This application claims priority from European Patent Application No. 03077820.3 filed Sep. 8, 2003, the entire disclosure of which is incorporated herein by reference.
The present invention relates to a timepiece comprising a body forming a case inside which is accommodated a clockwork-movement, said body having at least two separate faces on which are respectively disposed first and second display means driven by the clockwork-movement.
Timepieces corresponding to the above general definition are already known. The documents U.S. Pat. No. 4,236,239, U.S. Pat. No. 4,493,561, U.S. Des. Pat. No. 352,469, DE 43 22 471, U.S. Pat. No. 5,479,381, EP 1 070 997, WO 01/07970, EP 1 189 117 or EP 1 189 118 describe for example solutions in which the first and second display means are disposed on two opposite faces of the same body forming a case, this body being capable of being formed by a single case or by two independent half-cases which are immovably attached the one to the other. These solutions entail turning over the body forming the case in order to uncover alternatively the first or second display means and sometimes require more or less complex mechanisms to permit this turning-over, just like the solutions described in the documents U.S. Pat. No. 4,236,239, U.S. Pat. No. 4,493,561, U.S. Des. Pat. No. 352,469, DE 43 22 471, EP 1 189 117 or EP 1 189 118. The solutions described in the documents U.S. Pat. No. 5,479,381, EP 1 070 997 and WO 01/07970 are structurally simpler insofar as it is sufficient to turn the timepiece over in its entirety, this entailing the use of a reversible strap in the case of an application as a wrist-watch.
Solutions in which the body forming the case is made up of two articulated cases or half-cases are also known, for example from the documents CH 680 329 or U.S. Pat. No. 4,444,513. Finally, solutions employing two separate cases are also known as the document U.S. Pat. No. 3,293,846 shows. These configurations necessarily entail each case including its own clockwork-movement.
A disadvantage common to all the above-mentioned solutions lies in the fact that the two display means cannot be visible simultaneously. Certain of the envisaged configurations entail moreover the presence of two separate clockwork-movements to drive the display means.
To complete the explanation of the prior art, one can also cite the document CH 655 633 which presents a timepiece comprising first and second cases (an upper case and a lower case) mounted pivoting with respect to each other about a pivoting axis substantially perpendicular to the general plane of the cases. The two cases can occupy a first closed position in which the upper case is superposed on the lower case and masks the front face of the lower case, and a second open position in which the upper case is pivoted relative to the lower case in order to uncover the front face of the latter. However this is a timepiece in which the upper case includes a clockwork-movement and associated means for displaying the time and in which the lower case comprises a compass. It will be understood that the clockwork-movement is integrally mounted in the upper case and is totally independent of the mechanism accommodated in the lower case, i.e. the compass.
A general aim of the present invention is to propose a solution which permits, just like prior solutions, the exploitation of a larger surface on the timepiece in order to equip it with a vast range of display means whilst nevertheless ensuring a great simplicity of manipulation, in particular avoiding the necessity of turning over the body forming the case.
Another aim of the present invention is to propose a solution which only requires a single clockwork-movement and which may moreover be realised entirely in mechanical form.
To this end, the object of the present invention is a timepiece wherein the body forming the case of the timepiece comprises a first case, termed upper case, which has a front face comprising the first display means and a second case, termed lower case, which has a front face comprising the second display means. These cases are pivotally mounted with respect to each other about a pivoting axis substantially perpendicular to the general plane of the cases and can occupy a first position, termed closed, in which the upper case is superposed on the lower case and masks at least partially the front face of the lower case, and a second position, termed open, in which the lower case is pivoted sideways relative to the lower case to uncover at least a portion of the front face of the latter. The clockwork-movement comprises first and second portions accommodated respectively in the upper and lower cases to drive the first and second display means, respectively, and a drive mechanism ensuring a kinematic link between the first and second portions of the clockwork-movement when the cases are brought into the open position.
In that way, a timepiece is proposed which makes it possible to mask and uncover additional display means disposed on the front face of the lower case, these manipulations being simply effected by rotating the upper case about the pivoting axis. This constitutes a particularly elegant solution which does not require the case to be turned over as is the case in the solutions of the prior art.
