Tip turbine engine integral fan, combustor, and turbine case

Abstract
A tip turbine engine assembly includes an integral engine outer case located radially outward from a fan assembly. The integral outer case includes a rear portion and a forward portion with an arcuate portion that curves radially inwardly to form a compartment. An annular combustor is housed and mounted in the compartment. Fan inlet guide vanes are integrally formed with the arcuate portion to form the integral case portion. The rear portion, forward portion, and fan inlet guide vanes are integrally formed in a casting process.
Description
BACKGROUND OF THE INVENTION

The present invention relates to a tip turbine engine, and more particularly to an integral engine case surrounding the engine fan, combustor, and turbine.


An aircraft gas turbine engine of the conventional turbofan type generally includes a forward bypass fan and a low pressure compressor, a middle core engine including a combustor, and an aft low pressure turbine all located along a common longitudinal axis. Although highly efficient, conventional turbofan engines operate in a axial flow relationship. The axial flow relationship results in a relatively complicated elongated engine structure and therefore requires separate engine cases for the bypass fan, low pressure compressor, combustor, and low pressure turbine. Each engine case may further include several joints and structural attachments, often making assembly of the engine cases laborious and expensive.


A recent development in gas turbine engines is the more longitudinally compact tip turbine engine. Tip turbine engines locate an axial compressor forward of a bypass fan, which includes hollow fan blades that receive airflow from the axial compressor therethrough such that the hollow fan blades operate as a centrifugal compressor. Compressed core airflow from the hollow fan blades is mixed with fuel in an annular combustor located radially outward from the fan. The combustor ignites the fuel mixture to form a high energy gas stream which drives turbine blades that are integrated onto the tips of the hollow bypass fan blades for rotation therewith as disclosed in U.S. Patent Application Publication Nos.: 2003192303; 20030192304; and 20040025490. The tip turbine engine provides a thrust to weight ratio comparable to conventional turbofan engines of the same class within a package of significantly shorter longitudinal length.


Accordingly and because of the shorter longitudinal length of the tip turbine engine, it is desirable to eliminate the laborious and expensive assembly of several cases by providing an integrated one-piece engine case for the engine fan, combustor, and turbine.


SUMMARY OF THE INVENTION

The tip turbine engine assembly according to the present invention provides an engine outer case that includes an integral case portion that is radially outward from a fan and a combustor. The fan rotates in a fan plane and includes a core airflow passage therethrough. A diffuser section communicates core airflow from the core airflow passage to a combustor that is located axially forward of the fan and is not intersected by the fan plane. The integral case portion includes an inlet guide vane extending radially inwardly from the outer case. The inlet guide vane is integrally formed in a casting process with the integral case portion to form a unitary engine case.


The integral case portion may include a composite layer with woven Kevlar™ fiber reinforcement in a double wall construction with a metallic layer.


In another tip turbine engine assembly example, the integral case portion includes an integral fan case portion joined on a forward end with a fastener at a flange joint to an integral combustor case portion. The integral fan case portion is welded at a rear end portion to an exhaust case portion. The integral combustor case portion is welded to an integral inlet guide vane at a welded joint.


The present invention therefore eliminates assembly of several cases by providing an integrated engine case for the engine fan and combustor, and turbine.





BRIEF DESCRIPTION OF THE DRAWINGS

The various features and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the currently preferred embodiment. The drawings that accompany the detailed description can be briefly described as follows:



FIG. 1 is a partial sectional perspective view an exemplary tip turbine engine assembly of the present invention;



FIG. 2 is a cross-sectional view of the tip turbine engine of FIG. 1;



FIG. 3 is a cross-sectional view of a double wall construction of the engine of FIG. 1; and



FIG. 4 is a cross-sectional view of another embodiment of the tip turbine engine of the present invention, showing the integral case portion with several joined case portions.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT


FIG. 1 illustrates a partial sectional perspective view of a tip turbine engine (TTE) type gas turbine engine 6. The engine 6 includes an outer case 8 and a rotationally fixed static inner support structure 10. The outer case 8 includes an integral case portion 12 welded to an exhaust case portion 16 which includes an exhaust mixer 18 and a plurality of engine mounts 20. A plurality of fan inlet guide vanes 22 are integrally formed with the integral case portion 12 to form a unitary engine case. The integral case portion 12 and inlet guide vanes 22 are formed by casting, although other forming processes may be utilized. The inlet guide vanes 22 extend to the static inner support structure 10 and each inlet guide vane 22 preferably includes a variable trailing edge 22A. A plurality of exit guide vanes 24 extend radially inward from the exhaust case portion 16.


