The invention relates to a timepiece to display a value of a time unit.
The analog display of the time on a timepiece is usually based on hands for hour, minute and seconds. These hands are driven by a clockwork mechanism or watch movement which is mounted in a case. Through the glass of the case, the angular position of the hands on a scale can be determined, yielding the current time.
In addition to the hands driven by the movement, such as the hour and minute hands, the state of the art also reveals hands that are not driven by the watch movement, see for example, document CH 343 919 A. Such non-movement-driven hands can be adjusted manually without affecting the angular positions and rotary motions of the movement-driven hands and serve for example for measuring the duration of dives on diving watches. In contrast, document DE 10 2010 020 466 A1 discloses a timepiece that features a hand that can be rotated manually, where the manual rotation affects the angular positions of the remaining hands such as the hour and minute hands. For the timepiece described in document DE 10 2010 020 466 A1, a display of the time is affected when the manually rotatable hand coincides with the remaining hands.
For an unambiguous determination of the angular position of the hands for reading the time, the hands must point in a clearly identifiable direction on the time scale. In the design of the various elements of the display of a timepiece, such as hands, scales and numbers, it therefore has to be taken into account that the direction of the hands is clearly visible. If the hands do not display a clearly identifiable direction or are covered by other elements of the display such that the indicated direction is not clear, the current time cannot be read correctly or only with poor precision. The requirement that the hands must display a clearly identifiable direction, therefore, limits the design possibilities of the elements of the display.
It is an object of the invention to provide a timepiece for displaying a value of a time unit, especially a timepiece with analog time display, which makes it possible to produce timepieces with time displays in greater design flexibility. In particular, a free form design for the hands is to be provided.
A timepiece for displaying a value of a time unit is provided with a read element, wherein a rotation of the read element can be controlled manually, and a form element, which rotates according to the time unit, wherein the rotation of the form element is independent of a manually induced rotation of the read element, wherein the value of the time unit can only be read when the read element and the form element coincide, in that the angular position of the coincidence indicates the value of the time unit.
For reading the value of the time unit, the read element can be rotated manually such that the read element and the form element coincide. The rotation of the read element can stop when coinciding with the form element for reading the value of the time unit. The read element and the form element may rotate about the same axis.
It may be provided that the coincidence of read element and form element is only effected in the rotational position in which the form element and/or the read element indicate the value of the time unit. The timepiece can have a timescale in accordance with the time unit, wherein the form element and/or the read element only indicate the value of the time unit on the timescale when the read element coincides with the form element.
The coincidence of the read element with the form element for reading the time can be effected by partial or complete overlapping of the two elements, by partial or complete framing of one element by the other element, by a coincidence of at least one side or at least one endpoint of one element with at least one side or at least one endpoint of the other element or by a combination of the three variants mentioned above. The way the coincidence of the two elements is effected can be equal for all values of the time unit to be displayed by the timepiece.
The indication of a value of a further time unit can be provided, where a further form element rotates in accordance with the further time unit and the value of the further time unit is displayed similar to the interaction of the read element and the form element, only when the further form element coincides with the read element or a further read element, such that the read element or the further read element and/or the further form element indicate the value of the further time unit.
At least one element of the display can have a disk-shaped figure of any shape. At least one element of the display can have at least one line-shaped or surface-like marking or recess of any shape on a disk-shaped figure of any shape. The disk-shaped figure can rotate eccentrically. At least a part of the shape, marking or recess of a read element can correspond to at least a part of the shape, marking or recess of a form element. The form element can be covered at least partially by another element of the display. The read element can have a shape, recess or marking towards the edge, which increases the reading accuracy.
The read element can rotate according to a seconds hand, where a manually controlled rotation of the read element temporarily interrupts the rotation of the read element according to a seconds hand for the duration of the manually controlled rotation of the read element.
The elements of the display can consist of one or different solid materials. The form element can be rotated by a movement or clockwork with a quartz crystal or a balance wheel as time base.
The elements of the display can be displayed on a monitor or projected onto a screen. The time unit of the value to be displayed by the coincidence of a read element and a form element can be the hour, minute or seconds.
Starting from the angular position in which the read element and the form element coincide to display the value of the unit time, the rotational motion of the form element due to the passage of time causes the form element to depart from the angular position in which the read element and the form element coincide to display the value of the time unit, whereby the form element is in a new angular position in which the form element no longer coincides with the read element. Only after a complete revolution of the form element or a manually generated rotation of the read element, the form element can again coincide with the read element.
In one embodiment, an interactive timepiece is provided with an analog time display, a form element which is rotatably mounted about an axis of rotation of said analogue display, a clockwork or movement, which is suitable to power a rotational motion of the form element around the axis of rotation in accordance with the time unit and a read element which is mounted in a way allowing a manual, free rotation about the axis of rotation or a different axis of rotation, such that a manual rotation of the read element can be executed independently and decoupled from the movement-forced rotation of the form element. Furthermore, markings are provided which are formed with partial markings on the form element and the read element and which at least in a read position of the read element and the form element relative to each other are partially visible in viewing direction towards the analog display. The read position can be set manually by manual rotation of the read element, such that the partial markings on the read element are put in a position assigned to the partial markings on the form element. In the read position, the read element indicates a true or current analog value for the time unit on the analog display, but not in other rotational positions of the read element and the form element relative to each other different from the read position.
