This invention relates generally to the monitoring and control of an industrial combustion process, and is particularly directed to an improved sensor arrangement and method for monitoring and diagnosis of the combustion process in a lean-premix gas turbine combustor to allow for the exercise of real-time control over the combustion process.
The requirement to reduce pollutant emissions has motivated turbine manufacturers to develop advanced combustion technologies. Although capable of producing ultra-low emissions (<10 ppm NOx), these advanced combustors suffer from flame instability problems such as flashback, combustion dynamics, and lean blowout. These problems cause reduced component life, unplanned shutdowns, and potentially catastrophic engine damage. Flame instabilities can be triggered by weather changes, fuel composition changes, operational changes, and component wear. To avoid these costly problems, turbine manufacturers have typically developed operating margins at the expense of ultra-low emissions. An alternative strategy is to perform in-situ combustion monitoring to provide the feedback necessary to minimize pollutant emissions while avoiding combustion instabilities. A combustion control and diagnostics sensor (CCADS) for gas turbines is the subject of U.S. Pat. Nos. 6,429,020; 6,887,069; and 7,096,722.
The CCADS flame ionization sensor 10 is based on two electrically isolated electrodes installed on the fuel nozzle as shown in
However, quantifying important operating parameters for control of the turbine, e.g., equivalence ratio control, over the entire load range is complicated by flame instabilities. For example, during dynamic pressure oscillations at the peak pressure the flow through the system slows allowing the reaction to sometimes enter the premixing region of the fuel nozzle. The resulting dynamic changes in flame location complicate the CCADS measurement for equivalence ratio. Significant changes to the combustion conditions, such as those required for a large load change, i.e., change in bulk flow velocity, can result in flame variations that also affect the correlation of the CCADS measurements. In modern Dry Low NOx (DLN) gas turbines these types of changes are common while operating over the entire load range. To effectively implement CCADS for control of gas turbine combustors, an improved method for quantifying CCADS measurements is necessary.
Current CCADS measurements provided by the three aforementioned patents are achieved using a direct current (DC) measurement technique. A DC voltage is applied to the sensor electrodes resulting in a steady electric field projected into the combustion region, and the measured current through the flame is analyzed for combustion diagnostics. The extension of that invention provided by the present approach is to use advanced measurement techniques to mitigate the affects of flame instabilities as described in detail below. In accordance with an embodiment of the invention, numerous combinations of time-varying voltage (AC) and DC voltage can be applied to the sensor electrodes to generate a time-variant electric field projected into the combustion region. These advanced measurements provide additional information about flame electrical properties that can be used to improve sensor capability to accurately determine quantifiable measurements for combustion control applications.
Accordingly, it is an object of an embodiment of the invention to provide for real-time monitoring of, and the exercise of control over, the combustion process in an industrial combustion system.
It is another object of the present invention to apply a time-varying alternating voltage to the flame in a continuous combustion system for determining various combustion parameters such as the fuel/air ratio and the location of the flame in the combustion chamber, and for adjusting the fuel/air mixture for optimizing these parametric values and improving combustion efficiency and reducing noxious emissions.
Yet another object of the present invention is to apply conventional equivalent AC circuit analysis in terms of formulas and equations to a combustion process such as in lean-premixed gas turbine to allow for the determination and real-time adjustment of various combustion parameters to avoid flame instability problems such as flashback, combustion dynamics and lean blowout.
It is a further object of the present invention to address flame instabilities in a gas turbine combustor arising from weather changes, fuel composition changes, operational changes and component wear and tolerances by monitoring critical combustion parameters and allowing for real-time adjustment of these parameters for improved combustion efficiency and reduced emissions.
An additional object of this invention is to detect short-circuits and open circuits through the use of capacitance measurements when the electrode is energized with different combinations of direct current and alternating current for sensor self-diagnostics of the sensor electrode.
