This application claims priority from and the benefit under 35 U.S.C. §119(a) of Korean Patent Application Number 10-2014-0150889 filed on Nov. 3, 2014, which is hereby incorporated by reference for all purposes as if fully set forth herein.
1. Related Field
The present disclosure relates to a timing controller, a display device, and a method of driving the same.
2. Description of Related Art
In response to the development of the information society, there has been increasing demand for various types of display devices able to display images. Various display devices, such as liquid crystal display (LCD) devices, plasma display panels (PDPs), and organic light-emitting diode (OLED) display devices, are in common use.
On a display panel, an image unit having a size greater than a single pixel may be formed by defective pixels having vague boundaries, or a Mura (also referred to as a stain) may be formed due to non-uniform screen characteristics. Therefore, image control technology for compensating for such a stain through data compensation or the like has been proposed.
As another example of image control technology, dithering control technology for expressing a greater number of grayscale levels than the number of grayscale levels able to be expressed by a source driver integrated circuit (IC) has been proposed.
When such image control technologies, including the image control technology for compensating for a stain and the dithering control technology, are applied, an unexpected dark defect may be formed on the display panel.
Such an unexpected dark defect may occur, even if no defects typically causing a dark defect are present on the display panel.
A timing controller, a display device, and a method of driving the same able to prevent a dark defect that would otherwise be formed when two or more image control methods are applied are disclosed.
One or more embodiments relate to a timing controller, a display device, and a method of driving the same able to prevent a dark defect due to pixel failure that would otherwise accidently occur when a stain compensation control operation and a dithering control operation are performed in a combined manner.
One or more embodiments relates to a timing controller, a display device, and a method of driving the same able to prevent a dark defect due to pixel failure that would otherwise accidently occur when a stain compensation control operation, a dithering control operation, and a threshold voltage compensation control operation are performed in a combined manner.
In one aspect, a timing controller includes: first compensation controller configured to generate first compensated image data by adding a first compensation value to image data; and a variable dithering controller. The variable dithering controller is configured to output the first compensated image data responsive to the first compensated image data being equal to or smaller than a maximum grayscale level, and configured to generate modified first compensated image data by modifying the first compensated image data such that the modified first compensated image data is equal to or smaller than the maximum grayscale level responsive to the first compensated image data being greater than the maximum grayscale level.
In one aspect, a method of driving a display device includes: generating first compensated image data by adding a first compensation value to image data; outputting the first compensated image data responsive to the first compensated image data being smaller than or equal to a maximum grayscale level; and generating modified first compensated image data by modifying the first compensated image data such that the modified first compensated image data is equal to or smaller than the maximum grayscale level responsive to the first compensated image data being greater than the maximum grayscale level.
In one aspect, a display device includes: a display panel including data lines, gate lines, and a matrix of subpixels disposed thereon; a timing controller configured to output image data by modifying the image data based on a piece of variable dithering control data among a plurality of pieces of variable dithering control data variously defining compensation values about grayscale levels; and a data driver electrically connected to the timing controller and the data lines, the data driver configured to receive the modified image data, convert the received image data to data voltages, and output the data voltages to the data lines.
In one aspect, a display device includes: a display panel including data lines, gate lines, a matrix of subpixels disposed thereon; a timing controller configured to output image data by compensating for the image data; and a data driver electrically connected to the timing controller and the data lines, the data driver configured to convert image data output by the timing controller into data voltages and to output the data voltages to the data lines. Subpixels to which the data voltages are applied form no dark defect when the image data correspond to a maximum grayscale level.
According to present embodiments, it is possible to provide the timing controller, the display device, and the method of driving the same able to prevent a dark defect that would otherwise occur when two or more image control technologies are applied.
In addition, according to present embodiments, it is possible to provide the timing controller, the display device, and the method of driving the same able to prevent a dark defect due to unexpected pixel failure when the stain compensation control operation and the dithering control operation are performed in a combined manner.
Furthermore, according to present embodiments, it is possible to provide the timing controller, the display device 100, and the method of driving the same able to prevent a dark defect due to unexpected pixel failure when the stain compensation control operation, the dithering control operation, and the threshold voltage compensation control operation are performed in a combined manner.
The above and other objects, features and advantages of various embodiments disclosed herein will be more clearly understood from the following detailed description when taken in conjunction with the accompanying drawings, in which:
Reference will now be made in detail to various embodiments, examples of which are illustrated in the accompanying drawings. Throughout this document, reference should be made to the drawings, in which the same reference numerals and signs will be used to designate the same or like components. In the following description of the present embodiments, detailed descriptions of known functions and components incorporated herein will be omitted in the case that the subject matter of the embodiments disclosed herein may be rendered unclear thereby.