In the read position, the form element and the manually rotated read element are arranged in a position relative to each other (relative rotational position) which is determined by the predetermined mutual allocation of the partial markings on the form element and the read element. The partial markings are designed so that the read position is taken in exactly one relative rotational position or relative angular position of the form element and the read element. In other positions of the form element and the read element relative to each other, no true or current value can be read for the time.
It may be provided that the markings have picture elements executed as partial markings on the read element and the form element. It can be provided, for example, that any symbols such as dashes, circles, spots, triangles, or the like, are to be stacked or arranged in a predetermined manner relative to each other in the read position. The predetermined relative position is set by manually rotating the read element.
The markings may represent form elements based on partial markings on the read element and the form element. Form elements are characterized by form or contour sections, where it may be provided that in the read position they are arranged in a form-fit arrangement either partially or fully.
On the form element or the read element, the markings may be arranged in an area of a portion of transparent material, through which the partial markings on the other element, i.e. the read element or the form element, are at least visible in the read position.
It may be provided that the markings on the read element and/or the form element comprise a recess, which, in the viewing direction towards the analog display in the read position at least partially overlaps with positive fit with a corresponding partial marking on the other element, namely the form element or the read element.
In the viewing direction towards the analog display, the read element and the form element may be arranged in a way partially or completely superimposing one another. The form element may be implemented as a hand or pointer.
A further form element with an associated further read element can be provided, for which, comparable with the interrelation of form element and read element, a further read position can be set manually, in which a true analog value is displayed for a further time unit different from the time unit. The further form element and the associated further read element have—comparable to the formation of form element and read element—markings with corresponding partial markings equal to or different from the partial markings of the form element and the read element. The time unit for example represents the hour and the further time unit represents the minutes. The inclusion of a seconds display can also be provided in a similar manner.
According to another embodiment, a clock is provided, in which the angular positions of the clock hands is determined by manually rotating at least one additional form element by successively matching the form element with the hands. Here, the additional form element has a shape that points in a defined direction.
In one embodiment, a timepiece is provided with a first hand (form element), which is driven by a clockwork or movement, and a second hand (read element), which can be rotated manually, wherein the rotational motion of the first hand is independent of a manually generated rotation of the second hand, wherein a time indication with regard to a time unit is effected only when the two hands coincide, in that the second hand points to the angular position of the current time of the time unit viewed, while outside the points in time and angles of the coincidence of the hands a meaningful reading of the time is not possible.
The first hand (form element) may have a shape which does not point in a uniquely identifiable direction. The second hand (read element) may have a shape which points in a uniquely identifiable direction. A part of the second hand can correspond to the shape or a part of the shape of the first hand. Both hands may have the same axis of rotation.
A further hand (further form element) can be provided, which is driven by the clockwork or movement, where the first hand (form element) is rotated in accordance with an hour display and the further hand is rotated in accordance with a minute display. When the second hand (read element) coincides with another hand for reading the time, a partial or complete overlapping of the two hands can occur. When the second hand coincides with another hand for reading the time, a partial or complete framing of one hand by the other hand can occur. When the second hand coincides with another hand for reading the time, a coincidence of the sides of both hands can occur. The second hand may be driven by the clockwork or movement in accordance with the rotational speed of a seconds hand. A manual rotation of the second hand can stop this drive of the clockwork or movement.
In addition to the read element, one embodiment of the clock has an hour hand (form element) and a minute hand (further form element). Here, the current minute is indicated when the read element coincides with the minute hand and the current hour is indicated when the read element coincides with the hour hand.
A coincidence between the read element and the hour (form element) or minute hand (further form element) may be based on a full or partial matching of read element and the respective hand. The sides of the read element and the respective hand for instance can coincide. Likewise, parts of the hand can be covered by the read element or vice versa. A coincidence between read element and hand can also occur when a recess in the read element is filled by a corresponding shape or form by the hand or vice versa. Thus, a coincidence of the read element with the hour or minute hand can generally be facilitated by allowing the read element to partially or completely reproduce the shape of hour and minute hands.
When reading the time, the read element can be rotated in clockwise or counterclockwise direction. Furthermore, the reading of the current time is carried out sequentially, so for example the current minute is read before the current hour is read. In angular positions of the read element and the hands in which none of the hands coincides with the read element, a clear or exact reading of the time is not possible.
