This application claims priority from European Patent Application No. 15159776.2 filed Mar. 19, 2015, the entire disclosure of which is hereby incorporated herein by reference.
The present invention concerns a timepiece movement including an analogue display drive device, particularly for a calendar display.
The present invention also concerns a timepiece movement comprising a device for driving two independent analogue indicators by the same single drive source, in particular an electromagnetic motor.
It is an object of the invention to provide a device for driving an analogue display, in particular a date ring in a timepiece movement, which is shock resistant most of the time.
It is another object of the invention to provide a drive device for a multifunction analogue display having a single drive source, in particular for driving a date ring and a chronograph hand driver by means of a single motor, which is efficient for each function of the display and which allows for independent actuation of at least one function relative to a second function of the display.
It is advantageous to provide a display drive device for a timepiece movement which is economical to produce.
It is advantageous to provide a display drive device for a timepiece movement which is compact.
Objects of the invention are achieved by a timepiece movement comprising an analogue display drive device according to claim 1. The dependent claims describe advantageous aspects of the invention.
In the present invention, a timepiece movement comprises an analogue display drive device including a display disc comprising a toothing, a drive source and driving means coupling the drive source to the toothing. The driving means includes a wheel set including pins, formed of a toothed wheel and a pinion including pins, and an engaging wheel that engages said toothed wheel of the pin wheel set. The pinion with pins includes two diametrically opposite pins separated by a distance configured to position them on either side of any tooth of said toothing. The toothed wheel has a first non-circular profile and the engaging wheel has a second non-circular profile which is complementary to the first non-circular profile, the toothed wheel and the engaging wheel being arranged with respect to each other such that, when the two pins are oriented in a tangential direction to the toothing, these two wheels have a first gear ratio which is lower than a second gear ratio between said wheels when the two pins are in perpendicular alignment to this tangential direction.
According to a preferred embodiment, when the two pins are oriented tangentially to the display disc toothing, these two pins are arranged to define a self-locking system if a shock exerts a tangential force on the toothing.
A “non-circular profile of a wheel” means a wheel having a toothing that follows a general curve other than a circle, or a wheel having a toothing substantially following a general circle but whose axis of rotation is not at the centre of the general circle. According to a particular embodiment, the non-circular profile of the toothed wheel of the pin wheel set is elliptical or essentially elliptical.
According to a particular embodiment of the invention, the pin pinion is configured, with respect to the display disc toothing, to have a dead angle area for driving the display disc. The angular distance of the dead angle area is arranged to be greater than ten degrees. According to a preferred variant, in the event of a shock, the two pins of the pin pinion block the rotation of the display disc when the angular position of the pin pinion is inside the dead angle area.
According to a main embodiment, the gear reduction ratio between the engaging wheel and the pin wheel is greater inside the aforementioned dead angle area than outside said area.
According to an advantageous embodiment, at least one of the wheels of the driver includes an additional display element; the additional display element can operate in the dead angle area independently of the aforementioned display disc.
According to one embodiment, the additional display wheel is configured to effect a rotation of at least 360° when the pin pinion makes an angular motion inside the dead angle area. The additional display element may, for example, be a hand mounted on an arbor of the additional display wheel. In a particular variant, the additional display wheel is a chronograph wheel.
In one embodiment, the drive source includes an electric motor controlled by an electronic unit of the timepiece movement. The motor may be bidirectional.
Other advantageous objects and aspects of the invention will appear upon reading the claims, and the detailed description of embodiments below.
The following detailed description is made with reference to the annexed drawings, given by way of non-limiting example, and in which:
With reference to the Figures, a timepiece movement 2 comprises a display drive device according to one embodiment of the invention. This display is formed by a display disc 4 and the drive device includes a driving means 6 and a drive source 8. Drive source 8 may, for example, comprise an electric motor controlled by an electronic unit (not illustrated) of an electronic timepiece movement. Within the invention, drive source 8 may also include a mechanical energy source driving a mechanical motor, or a hybrid system. The invention is especially useful for a drive source 8 comprising an electric motor whose idle torque is relatively low and wherein a mechanism for blocking driving means 6 is necessary in the event of a shock. In the illustrated embodiment, the electric motor includes an output pinion 22 coupled to a train of wheels 20c, 20b, 20a of driving means 6. The train of wheels 20c, 20b, 20a is coupled to display disc 4 by means of a pin wheel set 10 and an engaging wheel 18 of the pin wheel set. Engaging wheel 18 is fixedly mounted on another toothed wheel 19 coupled to train of wheels 20a, 20b, 20c.
In the illustrated embodiment, display disc 4 takes the form of a ring comprising a toothing 5 on the inner periphery of the ring; toothing 5 engages pin wheel set 10. In a variant (not illustrated), toothing 5 could be disposed on the outer periphery of the display disc which could take the form either of a solid disc or a ring. In a variant (not illustrated), the display disc could be a segment of a ring or disc; in such case the display device is bidirectional. In one embodiment, the display disc is a date display disc, namely a disc indicating the date (day of the month). Within the invention, in other embodiments, the display disc could be used to display any other non-continuous function, such as, for example the following functions: “AM/PM”, “CHR” for chronograph; “GMT”; “TMR” for timer; “AL On/AL Off” for turning an alarm on/off.
Pin wheel 10 includes a toothed wheel 12 with a non-circular profile 13a, and a pin pinion 14 comprising pins 16, notably a pair of pins 16a, 16b. Pin pinion 14 may, for example, take the form of a pair of cylindrical pins disposed on either side of the axis of rotation A10 of toothed wheel 12 and directly secured to the toothed wheel or to a plate or disc mounted on toothed wheel 12. The pins may also directly form part of toothed wheel 12, for example by injection moulding, shaping or machining the pins in one-piece with toothed wheel 12.
