The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
The pixel level multiplexing display panel of
The main scan driving timing of the panel is shown in
First, referring to
The first memory space 701, second memory space 702, third memory space 703 and fourth memory space 704 of the odd-field memory block 70 are used to store the odd-field field data (data of the first pixel) of the (4X+1)th, (4X+2)th, (4X+3)th and (4X+4)th lines respectively. The first memory space 711, second memory space 712, third memory space 713 and fourth memory space 714 of the even-field memory block 71 are used to store the even-field field data (data of the second pixel) of the (4X+1)th, (4X+2)th, (4X+3)th and (4X+4)th lines respectively, wherein X represents a natural number being larger than 0.
Next, in the next time period, the memory controller 402 controls the memory 401 to output the even-field field data 1-E of the first scan line; next, the memory controller 402 controls the memory 401 to output the even-field field data 2-E of the second scan line, and controls the memory to receive the data 3-O and 3-E of the third scan line and then store the data 3-O and 3-E of the scan line to the third memory space 703 of the odd-field memory block 70 and the third memory space 713 of the even-field memory block 71 respectively(as shown in
The following steps may be derived from the above by analogy. The memory 402 outputs 2-O and 4-E, inputs 5-O and 5-E (as shown in FIG. 8D)→the memory 402 outputs 3-O and 5-E, inputs 6-O and 6-E (as shown in FIG. 8E)→the memory 402 outputs 4-O and 6-E, inputs 7-O and 7-E (as shown in FIG. 8F)→the memory 402 outputs 5-O and 7-E, inputs 8-O and 8-E, and so forth.
The operation of the panel data processing part 41 has been illustrated above, and then, referring to
A common scan driving circuit is used not only to receive the start pulses GSP and then output and enable them one by one, but also to receive a gate output enable signal (Gate Output Enable, GOE), so as to control its output state. The first gate output enable signal GOE1 is used to control the 1st, 4th, 7th, . . . (3K+1)th output signals of the scan driving circuit, the second gate output enable signal GOE2 is used to control the 2nd, 5th, 8th . . . (3K+2)th output signals of the scan driving circuit, and the third gate output enable signal GOE3 is used to control the 3rd, 6th, 9th . . . (3K+3)th output signals of the scan driving circuit, wherein K represents a natural number being larger than 0. In this embodiment, when the scan control signal is active (e.g., in a logic high level in this embodiment), the output of the corresponding scan driving circuit is in a disable state, and when the scan control signal is inactive (e.g., in a logic low level in this embodiment), the corresponding scan driving circuit outputs the corresponding scan signal according to the start pulse GSP and the clock signal CLK, so as to control the panel.
It can be seen that since the time length of the start pulse GSP is 3 times of a period of the gate clock GCK, originally the scan signal G-1 on the first gate line should output a logic high level with a length of 3 times of a period of the gate clock GCK at the time period T01. As the first gate output enable signal GOE1 is in an active state, the scan signal G-1 on the first gate line remains in a logic low level. Next, at the time period T03, the second gate output enable signal GOE2 is in an active state, such that the scan signal G-2 on the second gate line remains in a logic low level. At the time period T04, the first gate output enable signal GOE1 and the second gate output enable signal GOE2 both turn to be in an inactive state from the active state simultaneously, such that the scan signal G-1 on the first gate line and the scan signal G-2 on the second gate line are both in the logic high level. At this point, the timing controller outputs the even-field field data 1-E of the first scan line.
Then, all of the gate output enable signals GOE1-GOE3 are divided into six periods T11-T16, and the six periods T11-T16 are used to perform cycling operation until completing the scanning process. During the first period T11, the gate output enable signal GOE1 is active, and the other two GOE2, GOE3 are inactive, and at this point, the scan signals G-2 and G-3 on the second and third scan lines are both in a logic high level, thus, the timing controller outputs the even-field field data 2-E of the second scan line. During the second period T12, the gate output enable signals GOE1 and GOE3 are active, and GOE2 is inactive, and at this point, only the scan signal G-2 on the second scan line is in a logic high level, thus, the timing controller outputs the odd-field field data 1-O of the first scan line.