In one possible embodiment, the proposed timepiece can be described as follows. The analogue display has time unit markers that are arranged circumferentially. A form element is positioned in one area of the display, which carries out a forced rotation in accordance with the time unit around a axis of rotation. From the combined view of the form element and the time unit markers the current/actual time cannot be read or can only be read with poor precision. Furthermore, a read element is positioned on the display which is mounted in a way allowing a manual rotation about the axis of rotation or a different axis of rotation, wherein said manual rotation is independent and decoupled from the forced rotation of the form element. In a read position, the exact time can be read from the combined view of the read element and the time unit markers. The time read in the read position represents the current/actual time. In the read position, partial markers on the read element and on the form element are positioned in a read position assigned to one another. Only this setting in relation of the partial markings on the form element and the read element allow for an accurate reading of the current/actual time. The combined view of the read element and the time unit markers allows the reading of the actual/current time, which is not possible or only with poor precision from the combination of the form element and the time unit markers. The combined view of the form element and the time unit markers gives the user either no reference for the actual/current time or a reference that leads to a poor interpretation of the actual/current time. A poor precision or inaccurate reading of the time is present, for example, for the time unit minute with 60 time unit markings, when the current/actual minute is read with an error of at least plus/minus one minute.
Further embodiments will now be described with reference to figures. In the figures, show:
As shown in
The current time can be read when the read element 5 is manually rotated so that it coincides with the hour hand 4. A coincidence of the two elements 4 and 5 in the embodiment in
In
Between
The three
In a further embodiment, the display of the current seconds is provided. Since a seconds hand rotates visibly faster than a minute or hour hand, it is possible to design the seconds hand in the same form as the hour or minute hands. When reading the time, the seconds hand in this case is not distinguished from the other hands by a different form, but by the much faster speed of rotation.
In
In
In the example in
In
In a further embodiment of the example of
A technical realization of the timepiece is shown in
Another technical realization of the timepiece is shown in
For the movement shown in
A technical effect and benefit of the proposed timepiece as opposed to the timepiece from the document DE 10 2010 020 466 A1 is that the rotational speeds of the hands and the manual or automatic winding mechanism and the time-setting mechanism of conventional movements can be used without modifications for the realization of the proposed timepiece.
In another embodiment, the read element 5 is coupled to the drive shaft of the seconds hand of the movement, so that the read element 5 also serves as a seconds hand. When manually rotating the read element to read the hour and minute, hence, the displayed second is adjusted. By means of a friction connection between the read element and the axis of the seconds hand of the movement it is ensured that a manual rotation of the read element does not damage the gears of the movement. With a manual rotation of the read element, therefore, the transfer of the seconds hand drive of the movement to the read element is blocked. After manual rotation of the read element, the second is therefore not displayed correctly. The coupling of the read element to the manual rotation can be based on a ratchet mechanism. Here the read element can manually only be rotated in counterclockwise direction while the seconds hand drive of the movement drives the read element in clockwise direction. Alternatively, the bezel may be connected with the read element by pressing down the bezel, wherein a toothing of the bezel is coupled to a toothing of the read element.
In a quartz movement which has a separate stepper motor for each hand, the rotation of the read element can be controlled by means of a manual operation of pushers or crowns on the watch case, and then executed by one of the stepper motors of the timepiece. Since the stepper motors of the movement can be controlled independently, the indirectly produced manual rotation of the read element does not affect the rotational motion of the hour and minute hands. The clock display can also be equipped with a touch-sensitive window as known from touchscreens. Here the touches of the window can be converted into a rotation of the read element by one of the stepper motors of the movement.
The use of a separately controllable stepper motor to perform the manually controlled rotation of the read element allows the use of the read element as seconds hand, without the loss of the current second after a manually controlled rotation of the read element. This is due to the fact that the electronics of the movement can calculate the position of the read element relative to the current second. After a manually controlled rotation of the read element, the movement can thus rotate the read element to the current second and continue the motion to display the current second.
The timepiece can be implemented both mechanically as described in
The features disclosed in the above description, the claims and the figures can be of importance both individually and in any given combination for the implementation in its various implementations.
Number | Date | Country | Kind |
---|---|---|---|
10 2012 017 414 | Aug 2012 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
5051968 | Calabrese | Sep 1991 | A |
5359578 | Truini | Oct 1994 | A |
7496003 | Muller | Feb 2009 | B2 |
7502280 | Mueller | Mar 2009 | B2 |
7821879 | Buttet et al. | Oct 2010 | B2 |
7839727 | Buttet et al. | Nov 2010 | B2 |
8264910 | Fuisz et al. | Sep 2012 | B2 |
8406087 | Schneider | Mar 2013 | B2 |
20030099159 | Herbstman et al. | May 2003 | A1 |
20090154298 | Taylor et al. | Jun 2009 | A1 |
20100091616 | Bonhoff | Apr 2010 | A1 |
20130051195 | Bonhoff | Feb 2013 | A1 |
20130052627 | Tzeng | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
343919 | Feb 1960 | CH |
Number | Date | Country | |
---|---|---|---|
20140064045 A1 | Mar 2014 | US |