An embodiment of the invention is directed to a method and system for the real-time monitoring and control of a combustion process in the combustion zone of a combustion chamber, wherein a fuel/oxidant mixture characterized by a fuel/oxidant ratio is directed into the combustion zone via a fuel/oxidant inlet and is ignited for maintaining a combustion flame in the combustion zone, the method comprising the steps of providing a sensor having a first electrode disposed adjacent the combustion zone and an electrical ground, wherein the combustion flame is disposed a distance d from the first electrode; applying a time-varying alternating voltage to the first electrode and measuring an alternating electric current in the combustion flame between the first electrode and ground, wherein the current varies with the position of the flame from the first electrode within the combustion zone along a sensor axis; using equivalent AC circuit analysis with the measured alternating electric current between the first electrode and ground for determining the resistance and capacitance of the combustion flame; determining the distance d of the combustion flame from the first electrode of the sensor and the fuel/oxidant equivalence ratio of the fuel/oxidant mixture, wherein the distance d varies inversely with the capacitance of the combustion flame and the fuel/oxidant equivalence ratio varies directly with the capacitance of the combustion flame; and adjusting the fuel/oxidant mixture to adjust the distance d and the fuel/oxidant equivalence ratio for optimizing the combustion process by reducing flame instability and pollutant emissions. The oxidant is preferably air, but may also be composed of mixture of oxygen with diluents such as carbon dioxide, steam or nitrogen.
The appended claims set forth those novel features which characterize the invention. However, the invention itself, as well as further objects and advantages thereof, will best be understood by reference to the following detailed description of a preferred embodiment taken in conjunction with the accompanying drawings, where like reference characteristics identify like elements throughout the various figures, in which:
a is an AC equivalent circuit diagram for the configuration of a function generator with series resistors connected to measurement electrodes to measure the current through the gap-flame region in accordance with the an embodiment of the invention;
b is a graphic illustration of the decrease in capacitance as the flame is moved away from the measurement electrode for the system corresponding to the equivalent AC circuit shown in
The operating equivalence ratio (φ) for a combustor using air as the oxidant is defined as
Flame current measurements have been successfully correlated with the hydrocarbon concentrations in a number of applications. Most notable is the flame ionization detector (FID) used in gas chromatographs, where the relationship of current to hydrocarbon concentration is generally determined by
i=r[CnHm]Q (2)
where r is the charge per mole of hydrocarbon, [CnHm] is the molar concentration of the hydrocarbons, and Q is the volumetric flow rate. The linearity of the FID measurements depends on the consistency of charge collection. This is accomplished by providing consistent inlet bulk flow velocity, a constant electric field across the flame, and using a hydrogen flame to ignite the inlet sample and maintain a stable flame.
Successful demonstrations of a flame ionization sensor for measuring the local fuel/air ratio in an internal combustion (IC) engine have also defined a linear relationship
where n is the charged species concentration indicative of the hydrocarbon concentration, Vrz is the volume of reaction zone, vd is the drift velocity, and r is the distance between the reaction zone and the center of the electrode gap. This relationship works in an IC engine in part due to the low fluid velocities inside the piston during ignition and combustion, and the strong, localized electrostatic field generated at the spark plug. These factors combine to provide consistent charge collection from a limited region in the cylinder. Note that this system has significant differences from that encountered in a gas turbine, which has a rapidly moving flame in a high velocity flow.
The above relationships are closely linked to the basic physics for a conductor
I=nqAνd (4)
where n is the density of the charge carriers, q is their charge, A is the cross-sectional area, and vd is the drift velocity. Since the flame is considered a good conductor of electrical current, the standard physics for a conductor can be applied, in various forms as others have successfully demonstrated, to quantify the hydrocarbon concentration. In order to quantify the hydrocarbon concentration, fuel-to-air ratio, or equivalence ratio one must account for the changes that occur to the parameters affecting the current measurement. In the previous two examples consistent flame location is essential to the success of the measurement.
For CCADS, the continuous combustion systems in gas turbines provide a continuous source of ionization for electrical current measurements. Applying an equal DC voltage to the electrodes results in an electric field from the guard electrode extending into the combustion region as illustrated in
E=−∇V (5)
where V is the voltage. It is noteworthy to point out that this electrostatic plot is for the prototype nozzle in the combustor at the NETL of the United States Department of Energy, and the electric field will change relative to changes in the electrode position and the surrounding combustion geometry (ground plane). The applied DC voltage results in a constant electric field at the electrode flame interface, and dynamic flame instabilities cause the flame to move axially in the combustion region resulting in an exponential increase or decrease in current, depending on the flame location.
