable modules in any of the NICS, thus routing a PPS-IN and/or a PPS-OUT signals to a test equipment.
Thus, in embodiments, PPS-IN and/or PPS-OUT signals can be tested using pluggable modules that connect to cages of the network element that are otherwise used for connecting to the network. Since the disclosed technique reuses an existing connector cage, it does not incur precious panel space for extra connectors for the sake of testing.
In the present example, network adapter 102 comprises an edge connector 104, which is configured to plug into a motherboard (not shown). In an embodiment, other modules may be plugged into the motherboard, including, for example, a host processor, which communicates with a network through network adapter 102. The other modules may exchange signals with the network adapter through busses that are routed in the motherboard.
Network Adapter 102 further comprises circuitry 106, which is configured to communicate packets over a communication network, such as Ethernet or InfiniBand™, or any other suitable packet-switched network. According to the example embodiment illustrated in
In an embodiment, circuitry 106 further comprises a precision time clock (PHC), which may be synchronized by a PPS-IN signal that is input from the motherboard, e.g., through edge connector 104. In another embodiment the PTS may synchronize other modules plugged into the motherboard, by outputting a PPS-OUT signal through edge connector 104, and in yet another embodiment the PTS is synchronized by a PPS-IN signal, and synchronizes other modules by outputting a PPS-OUT signal. (A pulse per second (PPS or 1PPS) signal is an electrical signal that has a width of less than one second and a sharply rising or abruptly falling edge that accurately repeats once per second; the accuracy is typically in the nano-second range.)
According to the example embodiment illustrated in
The pluggable module further comprises one or two coaxial connectors, which are used to route the PPS-IN and/or PPS-OUT signal to a Test Equipment 118—a connector 120 for the PPS-IN signal, and a connector 122 for routing the PPS-OUT (in some embodiments, PPS-IN or PPS-OUT only will be tested, and the pluggable module will comprise only one of connectors 120, 122). In the present context, the terms “coaxial connector” refers to a connector in which the signal is transferred via a center pin, which is surrounded by a grounded shield. Non-limiting examples of coaxial connectors are Subminiature Type A (SMA) and Subminiature Type B (SMB) connectors, although any other suitable type of coaxial connector can be used.
Thus, according to the example embodiment illustrated in
As would be appreciated, Test Setup 100 illustrated in
In some embodiments the plugged-in indication may be a signal level on a connector pin; in other embodiments, circuitry 106 continuously attempts to read a flash device (or other non-volatile memory) mounted in the pluggable module, and may generate a plugged-in indication when the flash is successfully read (in those embodiments, the flash is typically used to supply the circuitry with additional information). In yet other embodiments the indication is a proximity signal from a hall-effect device, and in still other embodiments the user signals that the pluggable module is plugged in, for example, by activating a toggle-switch, or by indicating plugged-in to an operating system, which will, in turn, send an indication signal to the circuitry.
According to the example embodiment illustrated in
As would be appreciated, the mechanical drawing illustrated in
Pluggable module 116A comprises a buffer 304, which is configured to match the impedance of an input PPS-IN signal (sent, for example, by a test equipment), and to send a buffered PPS-IN signal through pin 306 of the edge connector to the network element.
Pluggable module 116A further comprises a coaxial connector 206 (
Like pluggable module 116A, pluggable module 116B sends a plugged-in indication 352 on one of the edge connector pins (for example, the pluggable module may short the pin to ground). In an embodiment, the pluggable module sends a plugged-in indication signal on an edge connector pin that is not used when a cable adapter is plugged in the network element cage.
Pluggable module 116B comprises a hysteresis buffer 354, which is configured to mitigate overshoots in the PPS-OUT signal that the network element sends through edge connector 204, followed by a buffer 356, which is configured to drive a terminated coaxial cable 308 through a coaxial connector 208 (hidden). The coaxial cable may be connected to a test equipment (e.g., an oscilloscope).
As would be appreciated, the electrical and mechanical structures of pluggable modules 116A and 116B, illustrated in the example embodiments of
In an embodiment, pluggable module 116 may comprise both an input buffer and an output buffer, coupled to two coaxial connectors, and used for PPS-IN and PPS-OUT testing. In another embodiment, the pluggable module comprises an input buffer and an output buffer, which share a single coaxial connector.