It will also be understood that, although terms such as “first,” “second,” “A,” “B,” “(a)” and “(b)” may be used herein to describe various elements, such terms are only used to distinguish one element from another element. The substance, sequence, order or number of these elements is not limited by these terms. It will be understood that when an element is referred to as being “connected to” or “coupled to” another element, not only can it be “directly connected” or “coupled to” the other element, but it can also be “indirectly connected or coupled to” the other element via an “intervening” element. In the same context, it will be understood that when an element is referred to as being formed “on” or “under” another element, not only can it be directly formed on or under another element, but it can also be indirectly formed on or under another element via an intervening element.
Referring to
On the display panel 110, a plurality of data lines DL are disposed in a first direction, a plurality of gate lines GL are disposed in a second direction intersecting the first direction, and a plurality of subpixels SP are arranged in a matrix. The data driver 120 drives the plurality of data lines DL by supplying data voltages thereto. The gate driver 130 sequentially drives the plurality of gate lines GL by sequentially supplying a scanning signal to the plurality of gate lines. The timing controller 140 controls the data driver 120 and the gate driver 130 by supplying control signals to the data driver 120 and the gate driver 130.
The timing controller 140 starts scanning operation at a corresponding time for each frame, outputs converted image data Data′ by converting image data Data input from a host system 160 into a data signal format used by the data driver 120, and regulates data processing at a suitable point in time in response to the scanning.
The gate driver 130 sequentially drives the plurality of gate lines by sequentially supplying the scanning signal having an on or off voltage to the plurality of gate lines under the control of the timing controller 140.
The gate driver 130 may be positioned on one side of the display panel 110, as illustrated in
In addition, the gate driver 130 includes a plurality of gate driver ICs GDIC #1, GDIC #2, . . . , and GDIC #N (where N is a natural number equal to or greater than 1). Each of the plurality of gate driver ICs GDIC #1 to GDIC #N may be connected to the bonding pads of the display panel 110 by tape-automated bonding (TAB) or chip-on-glass (COG) bonding, may be implemented as a gate-in-panel (GIP)-type IC directly disposed on the display panel 110, or in some cases, may be integrated with the display panel 110, forming a portion of the display panel 110.
Each of the above-mentioned gate driver ICs GDIC #1 to GDIC #N includes a shift resistor, a level shifter, and the like.
When a specific gate line is opened, the data driver 120 drives the data lines by converting image data Data′ received from the timing controller 140 into analog data voltages Vdata and supplying the analog data voltages Vdata to the data lines.
The data driver 120 includes a plurality of source driver ICs (also referred to as data driver ICs) SDIC #1, SDIC #2, . . . , and SDIC #M (where M is a natural number equal to or greater than 1). Each of the plurality of source driver ICs SDIC #1 to SDIC #M may be connected to the bonding pads of the display panel 110 by tape-automated bonding (TAB) or chip-on-glass (COG) bonding, may be directly disposed on the display panel 110, or in some cases, may be integrated with the display panel 110, forming a portion of the display panel 110.
Each of the above-mentioned source driver ICs SDIC #1 to SDIC #M includes a shift resistor, a latch, a digital-to-analog converter (DAC), an output buffer, and the like. In some cases, each source driver IC may include an analog-to-digital converter (ADC) for subpixel compensation. The ADC senses an analog voltage value, converts the sensed analog voltage value to a digital value, and generates and outputs sensed data.
The plurality of source driver ICs SDIC #1 to SDIC #M are formed using a chip-on-film (COF) method. In each of the plurality of source driver ICs SDIC #1 to SDIC #M, one end is bonded to at least one source printed circuit board (SPCB), and the other end is bonded to the display panel 110.
The above-mentioned host system transmits a variety of timing signals including a vertical synchronization signal Vsync, a horizontal synchronization signal Hsync, an input data enable (DE) signal, and a clock (CLK) signal together with the image data Data of an input image to the timing controller 140.
The timing controller 140 converts image data Data input from the host system 160 into a data signal format used in the data driver 120 and outputs converted image data Data′. In addition, the timing controller 140 receives timing signals, including a vertical synchronization signal Vsync, a horizontal synchronization signal Hsync, an input DE signal, and a clock signal, generates a variety of control signals based on the input timing signals, and outputs the variety of control signals to the data driver 120 and the gate driver 130 in order to control the data driver 120 and the gate driver 130.