During the third period T13, the gate output enable signal GOE2 is active, the other two GOE1, GOE3 are inactive, and at this point, the scan signals G-3 and G-4 on the third and fourth scan lines are both in a logic high level, thus, the timing controller outputs the even-field field data 3-E of the third scan line. During the fourth period T14, the gate output enable signals GOE1 and GOE2 are active, and GOE3 is inactive, and at this point, only the scan signal G-3 on the third scan line is in a logic high level, thus, the timing controller outputs the odd-field field data 2-O of the second scan line.
During the fifth period T15, the gate output enable signal GOE3 is active, and the other two GOE1, GOE2 are inactive, and at this point, the scan signals G-4 and G-5 on the fourth and fifth scan lines are both in a logic high level, thus the timing controller outputs the even-field field data 4-E of the fourth scan line. During the sixth period T16, the gate output enable signals GOE2 and GOE3 are active, and GOE1 is inactive, and at this point, only the scan signal G-4 on the fourth scan line is in a logic high level, thus, the timing controller outputs the odd-field field data 3-O of the third scan line. Next, cyclic operations are conducted as shown in
The above embodiment of the scan control signal generator 405 is one of the implementation methods of the present invention, and the present invention may still be implemented through the method shown in
During the first period T11, the gate output enable signal GOE1 is active, and the other two gate output enable signals GOE2, GOE3 are inactive, and at this point, both the scan signals G-2 and G-3 on the second and third scan lines are in a logic high level, thus, the timing controller outputs the even-field field data 2-E of the second scan line. During the third period T13, the gate output enable signals GOE1 and GOE3 are active, and GOE2 is inactive, and at this point, only the scan signal G-2 on the second scan line is in a logic high level, thus, the timing controller outputs the odd-field field data 1-O of the first scan line. A second period T12 of a preset time interval is added between the first period T11 and the third period T13, and during the second period T12, the gate output enable signals GOE1 and GOE2 are active, and GOE3 is inactive, thus, the timing controller does not output any data. The second period T12 is used to avoid the overlapping of data, so as to perfect the displaying effect.
Then, during the fourth period T14, the gate output enable signal GOE2 is active, and the other two gate output enable signals GOE1, GOE3 are inactive, and at this point, both the scan signals G-3 and G-4 on the third and fourth scan lines are in a logic high level, thus, the timing controller outputs the even-field field data 3-E of the third scan line. During the sixth period T16, the gate output enable signals GOE1 and GOE2 are active, GOE3 is inactive, and at this point, only the scan signal G-3 on the third scan line is in a logic high level, thus, the timing controller outputs the odd-field field data 2-O of the second scan line. Similarly, a fifth period T15 of a preset time interval is added between the fourth period T14 and the sixth period T16, and during the fifth period T15, the gate output enable signals GOE2 and GOE3 are active, GOE1 is inactive, thus, the timing controller does not output any data.
During the seventh period T17, the gate output enable signal GOE3 is active, and the other two gate output enable signals GOE1, GOE2 are inactive, and at this point, both the scan signals G-4 and G-5 on the fourth and fifth scan lines are in a logic high level, thus, the timing controller outputs the even-field field data 4-E of the fourth scan line. During the ninth period T19, the gate output enable signals GOE2 and GOE3 are active, GOE1 is inactive, and at this point, only the scan signal G-4 on the fourth scan line is in a logic high level, thus, the timing controller outputs the odd-field field data 3-O of the third scan line. Similarly, an eighth period T18 of a preset time interval is added between the seventh period T17 and the ninth period T19, and during the eighth period T18, the gate output enable signals GOE2 and GOE3 are active, GOE1 is inactive, thus, the timing controller does not output any data.
To sum up, as a new pixel level multiplexing display panel is employed in the present invention, and a timing controller is used to control the pixel level multiplexing display panel, the timing controller drives the pixel level multiplexing display panel without changing the architectures of conventional gate and source driving circuits. Therefore, the present invention can eliminate the restrictions on circuit design and enhance the selectivity on the circuit design. Moreover, since the timing controller provided by the present invention can be implemented without changing the architectures of the conventional scan driver and data driver, the effect of saving the cost can be further achieved.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.
| Number | Date | Country | Kind |
|---|---|---|---|
| 95121378 | Jun 2006 | TW | national |