In some alternative embodiments, plugging-in of the module is indicated by magnetic coupling; in other embodiments plugging-in is indicated by optical coupling and in yet other embodiment there is no direct plugged-in indication (instead, a user-operated switch or software configuration may be used).
When the pluggable module is not coupled to the network element, a Plugged-In Detection circuit 410 outputs a logic-0. In some embodiment, the pluggable module signals that it is plugged in by pulling a connector pin low; the Plugged-In Detection circuit comprises a pull-up resistor and an inverter, which outputs low when the input is not driven low and high when the input is driven low.
When Plugged-In Detection circuit 410 output a logic-0, an And-gate 412 transfers other signal 402 to the input of buffer 406, and an And-gate 412 outputs a logic-1 to the enable input of buffer 406. Thus, when the pluggable module is not plugged in, and, instead, a cable-adapter is plugged into the same cage, the network element will output the other signal, buffered by buffer 406, to the cable adapter.
When the pluggable module is coupled to the network element, Plugged-In Detection circuit 410 outputs a logic-1; And gate 412 will output logic-0, and And gate 414 will output the inverse of the PPS signal (˜pps) to the Enable input of buffer 406. Buffer 406 will, thus, replicate the PPS signals; the replicated PPS signal is then output to the pluggable module.
As would be appreciated, circuits 400 and 500, illustrated in
The flow starts at a Disconnect-Network-Plug step 602, wherein the test engineer unplugs the network cable adapter from the network element. Next, at an Insert-Pluggable-Module step 604, the test engineer plugs a PPS-testing pluggable module into a cage of the network element (e.g., cage 108,
Next, at a Connect-Cable step 606, the test engineer connects a coaxial cable from the pluggable module to the test equipment (the cable may be PPS-IN or PPS-OUT); and, at a Run-PPS-Tests step 608, the test engineer may commence PPS testing using the test equipment.
As would be appreciated, the method illustrated in
According to the example embodiment illustrated in
As would be appreciated, the method illustrated in
The flow starts at a NIC-Mode step 662, wherein the network element executes normal network operations (e.g., sending and receiving network packets), while checking for a plug-in indication (e.g., a logic-0 level on one of the network connection pins). If the network element does not detect a plug-in indication, the network element remains in step 662, and continues to communicate packets over the network. If, in step 662, the network element detects a plug-in indication, the network element enters a Check-PPS-Type step 664, and checks if the signal to be tested is the PPS-IN or the PPS-OUT. If PPS-IN is to be tested, the network element enters a Set-PPS-IN-Mux step 666, and sets a multiplexer (e.g., Multiplexer 502,
After step 666 or 668, the network element enters a Test-Mode step 670, in which a user may test the PPS-IN signal or the PPS-OUT signal. While in step 670, the network element continuously checks the status of the plug-in indication, to detect when the test mode ends; and remains in step 670 as long as the plug-in indication is on. If, in step 670, the network element does not detect a plug-in indication, the network element returns to NIC-Mode step 662.
As would be appreciated, the flow-chart illustrated in the example embodiment of
The example embodiment illustrated in
To test Synchronized-NIC 710, a test engineer may unplug a Cable-Adapter 716 from a cage of the Synchronized NIC 710, thus disconnecting the NIC from network 704, and plug a Pluggable Adapter 116 in the cage. Synchronized NIC 710 may comprise a plug-in detection circuitry and a PPS-OUT circuitry, which may be identical or similar to Plug-In Detection circuit 410 and PPS-OUT circuitry 450 (
As would be appreciated, the structure of cross-network time synchronization server 702 and the PPS testing setup thereof illustrated in
The configuration of Network Element 102, including plugged-in detection circuitry 410, PPS-IN multiplexing circuitry 500 and PPS-OUT circuitry 400; the configurations of Pluggable Module 116, input buffer 304 and output buffers 352, 354; PPS testing methods 600, 630 and 660; and the configuration of synchronizing apparatus 700 and the PPS setup thereof, illustrated in
Although the embodiments described herein mainly address testing of PTP signals, the methods and systems described herein can also be used in other suitable applications. For example, the disclosed pluggable modules can be used for synchronizing a network element to an external source that provides a PPS signal or other time-synchronization signal. In other words, instead of connecting the pluggable module to test equipment, the pluggable module can be connected to an external synchronization-signal source. In the network element, synchronization-signal routing circuitry can be used for detecting that the pluggable module is plugged into a network connector, and, when detected, to route the time-synchronization signal (e.g., PPS signal) from the network connector to the time-synchronization circuitry of the network element, so as to synchronize the network element to the time-synchronization signal. Further aspects relating to synchronization of network elements are addressed in U.S. patent application Ser. No. 17/148,605, filed Jan. 14, 2021, whose disclosure is incorporated herein by reference.