For example, consider a continuous stable flame 20 located at distance d from an electrode 24 as shown in
The current can be described by modifying Eq. 4 to account for the changes in the electric field. The drift velocity is the product of the mobility of the charged species (μ) and the electric field (E). So Eq. 4 is modified to adjust the electric field based on the flame position (d)
I=n·q·A·μ·E(d) (6)
The charge carrier density n represents the number of ions and electrons per unit volume within the measurement volume and is expressed as
where the ratio of fuel volume flow to total volume flow (air+fuel) is determined at operating pressure (P), and temperature (T) of the premixed gas stream, with Na representing Avogadro's number, B is the ion production rate per molecule of fuel, and R is the universal gas constant. In theory, the equivalence ratio can be calculated from the measured air and fuel flows. However, in industrial applications the air flow from the compressor is generally known with only limited accuracy, which may not be sufficient for the desired accuracy of control of the equivalence ratio in the combustor. In addition, fuel injector wear and size variations add uncertainty to the measurement of fuel flow to the combustor.
To determine the electric field at distance d, a time-varying voltage is applied to the sensor electrodes and the resulting current between the two sensor electrodes or between the two sensor electrodes and a grounded surface, such as the combustor ground shown in
Signal Analysis Methods
The analysis techniques summarized herein employ an equivalent circuit for measurements in the form of a parallel RC circuit, as shown in
For the pulsed DC signal, the voltage time lag τ is defined as
τ=R*C (6)
where R is the resistance and C is the capacitance in a parallel RC circuit. The resistance R can be measured at low frequencies using the measured current at 5 times the time lag, when the current through the capacitor has decreased to negligible levels (approximately zero). The capacitance is calculated using Equation 6 with the measured time lag and calculated resistance.
For a triangle wave, the equation for current i through a parallel RC circuit is given by the following equation:
which can be used to determine the resistance R and capacitance C. The rate of change of the voltage dV/dt is constant, and when the voltage equals zero (i.e., crosses zero potential), the current through the resistor is zero. Therefore, when V=0 the capacitance C is given by the following equation
The resistance can be calculated using Eq. 7, with the calculated capacitance and the measured current during the same cycle close to the peak voltage to ensure maximum field strength.
For the AC analysis, the magnitude and phase angle of the voltage and current are used to calculate the magnitude and phase of the complex impedance. The complex impedance is comprised of a real and an imaginary component. The imaginary, or reactive, component of the complex impedance is related to the capacitance. The capacitive reactance Xc is defined as
where f is the frequency of the AC signal and C is the capacitance. The resistance R and reactance Xc comprise the impedance Z given by the following equation
Z2=R2+Xc2 (10)
where the vector form can be represented as a triangle and the standard trigonometric relationships may be used to calculate the resistance and reactance from the complex impedance. The phase angle between the current and voltage is measured to determine the phase angle of the complex impedance. A DC offset may be added to the AC signal to provide additional information on the combustion process.
To determine flame location from the measured capacitance, the equivalent circuit model for the system must be expanded to include resistance and capacitance associated with other components and connections throughout the system. For simplification, these components are represented by a parallel RC section in the equivalent circuit model shown in
and the gap-flame region impedance Zf is approximated as a series combination of the gap capacitance (Cg) and the flame resistance (Rf) by the following equation
This capacitance measurement is directly related to the distance of the flame from the fuel injector exit as shown in
where k is the dielectric constant of the material between the two plates which are of area A and are separated by a distance d, and ∈o, is the permittivity of free space (8.854×10−12 C2/Nm2).
A laboratory experiment was conducted to examine the change in capacitance as the flame moves away from the electrode. The experiment involved using a ring-stabilized flame burner, with an electrically isolated ring for flame stabilization and movement. The ring-stabilizer is moved away from the electrode with a translation stage, resulting in the flame moving away from the measurement electrode.
In addition to providing the capability to determine the electrode to flame distance, the ability to measure the capacitance of the flame also provides an alternative approach to determination of the equivalence ratio. This has been demonstrated from analysis of data from tests in the pressurized pulsed combustor (PPC) at NETL as shown in
Referring to
Power supplies 66 and 68 within a voltage conversion circuit 55 are also in the form of AC to DC converters. Both AC to DC converters 66 and 68 are enclosed 175 KHz switching power supplies, which provide 75 Watts at 24 Volts maximum power. The outputs of the first and second AC to DC converters 66 and 68 are respectively provided to first and second DC to DC converters 70 and 72 with the necessary wattage and voltage to supply +/−225 VDC.