The clockwork-movement is subdivided into two portions which are respectively accommodated in the upper and lower cases, the drive mechanism being provided to ensure a kinematic link between these two portions of the clockwork-movement and to interrupt this kinematic link when the cases are brought into the open position. According to a particularly advantageous embodiment, the drive mechanism includes a moving transmission part which has an axis merged with the pivoting axis of the cases, this moving transmission part comprising a first end located in the upper case and a second end located in the lower case. According to this embodiment, the cases are brought into the open position by rotating the upper case relative to the lower case in a first specific direction of rotation and the moving transmission part is driven in rotation by the clockwork-movement in a second direction of rotation, which is opposite from the first direction of rotation, the drive mechanism being arranged to interrupt the driving in rotation of the moving transmission part when the cases are brought into the open position and to re-establish the driving in rotation of the moving transmission part when the cases are brought into the closed position.
According to a preferred variant of this embodiment, the drive mechanism is also arranged to make up for an error in synchronism (or delay) between the first and second display means when the cases are brought into the closed position. According to one embodiment, the timepiece also includes an essentially tubular retention element having an axis merged with the pivoting axis of the cases and crossed by the above-mentioned moving transmission part, this retention element being immovably attached to one of the cases and holding the other case axially along said pivoting axis whilst permitting a rotation of this other case relative to the retention element.
Other features and advantages of the present invention will appear more clearly in reading the following detailed description of embodiments of the invention which are presented solely by way of non-restrictive examples and illustrated by the attached drawings in which:
a, 1b and 1c are respectively views in perspective, from above and from the side of an embodiment of the invention in which the two cases are illustrated in the open position;
a is a bottom view, in partial section, taken perpendicularly to the pivoting axis of the cases, along the cutting line A-A shown on
a and 4b are respectively plan and sectional views giving details more especially of a preferred embodiment of the drive mechanism which ensures the kinematic link between the two portions of the movement.
a to 1c illustrate overall a timepiece which is in the general form of a wrist-watch and constitutes a preferred embodiment of the present invention. It can be seen in these figures that the body forming the case of the timepiece is made up of two cases 1 and 2, designated respectively the upper case and the lower case, each bearing on their front face display means which are designated overall by the numbers 16 and 26 respectively. These two cases 1, 2 are capable of pivoting with respect to each other about a pivoting axis, designated X, substantially perpendicular to the general plane of the two cases 1 and 2. In that way, the upper 1 and lower 2 cases can occupy a first position, termed closed (not shown), in which the upper case 1 is superposed on the lower case 2 and masks the front face of this case, and a second position, termed open (position represented in
In the embodiment which is illustrated, it will be noted that the lower case 2 is classically fitted with horns 4 to permit the attachment of a wristlet strap, not shown. The upper case 1, for its part, is classically provided with a rod-crown 3 to permit the timepiece to be set to the time. The first display means 16 provided on the front face of the upper case 1 (under a watch-glass designated by the reference numeral 15) classically include hour and minute hands disposed in the centre and supplemented by other indicators, for example a seconds' indicator or a power reserve indicator. For their part, the second display means 26 provided on the front face of the lower case 2 (under a second watch-glass designated by the reference numeral 25) include especially an indicator of the phases of the moon and an indicator of the days of the month. These second display means 26 are disposed altogether in an off-centre position on the front face of the lower case 2.
The illustrated distribution of the various indicators on the two cases 1, 2 is obviously not restrictive and could be quite different; the hour and minute hands could for example be disposed on the front face of the lower case 2. Typically these hands will be disposed on the case in which are accommodated the source of mechanical energy (spring barrel and its spring) and the members for regulating the working of the timepiece (balance-hairspring and escapement); these members can be disposed independently in the upper 1 or lower 2 case. In the embodiments illustrated in the figures it will be understood that the presence of the rod-crown 3 and hour and minute hands on the upper case 1 suggests that these members are disposed in the upper case 1.