A nosecone 26 is preferably located along the engine centerline A to improve airflow into an axial compressor 28. The axial compressor 28 is mounted about the engine centerline A behind the nosecone 26.


A fan-turbine rotor assembly 30 is mounted for rotation in fan plane P (FIG. 2) about the engine centerline A aft of the axial compressor 28. The fan-turbine rotor assembly 30 includes a plurality of hollow fan blades 32 to provide internal, centrifugal compression of the compressed airflow from the axial compressor 28 for distribution to an annular combustor 34 located within the outer case 8.


A turbine 36 includes a plurality of tip turbine blades 38 (two stages shown) which rotatably drive the hollow fan blades 32 relative a plurality of tip turbine stators 40 which extend radially inward from the outer case 8. The annular combustor 34, which is in fluid communication with the turbine 36, is axially forward of the turbine 36 and is not intersected by the fan plane P. A barrier 39 separates the turbine 36 and tip turbine blades 38 from the hollow fan blades 32 such that compressed air passing through the hollow fan blades 32 does not impinge upon the tip turbine blades 38.


Referring to FIG. 2, the rotationally fixed static inner support structure 10 includes a splitter 42, a static inner support housing 44 and a static outer support housing 46 located coaxial to said engine centerline A.


The axial compressor 28 includes the axial compressor rotor 48, from which a plurality of compressor blades 50 extend radially outwardly, and a compressor case 52 fixedly mounted to the splitter 42. A plurality of compressor vanes 54 extend radially inwardly from the compressor case 52 between stages of the compressor blades 50. The compressor blades 50 and compressor vanes 54 are arranged circumferentially about the axial compressor rotor 48 in stages (three stages of compressor blades 50 and compressor vanes 54 are shown in this example). The axial compressor rotor 48 is mounted for rotation upon the static inner support housing 44 through a forward bearing assembly 68 and an aft bearing assembly 62.


The fan-turbine rotor assembly 30 includes a fan hub 64 that supports a plurality of the hollow fan blades 32. Each hollow fan blade 32 includes an inducer section 66, a hollow fan blade section 72 and a diffuser section 74. The inducer section 66 receives airflow from the axial compressor 28 generally parallel to the engine centerline A and turns the airflow from an axial airflow direction toward a radial airflow direction. The airflow is radially communicated through a core airflow passage 80 within the fan blade section 72 where the airflow is centrifugally compressed. From the core airflow passage 80, the diffuser section 74 turns the airflow toward an axial airflow direction toward the annular combustor 34. Preferably the airflow is diffused axially forward in the engine 6, however, the airflow may alternatively be communicated in another direction.


A gearbox assembly 90 aft of the fan-turbine rotor assembly 30 provides a speed increase between the fan-turbine rotor assembly 30 and the axial compressor 28. The gearbox assembly 90 is mounted for rotation between the static inner support housing 44 and the static outer support housing 46. The gearbox assembly 90 includes a sun gear shaft 92 which rotates with the axial compressor 28 and a planet carrier 94 which rotates with the fan-turbine rotor assembly 30 to provide a speed differential therebetween. The gearbox assembly 90 is preferably a planetary gearbox that provides co-rotating or counter-rotating rotational engagement between the fan-turbine rotor assembly 30 and an axial compressor rotor 48. The gearbox assembly 90 is mounted for rotation between the sun gear shaft 92 and the static outer support housing 46 through a forward bearing 96 and a rear bearing 98. The forward bearing 96 and the rear bearing 98 are both tapered roller bearings and both handle radial loads. The forward bearing 96 handles the aft axial load, while the rear bearing 98 handles the forward axial loads. The sun gear shaft 92 is rotationally engaged with the axial compressor rotor 48 at a splined interconnection 100 or the like. Alternatively, the gearbox assembly 90 could provide a speed decrease between the fan-turbine rotor assembly 30 and the axial compressor rotor 48.


A tailcone assembly 102 is mounted on the static outer support housing 46 with a set of fasteners 104, although only one fastener is illustrated in the FIG. 2. The tailcone assembly 102 houses a device 106, such as an oil cooler or other device, and includes a frustoconical surface 108. A wall structure 110 disposed about central axis 112 forms the frustoconical surface 108. The wall structure 110 defines an interior compartment 114 and a forward portion 116 that tapers to an aft portion 118 of the tailcone assembly 102.