In a stop position as illustrated in
The distance between the pins, the dimensions of the tooth and the position of the rotational axis of the pin pinion are preferably configured so that the absolute value of the two limit angles +/−α with respect to tangential direction T starts above a maximum ordinary gear backlash angle in a gear train (around 5° in unfavourable cases) to extend, in a preferred variant, roughly to the end of the self-locking area allowing the disc to be blocked in the event of a shock (notably between +/−10° and +/−20° depending on the drive mechanisms). The dead area may, however, extend beyond this limit depending on the embodiment variants. Thus, this angular distance may be greater than 40°. In the example shown in
In the illustrated example, the additional function may be performed by one or more hands 24 mounted on one or more arbors of wheels 20a, 20b, 20c of the wheel train coupling drive source 8 to pin wheel 10. In the illustrated example, one of the wheels is a chronograph wheel 20a with an arbor on which chronograph hand 24 is mounted, the gear reduction ratio between this wheel and pin pinion 14 being such that, when the wheel effects one revolution, the pin pinion effects at most a rotation of angle a corresponding to half the angular distance of dead angle area +/−α. In this chronograph function, when chronograph hand 24 has effected one revolution, it is returned back by the electric motor so that counting can continue without thereby changing the position of display disc 4. The chronograph wheel can be used, for example, to indicate the seconds, minutes or hours. In the dead angle area from −α to +α, it is therefore possible to use the wheels of wheel train 20a, 20b, 20c coupled to drive source 8 for any desired function without thereby disrupting the display of display disc 4; which makes it possible to reduce the number of motors required in the timepiece movement for the various desired functions. Of course, depending on the desired reduction ratios and display, it would be possible to use a different wheel of the train from that used in the illustrated example, or an additional wheel, in a meshed relationship with one of the wheels of the wheel train, for the desired function.
According to one aspect of the invention, toothed wheel 12 of pin wheel set 10 and the pin wheel engaging wheel 18, have non-circular profiles 13a, 13b, configured for slower angular rotation in the dead angle area than in the active area (outside the dead angle area). This makes fast display transition possible outside the dead angle area. A first advantage is that this allows for a fast change of position of display disc 4 and notably minimises the time interval during which pin pinion 14 is outside an angular area where the pin pinion is not guaranteed to block display disc 4 in the event of a shock or other inertial torques applied to the display disc with respect to driving means 6.
Further, the configuration in the embodiment shown makes it possible to have a greater gear reduction ratio between engaging wheel 18 and pin wheel 10 inside the dead angle area than in the active area (outside the dead angle area). This makes it possible to reduce the gear reduction ratio required in the driver to obtain a complete rotation of chronograph wheel 20a while remaining comfortably inside the dead angle area −/+α. In a preferred embodiment, the additional display wheel 20a is configured to be able to effect a rotation of at least 360° during an angular motion inside the dead angle area. In the invention, for the minimum given drive torque necessary to drive the display disc by the pin pinion, an angular area is obtained on wheel 20a corresponding to the dead angle area of the pin wheel set, which is larger than in the case of circular wheels with central axes of rotation. For one rotation of limit angle a of the dead angle area of pin pinion 14, the maximum angular distance travelled by wheel 20a associated with an additional indicator 24 is obtained by means of a maximum speed increaser gearing between pin pinion 14 and wheel 20a, and thus a maximum gear reduction in the opposite direction. In the dead angle area around the tangential position of the two pins 16a, 16b, there is thus a large gear reduction between wheel 20a and pin pinion 14. Thus, wheel 20a can effect a rotation over a relatively large angular range without display disc 4 moving significantly.
In one embodiment, the non-circular profile 13a of toothed wheel 12 may, for example, have an elliptical or essentially elliptical shape; the non-circular profile 13b of pin wheel engaging wheel 18 is then complementary. The non-circular profile 13b of pin wheel engaging wheel 18 is off-centre in the illustrated example with respect to the axis of rotation A18 of said wheel. Engaging wheel 18 thus effects two revolutions for each revolution of pin wheel set 10. The teeth profiles may be configured for point or line contact to minimise the friction forces; these profiles may be defined by using known methods.
In a preferred embodiment, the timepiece movement further comprises a jumper for positioning the display disc, the jumper being arranged to hold the display disc in a plurality of distinct display positions. In an advantageous variant, a substantially identical tangential gear backlash is provided, when the display disc is in any one of the plurality of distinct display positions, between the two tangentially oriented pins 16a, 16b and a corresponding tooth 5a of toothing 5 which is inserted between the two pins.
In the illustrated example, the drive pinion 22 is coupled through three successive wheels 20c, 20b, 20a to wheel 19 on which the pin wheel engaging wheel 18 is mounted, but it is of course possible to have a different number or arrangement of wheels in driver 6 depending on the features of drive source 8, the gear reduction ratio between the wheels of the train of wheels 20a, 20b, 20c, the display disc dimensions, and the desired additional display function.
Advantages of the embodiments of the invention comprise, among other things: the bidirectionality of the display disc, optimisation of the time during which the display disc remains in a blocked position, a compact mechanism with few parts, and the possibility of incorporating this technology in a modular platform of conventional timepiece movements.
Number | Date | Country | Kind |
---|---|---|---|
15159776.2 | Mar 2015 | EP | regional |