The present invention relates generally to reducing vehicle noise from tires and wheels. Specifically, the present invention relates to a sound-reducing device disposed in the internal air chamber created by a tire and a wheel upon which the tire is mounted.
When car tires contact a road surface, they generate considerable noise. At speeds above 25 mph in certain vehicles, tire noise can be greater than all other sources of automotive noise combined. Accordingly, car and tire manufacturers spend large amounts of resources every year on research and development to reduce tire noise.
Tire noise results from many sources. For example, tire noise results from (1) low-frequency shock waves produced by excitation of the internal tire air chamber from tire deformation caused by the contact of the tire with the road surface; (2) low-frequency tire structure ringing due to air chamber excitation caused by the deflection of the tire at road contact; (3) high-frequency external tread air compression caused by air temporarily trapped between the tread and the road surface; and (4) high-frequency contact scrub caused by the friction between the tire and the road surface.
Some tread air compression noise is not avoidable. For example, tread air compression acts to clear water from the tread contact surface by compressing the water and air at road contact and then expanding the mixture at tread release. Additionally, some contact scrub noise is not avoidable because tires have finite adhesion which generates friction and noise with the road surface.
Shock wave energy from tire deformation is transmitted from the tread contact area into the internal tire air chamber created by the tire and the wheel upon which the tire is mounted. The energy transmitted into the internal tire air chamber is only dissipated by tire ringing and coupling of the noise to the wheel. Such tire ringing and noise coupling comprise a large portion of the total amount of tire noise.
Conventional methods for reducing tire noise have several deficiencies. In particular, those methods do not effectively absorb low-frequency energy (e.g., below 800 Hz) associated with the shock waves that produce tire noise. As tires generate significant low-frequency energy, an efficient tire noise absorber should reduce the noise produced by such low-frequency energy. However, conventional methods do not adequately reduce that noise. Additionally, low-frequency noise increases perceived high frequency noise produced by tread air compression and tire scrub. Accordingly, conventional methods fail to reduce the perceived high frequency tire noise by failing to reduce low-frequency energy noise. Other deficiencies include the difficulty of mounting a tire to a wheel when using a conventional method, the possible damage if the conventional method fails during vehicle operation, and the inefficiency of conventional methods.
Conventional low-frequency noise absorbing methods exist. However, such conventional methods are not practical for small internal air chambers, such as a tire's air chamber. Such conventional low-frequency absorbing methods are too large for a tire air chamber, would prevent tire inflation, are not efficient, and/or pose safety hazards if used in combination with a tire.
Accordingly, a need exists in the art for reducing noise generated by or within tires and the wheels upon which the tires are mounted. Particularly, a need exists in the art for reducing tire noise by absorbing or reducing energy in the internal air chamber of a tire. More particularly, a need exists for a tire noise absorber/reducer that can absorb or reduce low frequency energy while operating inside a small internal air chamber, such as a tire's air chamber.
A device for reducing tire noise can absorb and reduce low-frequency energy that produces tire noise. The device can absorb sound shock waves by alternately pressurizing and depressurizing a vessel having an air flow-resistant barrier. The flow-resistant barrier dampens pressure flows into and out of the vessel to dampen shock waves that pass through the barrier. Additionally, friction in the flow-resistant element of the vessel converts sound energy into heat, thus attenuating the sound. Additionally, a hybrid device can have elements of an air flow-resistant cavity absorber and elements of a frictional absorber.
According to one aspect, a tire noise absorbing device can comprise multiple layers of an air flow-resistant material with multiple openings in each layer. The layers can be assembled such that the openings of each layer are offset with respect to overlapped portions of an adjacent layer. The offset openings allow air to pass through the layers when the tire is stationary and the layers are slack, thereby allowing complete inflation of the tire. The overlapping layers can be coupled to a wheel or directly to a tire to form loops of overlapped elements. When a car is put into motion and the tire begins to rotate, centrifugal force forces the overlapped layers outward and together to seal the air passages of the openings and to form an air flow-resistant cavity between the wheel and the cloth layers. Specifically, the inner layer is forced outward against the outer layer, the openings in the inner layer are sealed by the outer layer, and the openings in the outer layer are sealed by the inner layer. The layers restrict air flow between a tire (outer) side of the layers and a wheel (inner) side of the layers, thereby absorbing low-frequency energy noise as air passes through the layers.