The outputs of the first and second DC to DC converters 70 and 72 are provided to both integrated circuits 74 and 74a, which is shown in detail in
Referring to the schematic diagram of
The present invention also provides a self-diagnostics capability for the sensor used in the real-time combustion control and monitoring system. In the prior art approach wherein a DC current in the combustion flame is measured, the saturation of a DC current indicates a short circuit in the sensor such as in the case of an electrode becoming electrically connected to ground through a loose lead wire which contacts an electrically grounded surface, or contamination (e.g. Soot) bridging the electrical insulation between electrodes and ground. Other sensor faults are incapable of being detected in the prior art DC approach. However, the measurement of capacitance within a combustion flame in an embodiment of the invention allows for detection of not only a short circuit in the electrode, but also various other faults such as an open circuit situation as in the case of a poor or severed connection between an electrode and other sensor circuit components. In an embodiment of the invention, a substantial reduction in the measured capacitance such as due to a fault in the sensor circuit or a problem with the sensor electrode is recognized and identified as a system fault. In addition, the prior art DC approach measures only the resistance of the combustion flame and is capable of only limited monitoring of the combustion flame. By measuring the resistance and capacitance of the combustion flame, an embodiment of the invention provides improved sensing and monitoring of many more combustion parameters than available in the prior art DC approach.
While particular embodiments of an embodiment of the invention have been shown and described, it will be obvious to those skilled in the relevant arts that changes and modifications may be made without departing from the invention in its broader aspects. Therefore, the aim in the appended claims is to cover all such changes and modifications as fall within the true spirit and scope of the invention. The matter set forth in the foregoing description and accompanying drawings is offered by way of illustration only and not as a limitation. The actual scope of the invention is intended to be defined in the following claims when viewed in their proper perspective based on the prior art.
The United States Government has rights in this invention pursuant to the employer-employee relationship of the U.S. Department of Energy and the inventors.
Number | Name | Date | Kind |
---|---|---|---|
2632102 | Jellinek | Mar 1953 | A |
2737643 | Marsden, Jr. | Mar 1956 | A |
2870329 | Aubert | Jan 1959 | A |
3627458 | Wade | Dec 1971 | A |
4082994 | Newton | Apr 1978 | A |
4288741 | Dechene et al. | Sep 1981 | A |
4343360 | Ginsburgh et al. | Aug 1982 | A |
4343361 | Ginsburgh et al. | Aug 1982 | A |
4363468 | Noe | Dec 1982 | A |
4527125 | Miyanaka et al. | Jul 1985 | A |
4555941 | Fathauer et al. | Dec 1985 | A |
4710125 | Nakamura et al. | Dec 1987 | A |
4981033 | Yang | Jan 1991 | A |
5439374 | Jamieson | Aug 1995 | A |
5687082 | Rizzoni | Nov 1997 | A |
5722822 | Wilson et al. | Mar 1998 | A |
5899683 | Nolte et al. | May 1999 | A |
5952930 | Umeda et al. | Sep 1999 | A |
5973503 | Kuipers et al. | Oct 1999 | A |
6084518 | Jamieson | Jul 2000 | A |
6113384 | Sebastiani | Sep 2000 | A |
6429020 | Thornton et al. | Aug 2002 | B1 |
6703847 | Venter et al. | Mar 2004 | B2 |
6807438 | Brun Del Re et al. | Oct 2004 | B1 |
6839620 | Koehler et al. | Jan 2005 | B1 |
6887069 | Thornton et al. | May 2005 | B1 |
6985080 | Kociecki et al. | Jan 2006 | B2 |
6989678 | Venter et al. | Jan 2006 | B2 |
7197880 | Thornton et al. | Apr 2007 | B2 |
7523673 | Chorpening et al. | Apr 2009 | B1 |
7559234 | Chorpening et al. | Jul 2009 | B1 |
20030062908 | Venter et al. | Apr 2003 | A1 |
20040124856 | Venter et al. | Jul 2004 | A1 |
20040174265 | Kociecki et al. | Sep 2004 | A1 |
20050021216 | Koehler et al. | Jan 2005 | A1 |
20050235742 | Bengtsson et al. | Oct 2005 | A1 |
20050264219 | Dhindsa et al. | Dec 2005 | A1 |
20050274116 | Thornton et al. | Dec 2005 | A1 |
20060257801 | Chian | Nov 2006 | A1 |
20060257804 | Chian et al. | Nov 2006 | A1 |