Within the framework of the present invention, it ought to be mentioned that the clockwork-movement is strictly speaking subdivided into two portions (not represented in
With regard to the disposition of the pivoting point of the two cases 1, 2, this point can be placed a priori at any suitable point of the timepiece. As illustrated in the figures, this pivoting point is advantageously disposed inside the external circumference of the two cases 1, 2, no lug or unsightly protuberance thus being apparent on the periphery of the cases. In the figures it can be seen that the pivoting axis X is situated essentially in the quadrant between twelve o'clock and three o'clock (here substantially at two o'clock), the second display means 26 being moved slightly off-centre towards the lower left-hand portion of the front face of the lower case 2.
Preferably, the cases 1, 2 are brought into the open position by rotating the upper case 1 in a specific direction of rotation about the pivoting axis X. This opening direction is designated in
The base 12 of the upper case 1 and the bezel 21 of the lower case 2 include an opening arranged to permit the passage of the drive mechanism ensuring the kinematic link between the two portions 100, 200 of the clockwork-movement. This drive mechanism is designated overall by the number 5 and is illustrated in more detail in
The pivoting and the mechanical link between the upper 1 and lower 2 cases are preferably ensured by means of a tubular retention element 30, the axis of which is merged with the pivoting axis X of the cases 1, 2 and through which the moving transmission part 51 passes. This retention element 30 is attached immovably to one of the cases (here the upper case 1), for example by means of screwing, as illustrated, or by any other appropriate means. In this example, the retention element 30 thus includes a threaded end 30a cooperating with an inside thread provided in the base 12 of the upper case 1. The lower case 2 is retained axially along the pivoting axis X by means of a bearing surface 30b provided on the other end of element 30. In this particular case, the bezel 21 of the lower case 2 is retained axially between the bearing surface 30b and the base 12 of the upper case 1.
In the example of
It will be understood that the retention element 30 could alternatively be attached immovably to the lower case 2 and that the pivoting of the two cases could be ensured by rotation between the retention element 30 and the upper case 1.
From a mechanical viewpoint and from the viewpoint of a tight seal at the level of the pivoting axis X, it is preferable, as illustrated in
The tight seal between the two cases 1 and 2 is ensured by a sealing ring 33 inserted radially between the protuberance 12a and the wall of the aperture 21a. This sealing ring 33 is in this case disposed in a groove provided in the wall of the aperture 21a. It is obvious that the sealing ring 33 could alternatively be accommodated in a groove provided around the protuberance 12a.
a is a partial sectional view of the timepiece, along cutting planes which are generally perpendicular to the pivoting axis X, along the cutting line A-A shown on
In
In
a and 4b will now make it possible to describe in detail the configuration and functioning of the drive mechanism 5. On these figures it will be noted that the elements which do not participate directly in the functioning of the drive mechanism 5 have not been illustrated for the sake of simplification. In
In addition to the moving transmission part 51 which emerges in each of the cases 1, 2, the drive mechanism 5 includes moreover a driving wheel 53, a plate 52 as well as linkage means 55, 56 inserted between the driving wheel 53 and the plate 52. The driving wheel 53 and the plate 52 are mounted coaxially with the moving transmission part 51 and are disposed with the linkage means 55, 56 on an end of the moving transmission part 51, here situated in the upper case 1. The other end of the moving transmission part 51 is situated in the lower case 2.
As can be seen diagrammatically in
The driving wheel 53 engages permanently with the first portion 100 of the clockwork-movement accommodated in the upper case 1. In
The linkage means 55, 56 between the plate 52 and the driving wheel 53 are arranged in such a way that the plate 52 is normally driven in rotation by means of the driving wheel 53 when the cases 1, 2 occupy the closed position and in such a way that the driving in rotation of the plate 52 by the driving wheel 53 is interrupted when the cases are brought into the open position. A number of solutions can be envisaged for fulfilling this function. A particularly simple and advantageous solution is illustrated in the drawings.