The integral case portion 12 of the engine 6 includes a rear portion 124 welded at a flange joint 126 to the exhaust case portion 16. A forward portion 128 of the integral case portion 12 includes an arcuate portion 130 that curves radially inwardly relative to the engine centerline A. The arcuate portion 130 defines a forward end of a compartment 132. The annular combustor 34 is housed and mounted in the compartment 132. The fan inlet guide vanes 22 are integrally formed with the arcuate portion 130 to form the integral case portion, which is a unitary engine case. In one example, the rear portion 124, forward portion 128, and fan inlet guide vanes are integrally formed from a titanium alloy or other alloy in a casting process, however, other forming processes such but not limited to forging may be utilized.


In operation, air enters the axial compressor 28, where it is compressed by the three stages of the compressor blades 50 and compressor vanes 54. The compressed air from the axial compressor 28 enters the inducer section 66 in a direction generally parallel to the engine centerline A and is turned by the inducer section 66 radially outwardly through the core airflow passage 80 of the hollow fan blades 32. The airflow is further compressed centrifugally in the hollow fan blades 32 by rotation of the hollow fan blades 32. From the core airflow passage 80, the airflow is turned and diffused axially forward in the engine 6 into the annular combustor 34. The compressed core airflow from the hollow fan blades 32 is mixed with fuel in the annular combustor 34 and ignited to form a high-energy gas stream. The high-energy gas stream is expanded over the plurality of tip turbine blades 38 mounted about the outer periphery of the fan-turbine rotor assembly 30 to drive the fan-turbine rotor assembly 30, which in turn drives the axial compressor 28 through the gearbox assembly 90.


Concurrent therewith, the fan-turbine rotor assembly 30 discharges fan bypass air axially aft and the exhaust mixer 18 merges bypass air with the high energy gas stream in the exhaust case portion 16. The exit guide vanes 24 located between the static outer support housing 46 and the outer case 8 guide the combined airflow out of the engine 6 to provide forward thrust.



FIG. 3 is a cross-sectional view of a double wall construction of the engine 6 of FIG. 1. The integral case portion 12 preferably includes at least a composite layer 140 with woven Kevlar™ fiber reinforcement 142 in a double wall construction 144 with a metallic layer 146, although other composites and other double or multiple wall constructions may be utilized. The double wall construction 144 provides structural integrity to the engine 6 and may assist in containing failures of the fan-turbine rotor assembly 30, the diffuser section 74, the annular combustor 34, and the turbine 36. Preferably, the composite layer 140 is radially outward from the metallic layer 146 relative to the engine centerline A, although in other examples the metallic layer 146 may be radially outward relative to the composite layer 140.



FIG. 4 shows another embodiment of the tip turbine engine assembly of the present invention. The integral case portion 212 is located radially outward from the fan-turbine rotor assembly 30, the diffuser section 74, the annular combustor 34, and the turbine 36 and may include a double wall construction 144 as illustrated in FIG. 3. The integral case portion 212 includes an integral fan case portion 220 joined on a forward end 222 with a fastener 224 at a flange joint 226 to an integral combustor case portion 228. The integral fan case portion 220 is located radially outward from the fan-turbine rotor assembly 30 and the diffuser section 74 and is welded at a rear end portion 230 to the exhaust case portion 16. The integral combustor case portion 228 is welded to an integral inlet guide vane 232 at a flange joint 236. This may provide the benefit of being able to pre-assemble the integral case portion 212 before assembling the integral case portion 212 onto the engine 6. The integral combustor case portion 228 is located radially outward from the annular combustor 34. It is to be understood that additional separate engine case portions may be utilized to form the integral case portion 212 and that the various engine case portions may be joined together using welding, fasteners, or other methods of joining.


The present invention therefore eliminates assembly of several cases by providing an integrated engine case for the engine fan and combustor, and turbine.


It should be understood that relative positional terms such as “forward,” “aft,” “upper,” “lower,” “above,” “below,” and the like are with reference to the normal operational attitude of the vehicle and should not be considered otherwise limiting.


It should be understood that although a particular component arrangement is disclosed in the illustrated embodiment, other arrangements will benefit from the instant invention.


Although particular step sequences are shown, described, and claimed, it should be understood that steps may be performed in any order, separated or combined unless otherwise indicated and will still benefit from the present invention.


Although a preferred embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.