In a further embodiment, the layers can slide against each other and create friction when displaced by low-frequency shock waves. The resulting friction can absorb additional low-frequency energy noise by dissipating such the shock waves via heat produced by the friction.
In yet another embodiment, the tire noise absorbing device can comprise a spacer element. The spacer element comprises a porous material that allows for air flow and can provide support for a flow-resistant barrier. The spacer element is positioned adjacent to a flow-resistant barrier to create multiple air cavities within the air chamber created by the tire and the wheel. When the car is put into motion and the tire begins to rotate, centrifugal force forces the flow-resistant barrier and the spacer against each other to create an air flow-resistant cavity. The spacer defines the volume of the air flow-resistant cavity. In addition, the spacer reduces the tire's rolling resistance by providing an energy damper and reducing tire deflection as the tire rotates along a road.
Increasing the absorption of low-frequency energy also can reduce the perceived high-frequency tire noise without compromising tread design or tire adhesion. The design can fit easily into an existing tire and can be mounted to existing wheels or to a tire during or after the manufacturing process.
Other aspects include variations of the position and coupling means of attaching the device to the wheel or tire. For example, the device can be coupled at a centrally located position on the wheel or with various profiles that provide different shaped flow-resistant cavities. Still other aspects include multiple elements with overlapping or interlocking ends to create the flow-resistant cavity. These elements are forced outward by centrifugal force and create a cavity when the overlapping or interlocking portions move together to create a device that resists air flow. In addition, the overlapping portions can create friction when displaced by shock waves to further absorb low frequency noise. Yet another aspect includes creating multiple flow-resistant air cavities by layering two or more flow-resistant elements around a wheel or tire. These multiple flow-resistant air cavities can absorb shock waves and can improve noise reduction. Further aspects involve a tubular, crescent, or curved element positioned on the wheel or tire, thus creating a single flow-resistant cavity. Such an element in the tubular shape also can be used in sections to create multiple flow-resistant cavities around the wheel.
The described devices can be coupled to the wheel or tire in a variety of ways. For example, the elements that create the flow-resistant cavity can be coupled to the wheel or tire with adhesive or clamps, by being crimped into a groove or flange in the wheel or tire, or by being welded, molded, or weaved into the wheel or tire.
Exemplary embodiments will be described with reference to
In the exemplary embodiment illustrated in
Thus, the barrier comprises a material that provides an acoustical resistance to sound shock waves passing therethrough. The inner air cavity 170 defined by the barrier has a volume such that air within the inner air cavity 170 offers relatively small impedance to the passage of shock waves through the barrier and into the inner air cavity 170. In operation, sound shock waves are produced in the outer air cavity 170 as the tire travels over a road. The sound shock waves travel toward the inner air cavity 170 and encounter the flow-resistant barrier defined by the layers 110, 120. As the sound shock waves pass through the barrier, the barrier absorbs energy from those shock waves due to the acoustical impedance of the harrier. Initially, the air within the inner air cavity 170 offers relatively small impedance to the passage of shock waves through the barrier and into the inner air cavity 170. As shock waves continue to pass through the barrier and into the inner air cavity 170, the inner air cavity 170 becomes pressurized with respect to the outer air cavity. At this point, the air in the inner air cavity 170 can impede the passage of shock waves through the barrier and into the inner air cavity 170. When the inner air cavity pressure becomes greater than the outer air cavity pressure, the inner air cavity 170 will depressurize as air flows out of the inner air cavity 170 to the outer air cavity 180. That process continues while the tire is in motion. Additionally, sound shock waves that pass through the flow-resistant barrier and are reflected by the wheel 140 will pass back through the flow-resistant barrier to the outer air cavity 180. The flow-resistant barrier will absorb further energy from the sound shock waves during that process, further reducing noise associated therewith. The barrier also can reduce noise associated with the sound shock waves by converting energy from those shock waves into frictional heat, as discussed in more detail hereinafter.