It will be appreciated that the embodiments described above are cited by way of example, and that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and sub-combinations of the various features described hereinabove, as well as variations and modifications thereof which would occur to persons skilled in the art upon reading the foregoing description and which are not disclosed in the prior art.
This application claims the benefit of U.S. Provisional Patent Application 63/012,292, filed Apr. 20, 2020, whose disclosure is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5392421 | Lennartsson | Feb 1995 | A |
5402394 | Turski | Mar 1995 | A |
5416808 | Witsaman et al. | May 1995 | A |
5491792 | Grisham et al. | Feb 1996 | A |
5564285 | Jurewicz et al. | Oct 1996 | A |
5592486 | Lo et al. | Jan 1997 | A |
5896524 | Halstead, Jr. et al. | Apr 1999 | A |
6055246 | Jones | Apr 2000 | A |
6084856 | Simmons et al. | Jul 2000 | A |
6144714 | Bleiweiss et al. | Nov 2000 | A |
6199169 | Voth | Mar 2001 | B1 |
6289023 | Dowling et al. | Sep 2001 | B1 |
6449291 | Burns et al. | Sep 2002 | B1 |
6535926 | Esker | Mar 2003 | B1 |
6556636 | Takagi | Apr 2003 | B1 |
6556638 | Blackburn | Apr 2003 | B1 |
6718476 | Shima | Apr 2004 | B1 |
6918049 | Lamb et al. | Jul 2005 | B2 |
7111184 | Thomas, Jr. et al. | Sep 2006 | B2 |
7191354 | Purho | Mar 2007 | B2 |
7245627 | Goldenberg et al. | Jul 2007 | B2 |
7254646 | Aguilera et al. | Aug 2007 | B2 |
7334124 | Pham et al. | Feb 2008 | B2 |
7412475 | Govindarajalu | Aug 2008 | B1 |
7440474 | Goldman et al. | Oct 2008 | B1 |
7447975 | Riley | Nov 2008 | B2 |
7483448 | Bhandari et al. | Jan 2009 | B2 |
7496686 | Coyle | Feb 2009 | B2 |
7535933 | Zerbe et al. | May 2009 | B2 |
7623552 | Jordan et al. | Nov 2009 | B2 |
7636767 | Lev-Ran et al. | Dec 2009 | B2 |
7650158 | Indirabhai | Jan 2010 | B2 |
7656751 | Rischar et al. | Feb 2010 | B2 |
7750685 | Bunch et al. | Jul 2010 | B1 |
7904713 | Zajkowski et al. | Mar 2011 | B1 |
7941684 | Serebrin et al. | May 2011 | B2 |
8065052 | Fredriksson et al. | Nov 2011 | B2 |
8300749 | Hadzic et al. | Oct 2012 | B2 |
8341454 | Kondapalli | Dec 2012 | B1 |
8370675 | Kagan | Feb 2013 | B2 |
8407478 | Kagan et al. | Mar 2013 | B2 |
8607086 | Cullimore | Dec 2013 | B2 |
8699406 | Charles et al. | Apr 2014 | B1 |
8879552 | Zheng | Nov 2014 | B2 |
8930647 | Smith | Jan 2015 | B1 |
9344265 | Karnes | May 2016 | B2 |
9397960 | Arad et al. | Jul 2016 | B2 |
9549234 | Mascitto | Jan 2017 | B1 |
9942025 | Bosch et al. | Apr 2018 | B2 |
9979998 | Pogue et al. | May 2018 | B1 |
10014937 | Di Mola et al. | Jul 2018 | B1 |
10027601 | Narkis et al. | Jul 2018 | B2 |
10054977 | Mikhaylov et al. | Aug 2018 | B2 |
10164759 | Volpe | Dec 2018 | B1 |
10320646 | Mirsky et al. | Jun 2019 | B2 |
10637776 | Iwasaki | Apr 2020 | B2 |
10727966 | Izenberg et al. | Jul 2020 | B1 |
11379334 | Srinivasan et al. | Jul 2022 | B1 |
20010006500 | Nakajima et al. | Jul 2001 | A1 |
20020027886 | Fischer et al. | Mar 2002 | A1 |
