1. Field of the Invention
This invention relates generally to recording and reading data from magnetic storage media and, more particularly, to servo control systems that maintain the position of a magnetic head relative to tracks in magnetic tapes.
2. Background of the Invention
As the magnetic storage of information becomes more sophisticated, greater amounts of data are packed into smaller volumes of space. In storing large amounts of data on a magnetic tape, multiple “tracks” of data are stored paralleling the length of the tape. The number of tracks that can be stored on a particular width of tape depends on the sensitivity of the technology used, but it is currently possible to have hundreds of tracks on a ½ inch wide magnetic tape.
A major hurdle in recording and reading data from these hundreds of tracks is the lateral movement of the tape media as it traverses the read/write head. This is overcome by manufacturing the tape with recorded tracks of servo information at various lateral locations across the tape. These servo tracks provide information that allow the servo mechanisms in a tape transport to correctly position the head with respect to the data tracks.
The servo tracks, in addition to providing positioning information for the servo mechanisms, can be encoded to carry additional useful information, such as identifying the individual servo tracks and the current longitudinal position along the tape.
There are a number of different methods of coding information in the patterns written in the servo tracks. One very useful method is timing-based coding, as it provides a method of position sensing that is insensitive to reading speed. This method is discussed in U.S. Pat. No. 6,021,013, which is hereby incorporated by reference. In this patent, each servo track is written with a repeating cyclic sequence of two patterned lines whose separation from each other varies in a consistent manner across the width of the servo track, with periodic gaps in the pattern to serve as a starting point for the pattern. Two exemplary patterns 200 and 300 from this patent are reproduced in FIG. 2 and FIG. 3. The time A between the detection of two dissimilar lines is compared to the time B between the detection of two similar lines. The value of A:B reveals how far off center the servo read head is at the time of reading, and thus the amount of correction necessary to properly locate the read head. Using this ratio rather than distances between symbols allows for the fact that the tape can be moving at different speeds. Thus, it is possible to maintain a position over a given band of data.
While the two patterns 200, 300 demonstrate the principles of timing-based servo patterns, it has been found that single comparisons of A and B are not enough for accurate measurements. Therefore, nested patterns, such as pattern 400 shown in
To provide the high accuracy necessary, the tape is recorded on a special servo-track machine. The first portion of the recording head contains an erase head, which erases the entire width of the tape, followed by a single-coil, multi-gap write element, capable of writing all servo tracks on a tape in one pass. Unlike normal data write elements, which are continuously powered and switch from one polarity to the opposite polarity repeatedly, the servo write element is switched on and off and normally writes in only one polarity. Additionally, the write element is patterned, so that each time it is powered, it produces an image on the tape of the patterned write element. By controlling the switching of the write element as the tape moves across the head, the pattern is repetitively written on each of the servo tracks. For a nested pattern, images of both the left and right component of a pattern are written simultaneously to maintain the accuracy.
Creation of the pattern shown in
In order for the timing based servo patterns to work properly, several factors that can adversely affect the outcome must be taken into account. First, the servo read elements must be much narrower than the servo track, so that each servo read element detects only a narrow width of the pattern created. This serves to minimize tracking errors due to false position signals. Secondly, all of the pattern lines are written using a uni-polar write current and the timing is measured only between magnetic flux transitions having the same polarity (e.g., always timing the transition at the beginning of a line). Variations in the write head or the writing process, as well as other difficulties can cause apparent shifts in the timing of transitions having opposite polarities, so opposite transitions are never compared.
In order to position the read head 112 of
Within the servo tracks, additional information, such as the longitudinal location, can be encoded by varying specific portions of the pattern, such as the distance between successive groupings of the pattern. Because servo tracks are typically recorded at a much lower density than the data tracks, they can be read at high speeds. This ability to read longitudinal data at high speeds makes searches much more efficient.
While the beauty of a timing-based servo system lies in the fact that it utilizes comparisons rather than individual symbols, this very concept also confines it. Since meaning is only carried in comparative relationships, the density of information is necessarily low. It would be desirable to carry additional information in the timing pattern without destroying the timing pattern itself.
One solution that has been disclosed is U.S. Pat. No. 6,169,640. This patent discloses using, for example, four servo tracks on which the timing patterns are identical, but not synchronized with each other. Rather, as seen in
Rather than the simple nested patterns currently used, the present invention adds additional symbols to the pattern of at least some of the tracks written by the servo write element. The patterns still contain only the two azimuthally inclined symbols of the prior art, but the servo patterns created are no longer symmetrical. The lack of symmetry means that not all symbols in the pattern will be used for timing purposes; however, they can be used to identify the servo track, and hence the data bands between the servo tracks. In a preferred embodiment, spaces between the symbols separate the symbols into groups, the number of symbols in each group defines the coding for the tracks.
The novel features believed characteristic of the invention are set forth in the appended claims. The invention itself, however, as well as a preferred mode of use, further objectives and advantages thereof, will best be understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings, wherein:
In the following discussion of the servo patterns, a grid is shown above many of the patterns to mark positions along the tape. These grids are, of course, not present on the tape, but are shown for ease of understanding only.
In
In
An alternate embodiment of the servo track coding is shown in
In a further alternate embodiment, the coding of a track lies not in the number of symbols in each group, but in how closely the transitions are spaced.
In
The simple innovation disclosed in this application provides the possibility of increasing the efficiency of information stored in the servo tracks by allowing the track identification to be stored in additional data other than the timing portion.
The description of the present invention has been presented for purposes of illustration and description, and is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art. The embodiments were chosen and described in order to best explain the principles of the invention, the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.
For instance, while tapes were disclosed having only specific combinations of two different servo patterns, any number or combination of servo patterns can be utilized.
Additionally, the use of patterned write heads has been disclosed for writing the servo patterns, but other methods can be devised that do not require the write heads to be patterned.
It is further noted that servo tracks can also be referred to as servo bands; the meaning is the same.
Number | Name | Date | Kind |
---|---|---|---|
4858039 | Mintzlaff | Aug 1989 | A |
5229895 | Schwarz et al. | Jul 1993 | A |
5262908 | Iwamatsu et al. | Nov 1993 | A |
5426538 | Kanota et al. | Jun 1995 | A |
5596457 | Kanota et al. | Jan 1997 | A |
5602703 | Moore et al. | Feb 1997 | A |
5949597 | Pahr | Sep 1999 | A |
5973868 | Kanota et al. | Oct 1999 | A |
6018429 | Mantey et al. | Jan 2000 | A |
6021013 | Albrecht et al. | Feb 2000 | A |
6031673 | Fasen et al. | Feb 2000 | A |
6134070 | Tran et al. | Oct 2000 | A |
6169640 | Fasen | Jan 2001 | B1 |
6172837 | Fasen | Jan 2001 | B1 |
6411460 | Fasen | Jun 2002 | B1 |
20030099059 | Nakao | May 2003 | A1 |
20030123181 | Hennecken et al. | Jul 2003 | A1 |
20030151844 | Eaton et al. | Aug 2003 | A1 |
Number | Date | Country |
---|---|---|
0 940 812 | Sep 1999 | EP |
Number | Date | Country | |
---|---|---|---|
20040032685 A1 | Feb 2004 | US |