The layers 110, 120 restrict but not prevent air flow between the outer air cavity 180 and the inner air cavity 170. Accordingly, the layers 110, 120 provide acoustical impedance by resisting the flow of sound shock waves therethrough. In exemplary embodiments, the layers 110, 120, can comprise flexible cloth. For example, the layers 110, 120 can comprise Kevlar, cotton, Spectra, silk, fiberglass, or any other suitable material. Such suitable materials generally include a weave or structure that restricts air flow through the material based on the space tightness of the weave or structure of the material.
In an exemplary embodiment, the layers 110, 120 can comprise a material having a weave with a porosity ranging from about 10% to about 50% cavity fill at cavity saturation, based on the resonant energy in a closed tire cavity. “Cavity fill at cavity saturation” describes the length of time required to pressurize the inner air cavity 170 by sound shock waves passing through the flow-resistant barrier formed by the layers 110, 120. The time it takes to fill or empty the inner air cavity 170 determines the limit of low frequency absorption of the system 100. Other porosities are suitable. For example, an alternative suitable porosity to pressurize the inner air cavity 170 is from about 10% to about 75% at low frequencies. The lower frequency performance of a flow-resistant absorber depends on the size of the inner air cavity 170 and the efficiency of the resistance of the flow-resistant barrier created by the layers 110, 120. Flow resistance depends on the porosity of the material of the layers 110, 120. As the cavity fills with air from the sound shock waves passing through the flow-resistant barrier, the pressure resistant cavity absorber can reach a lower frequency limit based. The low frequency limit is established based on the time it takes for the inner air cavity 170 to fill or empty. The larger the inner air cavity 170, the lower the frequency limit. In an exemplary embodiment, the acoustical resistance of the flow-resistant barrier and the size of the inner air cavity 170 will allow acoustical sound waves to pass through the barrier quickly enough to reduce the noise associated therewith, but slowly enough to allow the inner air cavity 170 to become fully pressurized. The inner air cavity 170 is fully pressurized when it has reached the same pressure as the pressure caused by the acoustical sound waves. As the energy absorber of the system 100 is disposed within a pressurized air chamber (i.e., the internal tire air chamber), the system 100 can comprise a smaller air cavity than would be needed at normal atmospheric pressure.
In the exemplary embodiment illustrated in
In an exemplary embodiment, the layers 110, 120 can be coupled directly to the wheel 140 at location 150 using an adhesive. For example, the adhesive can comprise epoxy or other any other suitable adhesive for attaching the layers 110, 120 to the wheel 140. The adhesive can be selected based on the particular application to adhere the layers 110, 120 to the wheel 140 and to resist the centrifugal force generated by the rotation of the wheel 140 and heat generated within the internal tire air chamber.
In alternative exemplary embodiments, other suitable methods can be used to couple the layers 110, 120 to the wheel 140. For example, the layers 110, 120 can be crimped into a groove (not shown) or flange (not shown) attached to or molded in the wheel 140. Alternatively, the layers 110, 120 can comprise a metal flange (not shown) along the edge of the layers 110, 120, and the flange can be welded around or otherwise coupled to the wheel 140.
As depicted in
In an alternative exemplary embodiment (not illustrated in
In an alternative exemplary embodiment (not illustrated in
A length of the layers 110, 120 equals the circumference of the wheel 140 along the location 150. In an alternative exemplary embodiment, the length of the layers 110, 120 can be greater than the circumference of the wheel 110 for overlapping ends of the layers 110, 120 when coupling the layers 110, 120 to the wheel 140.
As shown in
In an alternative exemplary embodiment, if the tire noise reducing device does not cover the air inlet (not shown) in the wheel, then the apertures 130 in the layers 110, 120 in the system 100 can be omitted. In this case, two continuous layers can form a two layer torus.