For example, the timing controller 140 outputs a variety of gate control signals (GCSs) including a gate start pulse (GSP), a gate shift clock (GSC) signal, and a gate output enable (GOE) signal in order to control the gate driver 130. The GSP controls the operation start timing of the gate driver ICs GDIC #1 to GDIC #N of the gate driver 130. The GSC signal is a clock signal commonly input to the gate driver ICs GDIC #1 to GDIC #N to control the shift timing of a scanning signal (gate pulse). The GOE signal designates the timing information of the gate driver ICs GDIC #1 to GDIC #N.
The timing controller 140 outputs a variety of data control signals (DCSs) including a source start pulse (SSP), a source sampling clock (SSC) signal, and a source output enable (SOE) signal in order to control the data driver 120. The SSP controls the data sampling start timing of the source driver ICs SDIC #1 to SDIC #M of the data driver 120. The SSC signal is a clock signal to control the data sampling timing of each of the source driver ICs SDIC #1 to SDIC #M. The SOE signal controls the output timing of the data driver 120. In some cases, the DCSs may further include a polarity (POL) control signal in order to control the polarity of the data voltages of the data driver 120. The SSP and SSC signals may be omitted when image data Data′ input into the data driver 120 is transmitted, based on the mini-low voltage differential signaling (m-LVDS) interface specification.
Referring to
The power controller 150 is also referred to as a power management IC (PMIC).
The display device 100 simplified in
Circuit elements, such as a transistor, a capacitor, and the like, are disposed on each of the subpixels SP formed on the display panel 110. For example, when the display panel 110 is an OLED display panel, a circuit including an OLED, two or more transistors, and one or more capacitor is disposed on each of the subpixels.
Referring to
Referring to
Referring to
Referring to
Referring to
For example, when each of the plurality of source driver ICs SDIC #1 to SDIC #M can generate eight voltage levels by receiving 3-bit image data, the dithering control may be a control method to express 32 grayscale levels instead of 8 grayscale levels.
For example, when four subpixels are assumed to be a single unit, five grayscale levels can be expressed in a single unit by varying the number of the subpixels to which a high-grayscale level data voltage is applied (hatched subpixels), i.e., the number of the subpixels to which the high-grayscale level data voltage is applied may be 0, 1, 2, 3, or 4.
Referring to
Referring to
Referring to
In one embodiment, the image data added to the first compensation value may be white, red, green, and blue (WRGB) data generated by the timing controller 140 by converting red, green, and blue (RGB) data input from the host system 160.
Referring to
Referring to
When the first compensated image data is generated by adding the first compensation value, a specific value other than 0, to the image data corresponding to the maximum grayscale level, the first compensated image data is greater than the maximum grayscale level.
Referring to the example illustrated in
However, referring to the example illustrated in
When the overflow greater than the maximum grayscale level occurs, the corresponding subpixel may appear to have the same appearance as a dark defect. This phenomenon is referred to as “pixel failure.”
Referring to
As illustrated in
Therefore, the present embodiments allow a variable dithering control (VDC) method in order to prevent pixel failure that would otherwise occur during the first compensation control operation and the dithering control operation.
Hereinafter, the VDC method will be described in detail with reference to
Referring to
Referring to
Referring to
The VDC operation as above can prevent an image from being represented as the first compensated image data exceeding the maximum grayscale level, thereby preventing pixel failure.
According to the above-described features, the display device 100 according to the present embodiments includes the display panel 110 on which the data lines and the gate lines are disposed and the subpixels are arranged in a matrix, the timing controller 140 outputs image data by compensating the image data, and the data driver 120 electrically connected to the timing controller 140 and the data lines. The data driver 120 converts the image data output from the timing controller 140 to data voltages and the outputs the data voltages to the data lines. Here, dark defects due to overflow in the compensation can be eschewed.
In an image control system for performing dithering by adding image data and first compensation values, the above-described VDC operation can prevent a subpixel from having the appearance of a dark defect due to pixel failure formed in the subpixel even in the case in which image data (WRGB data) corresponds to the maximum grayscale level (e.g. 255 gray level in an 8-bit image signal).
The first compensation value as mentioned above is a stain compensation value, which may be an image data compensation value in a first grayscale level area, previously determined as a grayscale level area in which stains will be mainly formed.