Claims
  • 1. A tip turbine engine assembly comprising: a fan rotatable in a fan plane about an axis, said fan including a fan blade defining a core airflow passage through said fan blade;a compressor rotatable in a compressor plane spaced axially forward of said fan plane and directing compressed air to said airflow passage;a turbine extending radially outwardly from said fan;a combustor axially spaced from said fan, said combustor communicating with said airflow passage; and,an engine case radially outward from said fan and said combustor.
  • 2. The assembly as recited in claim 1, wherein said fan plane does not intersect said combustor.
  • 3. The assembly as recited in claim 1, further comprising a radially inwardly extending guide vane fixed to said engine case.
  • 4. The assembly as recited in claim 1, wherein said blade has an internal first inducer section that turns said compressed air from traveling axially to travelling radially.
  • 5. The assembly as recited in claim 4 wherein said blade has a hollow section for receiving said compressed air and centrifugally compressing said compressed air.
  • 6. The assembly of claim 5 wherein said blade further comprises a diffuser for directing said compressed air to said combustor.
  • 7. The assembly of claim 6 wherein said diffuser turns said compressed air from radially to axially directed.
  • 8. The assembly as recited in claim 1, wherein said engine case comprises a composite layer with fiber reinforcement.
  • 9. The assembly as recited in claim 1, wherein said engine case comprises a composite layer adjacent to a metallic layer.
  • 10. The assembly of claim 1 wherein said turbine further comprises a tip turbine blade.
  • 11. The assembly of claim 10 further comprising a barrier separating said tip turbine blade from said hollow fan blade such that compressed air passing through said hollow fan blade does not contact said tip turbine blade.
  • 12. The assembly of claim 10 wherein said combustor directs combustion gases only to said turbine tip blade.
  • 13. A method for providing thrust by a jet engine comprising: compressing an air flow through an axial compressor;further compressing said air flow by centrifugally compressing said air flow in a rotating hollow fan blade in a first plane;diffusing said compressed air within said hollow fan blade;combusting said diffused air flow by a combustor in a second plane; anddirecting said combusted air flow against a tip turbine placed radially outwardly from said fan in said first plane.
  • 14. The method as recited in claim 13, further comprising: directing said compressed air from said axial compressor through an internal inducer in said hollow fan blade.
  • 15. The method of claim 14 wherein said blade further comprises a diffuser for directing said compressed air from said hollow fan blade to said combustor.
  • 16. The method of claim 13 further comprising separating a tip turbine blade from said hollow fan blade such that compressed air passing through said hollow fan blade does not contact said tip turbine blade.
  • 17. The method of claim 13 further comprising separating a tip turbine blade from said hollow fan blade such that combusted air passing through hollow blade and said combustor does not contact any external surface of said hollow fan blade.
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2004/039973 12/1/2004 WO 00 5/31/2007
Publishing Document Publishing Date Country Kind
WO2006/059971 6/8/2006 WO A
US Referenced Citations (126)
Number Name Date Kind
1544318 Hodgkinson Jun 1925 A
1923251 Bauer et al. Aug 1933 A
2221685 Smith Nov 1940 A
2414410 Griffith Jan 1947 A
2499831 Palmatier Mar 1950 A
2548975 Hawthorne Apr 1951 A
2611241 Schulz Sep 1952 A
2620554 Mochel et al. Dec 1952 A
2698711 Newcomb Jan 1955 A
2801789 Moss Aug 1957 A
2830754 Stalker Apr 1958 A
2874926 Gaubatz Feb 1959 A
2945960 Obrist Jul 1960 A