20020031199 | Rolston et al. | Mar 2002 | A1 |
20040096013 | Aturell et al. | May 2004 | A1 |
20040153907 | Gibart | Aug 2004 | A1 |
20050033947 | Morris et al. | Feb 2005 | A1 |
20050268183 | Barmettler | Dec 2005 | A1 |
20060109376 | Chaffee et al. | May 2006 | A1 |
20070008044 | Shimamoto | Jan 2007 | A1 |
20070072451 | Tazawa | Mar 2007 | A1 |
20070104098 | Kimura et al. | May 2007 | A1 |
20070124415 | Lev-Ran et al. | May 2007 | A1 |
20070139085 | Elliot et al. | Jun 2007 | A1 |
20070159924 | Vook et al. | Jul 2007 | A1 |
20070266119 | Ohly | Nov 2007 | A1 |
20080069150 | Badt et al. | Mar 2008 | A1 |
20080225841 | Conway et al. | Sep 2008 | A1 |
20080285597 | Downey et al. | Nov 2008 | A1 |
20090257458 | Cui et al. | Oct 2009 | A1 |
20100280858 | Bugenhagen | Nov 2010 | A1 |
20110182191 | Jackson | Jul 2011 | A1 |
20110194425 | Li | Aug 2011 | A1 |
20120063556 | Hoang | Mar 2012 | A1 |
20120076319 | Terwal | Mar 2012 | A1 |
20120301134 | Davari et al. | Nov 2012 | A1 |
20130039359 | Bedrosian | Feb 2013 | A1 |
20130045014 | Mottahedin | Feb 2013 | A1 |
20130215889 | Zheng et al. | Aug 2013 | A1 |
20130235889 | Aweya et al. | Sep 2013 | A1 |
20130294144 | Wang et al. | Nov 2013 | A1 |
20130315265 | Webb et al. | Nov 2013 | A1 |
20130336435 | Akkihal et al. | Dec 2013 | A1 |
20140085141 | Geva | Mar 2014 | A1 |
20140153680 | Garg et al. | Jun 2014 | A1 |
20140185216 | Zeng et al. | Jul 2014 | A1 |
20140185632 | Steiner et al. | Jul 2014 | A1 |
20140253387 | Gunn et al. | Sep 2014 | A1 |
20140281036 | Cutler et al. | Sep 2014 | A1 |
20140301221 | Nadeau | Oct 2014 | A1 |
20140321285 | Chew | Oct 2014 | A1 |
20150019839 | Cardinell et al. | Jan 2015 | A1 |
20150078405 | Roberts | Mar 2015 | A1 |
20150092793 | Aweya | Apr 2015 | A1 |
20150127978 | Cui et al. | May 2015 | A1 |
20150163050 | Han et al. | Jun 2015 | A1 |
20150318941 | Zheng et al. | Nov 2015 | A1 |
20160057518 | Neudorf | Feb 2016 | A1 |
20160072602 | Earl | Mar 2016 | A1 |
20160110211 | Kames | Apr 2016 | A1 |
20160140066 | Worrell et al. | May 2016 | A1 |
20160277138 | Garg et al. | Sep 2016 | A1 |
20160285574 | White et al. | Sep 2016 | A1 |
20160315756 | Tenea | Oct 2016 | A1 |
20170005903 | Mirsky | Jan 2017 | A1 |
20170017604 | Chen et al. | Jan 2017 | A1 |
20170126589 | Estabrooks et al. | May 2017 | A1 |
20170160933 | De Jong et al. | Jun 2017 | A1 |
20170214516 | Rivaud et al. | Jul 2017 | A1 |
20170302392 | Farra et al. | Oct 2017 | A1 |
20170331926 | Raveh et al. | Nov 2017 | A1 |
20170359137 | Butterworth et al. | Dec 2017 | A1 |
20180059167 | Sharf | Mar 2018 | A1 |
20180152286 | Kemparaj et al. | May 2018 | A1 |
20180188698 | Dionne et al. | Jul 2018 | A1 |
20180191802 | Yang et al. | Jul 2018 | A1 |
20180227067 | Hu et al. | Aug 2018 | A1 |
20180309654 | Achkir | Oct 2018 | A1 |
20190007189 | Hossain et al. | Jan 2019 | A1 |
20190014526 | Bader et al. | Jan 2019 | A1 |
20190089615 | Branscomb et al. | Mar 2019 | A1 |
20190149258 | Araki | May 2019 | A1 |
20190158909 | Kulkarni et al. | May 2019 | A1 |