Since the first compensation value is defined as the image data compensation value in the first grayscale level area previously determined as the grayscale level area in which stains will be mainly formed, it is possible to compensate for stains.
In addition, the image data as mentioned above may be RGB data input to the timing controller 140 from the host system 160 or WRGB data converted from the RGB data by the timing controller 140.
With the above-described features, the VDC operation according to the present embodiments can be applied to any case in which the display panel 110 has an RGB subpixel structure or in which the display panel 110 has an WRGB subpixel structure.
Referring to
Thus, the display device 100 according to the present embodiments further includes a memory 830, as illustrated in
The memory 830 may be disposed within the timing controller 140, as illustrated in
The graph data regarding the plurality of interpolation graphs IG #1 to IG #6 are referred to as a plurality of pieces of VDC data.
Referring to
Referring to
Referring to
Since the gradients of the plurality of interpolation graphs IG #1 to IG #6 have different gradients in the specific range of grayscale levels as described above, interpolation is possible in the specific range of grayscale levels, i.e., the maximum grayscale level and a range of grayscale levels close to the maximum grayscale level.
Referring to
As described above, the variable dithering controller 820 can output the modified first compensated image data free from pixel failure by effectively modifying the first compensated image data determined to be vulnerable to pixel failure.
Referring to
As described above, when the amount by which the first compensated image data is greater than the maximum grayscale level increases, i.e., when the first compensated image data is greater than the maximum grayscale level by a greater amount, it is possible to determine the modified first compensation value from the interpolation graph having a steeper gradient, thereby adaptively preventing an overflow.
As described above, the display device 100 according to the present embodiments includes the display panel 110, the timing controller 140, and the data driver 120. Specifically, on the display panel 110, the data lines and the gate lines are disposed and the subpixels are arranged in a matrix. The timing controller 140 modifies image data based on an interpolation graph among a plurality of pieces of VDC data (interpolation graphs), which variously define compensation values about grayscale levels, and outputs the modified image data. The data driver 120 is electrically connected to the timing controller 140 and the data lines. The data driver 120 converts the modified image data, received from the timing controller 140, into data voltages and subsequently outputs the data voltages to the data lines.
It is possible to represent an image by modifying image data through the above-described VDC operation, thereby improving image quality.
Hereinafter, the VDC method, which has been described with reference to
In
Referring to
Referring to
Since 256 gray level, the grayscale level of the first compensated image data, is greater than 255 gray level, the maximum grayscale level, the variable dithering controller 820 determines a modified first compensation value by selecting an interpolation graph among the plurality of interpolation graphs IG #1 to IG #6, saved in the memory 830. The modified first compensation value is added to 255 gray level, corresponding to the grayscale level of the image data, to produce a value equal to or smaller than 255 gray level, the maximum grayscale level.
Here, it is assumed that IG #5 is selected among the six interpolation graphs IG #1 to IG #6 illustrated in
Referring to
In IG #5 of
The variable dithering controller 820 sends the determined first compensation value 0 to the first compensation controller 810.
The first compensation controller 810 generates and outputs modified first compensated image data having “255 gray level” by adding the first compensation value “0”, received from the first compensation controller 810, to 255 gray level, the grayscale level of the image data.
Then, the variable dithering controller 820 outputs the modified first compensated image data by checking that 255 gray level, the grayscale level of the modified first compensated image data, is equal to or smaller than the maximum grayscale level (255 gray level).
After the first compensation value is determined to be 0, the variable dithering controller 820 may not send the determined first compensation value to the first compensation controller 810, but may generate the modified first compensated image data by itself.
When the image is represented using the modified first compensated image data output by the variable dithering controller 820, the area appearing to be a dark defect due to pixel failure, as illustrated in
Hence, the VDC operation disclosed herein can prevent pixel failure.
Referring to
The second compensation control operation is an image control technology able to compensate for the difference in the luminance between subpixels. Specifically, the second compensation control operation includes sensing the threshold voltages Vth of transistors in the subpixels and compensating for the difference in the threshold voltage between the transistors in the subpixels.
The second compensation control operation includes an operation of sensing the voltage of a sensing node in each of the subpixels in order to sense the threshold voltage of the transistor of each of the subpixels and an operation of compensating for the difference in the threshold voltage between the transistors in the subpixels.
Referring to
Referring to
Referring to
Referring to
The timing controller 140 generates second compensated image data Data′ by adding the determined data compensation amount ΔData to corresponding image data Data, and transmits the second compensated image data Data′ to a corresponding source driver IC SDIC #K, where K=1, 2, . . . , or M.