2989848 Paiement Jun 1961 A
3009630 Busquet Nov 1961 A
3037742 Dent et al. Jun 1962 A
3042349 Pirtle et al. Jul 1962 A
3081597 Kosin et al. Mar 1963 A
3132842 Tharp May 1964 A
3204401 Serriades Sep 1965 A
3212664 Wagle Oct 1965 A
3216455 Cornell et al. Nov 1965 A
3267667 Erwin Aug 1966 A
3269120 Sabatiuk Aug 1966 A
3283509 Nitsch Nov 1966 A
3286461 Johnson Nov 1966 A
3302397 Davidovic Feb 1967 A
3363419 Wilde Jan 1968 A
3404831 Campbell Oct 1968 A
3465526 Emerick Sep 1969 A
3496725 Ferri et al. Feb 1970 A
3505819 Wilde Apr 1970 A
3616616 Flatt Nov 1971 A
3684857 Morley et al. Aug 1972 A
3703081 Krebs et al. Nov 1972 A
3705775 Rioux Dec 1972 A
3720060 Davies et al. Mar 1973 A
3729957 Petrie et al. May 1973 A
3735593 Howell May 1973 A
3811273 Martin May 1974 A
3818695 Rylewski Jun 1974 A
3836279 Lee Sep 1974 A
3861822 Wanger Jan 1975 A
3932813 Gallant Jan 1976 A
3979087 Boris et al. Sep 1976 A
4005575 Scott et al. Feb 1977 A
4130379 Partington Dec 1978 A
4147035 Moore et al. Apr 1979 A
4251185 Karstensen Feb 1981 A
4251987 Adamson Feb 1981 A
4265646 Weinstein et al. May 1981 A
4271674 Marshall et al. Jun 1981 A
4298090 Chapman Nov 1981 A
4326682 Nightingale Apr 1982 A
4452038 Soligny Jun 1984 A
4463553 Boudigues Aug 1984 A
4561257 Kwan et al. Dec 1985 A
4563875 Howald Jan 1986 A
4631092 Ruckle et al. Dec 1986 A
4751816 Perry Jun 1988 A
4785625 Stryker et al. Nov 1988 A
4817382 Rudolph et al. Apr 1989 A
4834614 Davids et al. May 1989 A
4883404 Sherman Nov 1989 A
4887424 Geidel et al. Dec 1989 A
4904160 Partington Feb 1990 A
4912927 Billington Apr 1990 A
4965994 Ciokajlo et al. Oct 1990 A
4999994 Rud et al. Mar 1991 A
5010729 Adamson et al. Apr 1991 A
5012640 Mirville May 1991 A
5014508 Lifka May 1991 A
5088742 Catlow Feb 1992 A
5107676 Hadaway et al. Apr 1992 A
5157915 Bart Oct 1992 A
5182906 Gilchrist et al. Feb 1993 A
5224339 Hayes Jul 1993 A
5232333 Girault Aug 1993 A
5267397 Wilcox Dec 1993 A
5269139 Klees Dec 1993 A
5275536 Stephens et al. Jan 1994 A
5315821 Dunbar et al. May 1994 A
5328324 Dodd Jul 1994 A
5443590 Ciokajlo et al. Aug 1995 A
5466198 McKibbin et al. Nov 1995 A
5497961 Newton Mar 1996 A
5501575 Eldredge et al. Mar 1996 A
5537814 Nastuk et al. Jul 1996 A
5584660 Carter et al. Dec 1996 A
5628621 Toborg May 1997 A
5746391 Rodgers et al. May 1998 A
5769317 Sokhey et al. Jun 1998 A
6004095 Waitz et al. Dec 1999 A
6095750 Ross et al. Aug 2000 A
6102361 Riikonen Aug 2000 A
6158207 Polenick et al. Dec 2000 A
6223616 Sheridan May 2001 B1
6244539 Lifson et al. Jun 2001 B1
6364805 Stegherr Apr 2002 B1
6381948 Klingels May 2002 B1
6382915 Aschermann et al. May 2002 B1
6384494 Avidano et al. May 2002 B1
6430917 Platts Aug 2002 B1
6454535 Goshorn et al. Sep 2002 B1
6471474 Mielke et al. Oct 2002 B1
RE37900 Partington Nov 2002 E
6513334 Varney Feb 2003 B2
6619030 Seda et al. Sep 2003 B1
6764276 Mulcaire et al. Jul 2004 B2
6851264 Kirtley et al. Feb 2005 B2
6883303 Seda Apr 2005 B1
6910854 Joslin Jun 2005 B2
7021042 Law Apr 2006 B2
7214157 Flamang et al. May 2007 B2
20020190139 Morrison Dec 2002 A1
20030031556 Mulcaire et al. Feb 2003 A1
20030131602 Ingistov Jul 2003 A1
20030131607 Daggett Jul 2003 A1
20030192304 Paul Oct 2003 A1
20040025490 Paul Feb 2004 A1
20040070211 Franchet et al. Apr 2004 A1
20040189108 Dooley Sep 2004 A1
20040219024 Soupizon et al. Nov 2004 A1
20050008476 Eleftheriou Jan 2005 A1
20050127905 Proctor et al. Jun 2005 A1
20090252606 Jahnen Oct 2009 A1
Foreign Referenced Citations (17)
Number Date Country
1301364 Aug 1969 DE
2274788 Jan 1976 FR
905136 Sep 1962 GB
1287223 Aug 1972 GB
1503394 Mar 1978 GB
2026102 Jan 1980 GB
10184305 Jul 1998 JP
02081883 Oct 2002 WO
2004011788 Feb 2004 WO
2004092567 Oct 2004 WO
2006059978 Jun 2006 WO
2006059988 Jun 2006 WO
2006059989 Jun 2006 WO
2006060006 Jun 2006 WO
2006062497 Jun 2006 WO
2006059971 Aug 2006 WO
2006059979 Jun 2007 WO
Related Publications (1)
Number Date Country
20090120058 A1 May 2009 US