In
In the closed position, when the two cases are superposed, it will thus be understood that the driving wheel 53 drives in rotation the plate 52 and the moving transmission part 51, thus ensuring the kinematic link between the first portion 100 and the second portion 200 of the movement. As soon as the upper case 1 begins to be pivoted relative to the lower case 2 in the direction of rotation indicated by arrow A, the driving of the plate 52 and of the moving transmission part 51 is immediately interrupted, interrupting at the same time the kinematic link between the two portions 100, 200 of the movement. At this moment, it will thus be understood that the synchronism between the two portions of the movement, and thus also between the first and second display means 16, 26, is interrupted and the second display means 26 can go slow in relation to the first display means 16.
In the open position, the driving wheel 53 is however always driven in rotation by the first portion 100 of the movement. The pin 55 will thus move in the groove 56 in the direction of the end of the groove 56 against which this pin was previously stopped. After a certain lapse of time which depends on the speed of rotation of the driving wheel 53 and on the dimensions of the groove 56, the pin 55 will again reach a position where it is stopped against the end of the groove 56. As long as the cases 1, 2 remain in the open position, an error in the synchronism between the display means 16, 26 will thus be generated, this error increasing in the course of time to reach a specific value as soon as the pin 55 is brought again into a position where it is stopped against the end of the groove 56.
This error in synchronism (or delay) is however totally compensated and made up for during the closing of the cases 1, 2. Indeed, during the closing of the cases 1, 2 (by rotating the upper case 1 in an opposite direction from the opening direction), the pin 55 is again brought into a position where it is stopped against the end of the groove 56 (if that was not already the case). At the same time, the plate 52 and the moving drive part 51 undergo an angular displacement in the direction of arrow B which corresponds to the angular displacement of the pin 55 in the groove 56 (in the direction of arrow B) since the kinematic link has been interrupted, i.e. since the opening of the cases 1, 2.
During the opening and closing of the cases, the pin 55 undergoes an angular displacement corresponding to the angle of opening of the cases, in one direction then in the other. The opening and closing operations do not therefore in the end generate any delay or loss of synchronism between the first and second display means 16 and 26. The delay is due solely to the time which has elapsed since the interruption of the kinematic link and this delay is totally caught up during the closing operation as a result of the relative angular displacement of the pin 55 in relation to the groove 56. At maximum, the plate 52 and the moving transmission part 51 will undergo during the closing operation a forced angular displacement which is equivalent to the angle of opening of the cases, i.e. 180° in this example.
It will be understood that the dimensions of the groove 56 are chosen to permit the pin to move during the opening of the cases without coming into contact with the other end of the groove 56. In other words, the groove 56 has an angle of development which is greater than the opening angle of the cases 1, 2. In the contrary case, the plate 52 and the moving transmission part 51 will be partially driven during the opening of the cases in a direction of rotation which is the opposite of their normal direction of rotation, which is not to be recommended. In this particular case, therefore, the angle of development of the groove 56 is slightly greater than the opening angle of the cases which is here fixed at 180°.
It will be noted that the maximum duration of the interruption of the kinematic link between the two portions 100, 200 of the movement depends on the dimensions of the moving parts of the movement and of the drive mechanism 5 and can be fixed as desired to several minutes or several hours. It ought to be mentioned that the forced angular displacement as well as the stresses caused on the teeth of the moving parts during the closing operation do not constitute a real problem.
It will be understood in a-general way that various modifications and/or improvements obvious to the person skilled in the art can be made to the embodiments described in the present description without departing from the scope of the invention defined by the attached claims. Thus a certain number of the mechanical solutions described, in particular for the mechanical retention of the two cases, for the limitation of the opening angle of the cases and for the realisation of the function of disengaging the drive mechanism may be replaced by any other mechanical solution which is functionally equivalent. It seems perfectly conceivable, for example, to have recourse to solutions of the type involving a pallet to realise the function of disengaging the drive wheel. The described solutions appear preferable, however, as much from the point of view of their simplicity as of their robustness.
Number | Date | Country | Kind |
---|---|---|---|
03077820.3 | Sep 2003 | EP | regional |