The corresponding source driver IC SDIC #K converts the second compensated image data Data′ to a data voltage using a DAC disposed therein and subsequently outputs the data voltage to a corresponding data line DLi. In this manner, second compensation is performed.
Reference will be made to
Referring to
Referring to
The gate node of the first transistor T1 receives a scanning signal through a first gate line GLj. A drain node or a source node of the first transistor T1 receives the data voltage Vdata through the data line DLi. The source node or the drain node of the first transistor T1 is electrically connected to the first node N1 of the driving transistor DRT.
When the first transistor T1 is turned on in response to the scanning signal, the first transistor T1 applies the data voltage Vdata supplied to the drain node or the source node thereof to the first node N1 of the driving transistor DRT electrically connected to the source node or the drain node thereof.
Referring to
The gate node of the second transistor T2 receives a sensing signal, a type of scanning signal, through a second gate line GLj′. The drain node or the source node of the second transistor T2 receives the reference voltage Vref through the reference voltage line RVL. The source node or the drain node of the second transistor T2 is electrically connected to the second node N2 of the driving transistor DRT.
Referring to
The 3T1C subpixel structure illustrated in
Referring to
Consequently, the timing controller 140 determines the data compensation amount ΔData by performing a compensation process using the received sensed data Dsen.
The timing controller 140 modifies the image data Data, WRGB data produced by converting RGB data input from an external source, based on the data compensation amount ΔData, and transmits modified second compensated image data Data′ to the corresponding source driver IC SDIC #K, where K=1, 2, . . . , or M.
Consequently, the corresponding source driver IC SDIC #K converts the second compensated image data Data′ to a data voltage Vdata and subsequently supplies the data voltage Vdata to the corresponding data line DLi.
As illustrated in
As described above, the 3T1C subpixel structure according to the present disclosure can reduce the sensing time by accelerating the voltage saturation rate of a sensing node SN, the second node N2 of the driving transistor DRT, by adjusting the data voltage and/or the driving voltage.
Referring to
For the period of the sensing operation, the switch SW is turned on at an initial point in time of the sensing operation to apply the reference voltage Vref to the second node N2 of the driving transistor DRT. After the voltage is saturated due to the floating of the second node N2 of the driving transistor DRT, the switch SW is turned off, connecting the reference voltage line RVL to the ADC at a point in time to sense the voltage of the second node N2 of the driving transistor DRT.
Alternatively, the floating of the second node N2 of the driving transistor DRT may be enabled in response to the second transistor T2 being turned off.
In addition, the floating of the second node N2 of the driving transistor DRT may not be realized by two operations, i.e., on and off operations. The floating of the second node N2 of the driving transistor DRT may be realized by the following three switching operations: a switching operation of connecting the reference voltage supply node to the reference voltage line RVL; a switching operation of connecting the ADC and the reference voltage line RVL; and a switching operation of disconnecting both the reference voltage supply node and the ADC from the reference voltage line RVL.
The timing of the switching operation of the switch SW may be controlled by a control signal output by the timing controller 140.
Through the above-described switch SW, it is possible to apply a voltage to the second node N2 of the driving transistor DRT or sense a voltage thereon at an intended point in time according to the sensing operation.
In
Referring to
The second compensation controller 1400 outputs second compensated image data by modifying first compensated image data or modified first compensated image data output by the variable dithering controller 820, based on a second compensation value. The second compensation value is a data compensation amount ΔData determined (or calculated) based on sensed data Dsen obtained by sensing a threshold voltage of a driving transistor.
The above-mentioned second compensation value may be an image data compensation value ΔData with which the difference in the threshold voltage between transistors in subpixels of the display panel 110 is compensated.
As described above, the timing controller 140 can provide not only the first compensation control operation and the VDC operation corresponding to stain compensation control, but also the second compensation control operation corresponding to threshold voltage compensation control.
The above-mentioned second compensation value may be an image data compensation value ΔData with which variations in the threshold voltage of transistors in subpixels of the display panel 110 are compensated.
Referring to
As described above, even if the possibility of an overflow is removed through the VDC operation in order to prevent pixel failure, the possibility of the overflow may occur again due to the second compensation control operation. In this case, it is possible to remove the possibility of the overflow by performing the VDC operation again for the second compensated image data corresponding to the result of the second compensation control operation.