20190196563 | Lai | Jun 2019 | A1 |
20190273571 | Bordogna et al. | Sep 2019 | A1 |
20190319729 | Leong et al. | Oct 2019 | A1 |
20190349392 | Wetterwald et al. | Nov 2019 | A1 |
20190379714 | Levi et al. | Dec 2019 | A1 |
20200162234 | Almog et al. | May 2020 | A1 |
20200169379 | Gaist et al. | May 2020 | A1 |
20200235905 | Su et al. | Jul 2020 | A1 |
20200304224 | Neugeboren | Sep 2020 | A1 |
20200331480 | Zhang et al. | Oct 2020 | A1 |
20200344333 | Hawari et al. | Oct 2020 | A1 |
20200396050 | Perras | Dec 2020 | A1 |
20200401434 | Thampi et al. | Dec 2020 | A1 |
20210218431 | Narayanan | Jul 2021 | A1 |
20210297230 | Dror et al. | Sep 2021 | A1 |
20210318978 | Hsung | Oct 2021 | A1 |
20210409031 | Ranganathan et al. | Dec 2021 | A1 |
20220066978 | Mishra et al. | Mar 2022 | A1 |
20220239549 | Zhao et al. | Jul 2022 | A1 |
20220342086 | Yoshida | Oct 2022 | A1 |
Number | Date | Country |
---|---|---|
106817183 | Jun 2017 | CN |
108829493 | Nov 2018 | CN |
1215559 | Sep 2007 | EP |
2770678 | Aug 2014 | EP |
2011091676 | May 2011 | JP |
2012007276 | Jan 2012 | WO |
2013124782 | Aug 2013 | WO |
2013143112 | Oct 2013 | WO |
2014029533 | Feb 2014 | WO |
WO-2014138936 | Sep 2014 | WO |
Entry |
---|
IEEE Standard 1588™-2008: “IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems”, IEEE Instrumentation and Measurement Society, Revision of IEEE Standard 1588-2002, USA, pp. 1-289, Jul. 24, 2008. |
Weibel et al., “Implementation and Performance of Time Stamping Techniques”, 2004 Conference on IEEE 1588, pp. 1-29, Sep. 28, 2004. |
Working Draft Project American National Standard T10/1799-D, “Information Technology—SCSI Block Commands—3 (SBC-3)”, pp. 1-220, Revision 19, May 29, 2009. |
“Infiniband Architecture: Specification Volume 1”, pp. 1-1727, Release 1.2.1, Infiniband Trade Association, Nov. 2007. |
Mellanox Technologies, “Mellanox ConnectX IB: Dual-Port InfiniBand Adapter Cards with PCI Express 2.0”, pp. 1-2, USA, year 2008. |
Wikipedia—“Precision Time Protocol”, pp. 1-8, Aug. 24, 2019. |
Levi et al., U.S. Appl. No. 16/779,611, filed Feb. 2, 2020. |
Weibel, H., “High Precision Clock Synchronization according to IEEE 1588 Implementation and Performance Issues”, Zurich University of Applied Sciences, pp. 1-9, Jan. 17, 2005. |
Lu et al., “A Fast CRC Update Implementation”, Computer Engineering Laboratory, Electrical Engineering Department, pp. 113-120, Oct. 8, 2003. |
Levi et al., U.S. Appl. No. 16/799,873, filed Feb. 25, 2020. |
Dlugy-Hegwer et al., “Designing and Testing IEEE 1588 Timing Networks”, Symmetricom, pp. 1-10, Jan. 2007. |
Mellanox Technologies, “How to test 1PPS on Mellanox Adapters”, pp. 1-6, Oct. 22, 2019 downloaded from https://community.mellanox.com/s/article/How-To-Test-1PPS-on-Mellanox-Adapters. |
ITU-T recommendation, “G.8273.2/Y.1368.2—Timing characteristics of telecom boundary clocks and telecom time slave clocks”, pp. 1-50, Jan. 2017. |
Texas Instruments, “LMK05318 Ultra-Low Jitter Network Synchronizer Clock With Two Frequency Domains,” Product Folder, pp. 1-86, Dec. 2018. |
Ravid et al., U.S. Appl. No. 16/920,772, filed Jul. 6, 2020. |
Sela et al., U.S. Appl. No. 16/900,931, filed Jun. 14, 2020. |
Levi et al., U.S. Appl. No. 17/120,313, filed Dec. 14, 2020. |
Mula et al., U.S. Appl. No. 17/148,605, filed Jan. 14, 2021. |
IEEE Std 1588-2002, “IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems”, IEEE Instrumentation and Measurement Society, pp. 1-154, Nov. 8, 2002. |
U.S. Appl. No. 16/683,309 Office Action dated Sep. 17, 2021. |
U.S. Appl. No. 16/920,722 Office Action dated Aug. 12, 2021. |
IPclock, “IEEE 1588 Primer,” ip-clock.com, pp. 1-3, May 1, 2017 (downloaded from https://web.archive.org/web/20170501192647/http://ip-clock.com/IEEE-1588-primer/). |
U.S. Appl. No. 16/900,931 Office Action dated Apr. 28, 2022. |
U.S. Appl. No. 16/683,309 Office Action dated Mar. 17, 2022. |
U.S. Appl. No. 16/779,611 Office Action dated Mar. 17, 2022. |
U.S. Appl. No. 17/120,313 Office Action dated Mar. 28, 2022. |
EP Application # 21214269 Search Report dated May 2, 2022. |
U.S. Appl. No. 17/148,605 Office Actiondated May 17, 2022. |
EP Application # 22151451.6 Search Report dated Jun. 17, 2022. |
U.S. Appl. No. 16/779,611 Office Action dated Jun. 24, 2022. |
U.S. Appl. No. 17/120,313 Office Action dated Aug. 29, 2022. |
ITU-T Standard G.8264/Y.1364, “Distribution of timing information through packet networks”, pp. 1-42, Aug. 2017. |
ITU-T Standard G.8262/Y.1362, “Timing characteristics of synchronous equipment slave clock”, pp. 1-44, Nov. 2018. |
“Precision Time Protocol,” PTP Clock Types, CISCO, pp. 1-52, Jul. 30, 2020, as downloaded from https://www.cisco.com/c/en/US/td/docs/dcn/aci/apic/5x/system-management-configuration/cisco-apic-system-management-configuration-guide-52x/m-precision-time-protocol.pdf. |
ITU-T Standard G.8261/Y.1361, “Timing and synchronization aspects in packet networks”, pp. 1-120, Aug. 2019. |
U.S. Appl. No. 17/579,630 Office Action dated Oct. 24, 2022. |
U.S. Appl. No. 17/579,630 Office Action dated Jan. 12, 2023. |
U.S. Appl. No. 17/670,540 Office Action dated Jan. 18, 2023. |
“IEEE Standard for Local and Metropolitan Area Networks—Timing and Synchronization for Time-Sensitive Applications,” IEEE Std 802.1AS-2020, pp. 1-421, year 2020. |
U.S. Appl. No. 17/549,949 Office Action dated Mar. 30, 2023. |
U.S. Appl. No. 17/871,937 Office Action dated Aug. 1, 2023. |
U.S. Appl. No. 17/578,115 Office Action dated Apr. 26, 2023. |
U.S. Appl. No. 17/534,776 Office Action dated Jun. 29, 2023. |
SiTime Corporation, “Sit5377—60 to 220 MHZ, ±100 ppb Elite RF™ Super-TCXO,” Product Description, pp. 1-3, last updated Mar. 18, 2023 as downloaded from https://web.archive.org/web/20230318094421/https://www.sitime.com/products/super-tcxos/sit5377. |
PCI-SIG, “PCI Express®—Base Specification—Revision 3.0,” pp. 1-860, Nov. 10, 2010. |
Number | Date | Country | |
---|---|---|---|
20210328900 A1 | Oct 2021 | US |
Number | Date | Country | |
---|---|---|---|
63012292 | Apr 2020 | US |