In
Referring to
Referring to
Since the 256 gray level, the grayscale level of the first compensated image data, is greater than 255 gray level, the maximum grayscale level, the variable dithering controller 820 selects an interpolation graph among the plurality of interpolation graphs IG #1 to IG #6 saved in the memory 830 and determines a modified first compensation value. A valve equal to or smaller than 255 gray level, the maximum grayscale level, is formed by adding the modified first compensation value to 255 gray level corresponding to the grayscale level of the image data.
Here, it is assumed that the interpolation graph IG #5 is selected among six interpolation graphs IG #1 to IG #6 illustrated in
Referring to
Referring to the interpolation graph IG #5 in
The variable dithering controller 820 sends the determined first compensation value 0 to the first compensation controller 810.
The first compensation controller 810 generates and outputs modified first compensated image data having 255 gray level by adding 0, the received first compensation value, to 255 gray level, the grayscale level of the image data.
Then, the variable dithering controller 820 outputs the modified first compensated image data by checking that 255 gray level, the grayscale level of the modified first compensated image data, is equal to or smaller than the maximum grayscale level (255 gray).
After the first compensation value is determined to be 0, the variable dithering controller 820 may not send the determined first compensation value to the first compensation controller 810, but may generate the modified first compensated image data by itself.
Afterwards, the second compensation controller 1400 receives the modified first compensated image data output from the variable dithering controller 820, and performs the second compensation control operation. Here, the second compensation value, the image data compensation amount ΔData, is assumed to be a value corresponding to 1 gray level.
Then, the second compensation controller 1400 outputs second compensation image data corresponding to 256 gray level to the variable dithering controller 820 by adding the second compensation value to the input first compensated image data (255 gray level+1 gray level).
Since the second compensated image data output from the second compensation controller 1400 corresponds to 256 gray level, the second compensated image data will cause an overflow when transferred to the corresponding source driver IC in this state. Then, the overflow may cause pixel failure.
To prevent such overflow, the variable dithering controller 820 modifies (compensates for) the second compensation image data output from the second compensation controller 1400 through VDC operation.
Specifically, when the grayscale level of the second compensated image data input from the second compensation controller 1400 is equal to or smaller than the maximum grayscale level, the variable dithering controller 820 outputs the second compensated image data as it is to the corresponding source driver IC. When the grayscale level of the second compensated image data input from the second compensation controller 1400 is greater than the maximum grayscale level, the variable dithering controller 820 outputs modified second compensated image data to the corresponding source driver IC by performing interpolation such that the grayscale level of the modified second compensated image data is equal to or smaller than the maximum grayscale level.
The variable dithering controller 820 may modify the second compensated image data to the modified second compensated image data by referring to an interpolation graph selected among the plurality of interpolation graphs IG #1 to IG #6 saved in the memory 830, in the same manner as when modifying the first compensated image data to the modified first compensated image data.
When the image is represented using the modified second compensated image data output by the variable dithering controller 820, the area appearing to be a dark defect due to pixel failure, as illustrated in
Hence, the VDC operation can prevent pixel failure.
Hereinafter, a method of driving the above-described OLED display device 100 will be described.
Referring to
The driving method as described above can be performed by the timing controller 140.
Through the above-described VDC operation, it is possible to prevent an image to be represented as first compensated image data exceeding the maximum grayscale level, thereby preventing pixel failure.
As described above, the present embodiments provide the timing controller 140, the display device 100, and the method of driving the same able to prevent a dark defect that would otherwise occur when two or more image control technologies are applied.
In addition, according to the present embodiments, it is possible to provide the timing controller 140, the display device 100, and the method of driving the same able to prevent a dark defect due to unexpected pixel failure when the stain compensation control operation and the dithering control operation are performed in a combined manner.
Furthermore, according to the present embodiments, it is possible to provide the timing controller 140, the display device 100, and the method of driving the same able to prevent a dark defect due to unexpected pixel failure when the stain compensation control operation, the dithering control operation, and the threshold voltage compensation control operation are performed in a combined manner.
The foregoing descriptions and the accompanying drawings have been presented in order to explain the certain principles of the present invention. A person skilled in the art to which the invention relates can make many modifications and variations by combining, dividing, substituting for, or changing the elements without departing from the principle of the invention. The foregoing embodiments disclosed herein shall be interpreted as illustrative only but not as limitative of the principle and scope of the invention. It should be understood that the scope of the invention shall be defined by the appended Claims and all of their equivalents fall within the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
10-2014-0150889 | Nov 2014 | KR | national |