Alternatively, a single, continuous layer of flow-resistant material without apertures 130 (i.e., without slits) can form a flow-resistant structure that creates the inner and outer air cavities 170, 180. The internal air chamber of a tire can fully inflate without the apertures 130 because the weave of the material does not entirely prevent air flow. In other words, the porosity of the material can allow for both tire inflation when the wheel is stationary, and sufficient flow-resistant properties for the barrier to erect under centrifugal force when the wheel is in motion. A similar continuous structure that is formed in a curved shape is described hereinafter with reference to
The layers 110, 120 restrict air flow between the two cavities 170, 180 in the tire's internal air chamber. The “pores” (openings between the weave of the material) restrict but do not prevent such air flow. Thus, sound shock waves transmitted from the outer cavity 180 to the inner cavity 170 and vice versa must pass through the layers 110, 120. By resisting the air flow, the layers 110, 120 absorb the energy of the shock waves as the shock waves pass therethrough, thereby reducing noise, in particular, reducing low-frequency noise in the range of about 15 Hz to about 800 Hz and throughout the range of about 15 Hz to about 20 kHz.
In another exemplary embodiment, the layers 110, 120 can slide across each other and create friction when displaced by shock waves. This resulting friction reduces the low-frequency energy of the shock waves by turning the shock waves' energy into heat, thereby further reducing low-frequency noise associated with the low-frequency energy. For example, the two layers 110, 120 are held in place by centrifugal force. When the layers 110, 120 are displaced due to the concussion of sound energy, the geometry of the elements induces a movement between the layers 110, 120. Such movement causes friction between the layers 110, 120. Converting the sound shock wave into heat reduces the sound energy. If the layers 110, 120 have one side that is rougher than the other side, then the two rough sides can be disposed adjacent to each other to increase the friction between the layers 110, 120. The increased friction can increase the frictional diaphragm effect to more efficiently convert the sound energy into heat.
Additionally, a single-layer, continuous flow-resistant barrier can reduce noise via friction based on the movement of fibers within the weave of the material. The concussion f the sound energy moves the fibers with respect to each other, thereby causing friction within the barrier and converting sound energy into heat to reduce the sound energy.
In an exemplary embodiment, the outer layer 110 can comprise 3 inch wide portions between the apertures 130, and the inner layer 120 can comprise 4 inch wide portions between its apertures 130. The additional width on one of the layers can increase a seal between the layers 110, 120 to form the flow-resistant barrier when rotated.
In another alternative exemplary embodiment illustrated in
The layers 1402, 1404 can be coupled to the tire 160 in any suitable manner. For example, the layers 1402, 1404 can be adhered to or molded into the bead or sidewalls of the tire 160. For instance, these alternative exemplary embodiments include the following: weaving the edges of the layers 1402, 1404 into the tire 160, molding the layers 1402, 1404 into the tire 160, inserting the layers 1402, 1404 into a groove in the tire casing, adhering the layers 1402, 1404 into or onto the tire 160, or any other suitable method for coupling the layers 1402, 1404 to the tire 160.
Each element 502 can comprise materials similar to the materials of the layers 110, 120 described previously with reference to
In an exemplary embodiment, the elements 502 can be coupled one at a time to the wheel 140. Alternatively, the elements 502 can be coupled together at the outside edges to create a strip of elements 502 that can be wrapped around and coupled to the wheel. In addition, a portion of each element 502 that is overlapped by an adjacent element 502 can remain unsecured from the wheel 140 at its edges. That configuration can allow greater tolerances in the manufacturing process.
Centrifugal force will force the elements 502 outward to contact each other at the overlapped portions to create the flow-resistant barrier. Additionally, the overlapping portions of the elements 502 can rub together when deflected by sound shock waves, thereby creating friction to convert the sound energy into heat and to attenuate the sound. Accordingly, the illustrated system 500 can provide diaphragm friction and flow resistance to reduce noise within the tire 160 mounted to the wheel 140.
As shown in
The elements 502 of the illustrated system 500 also can be mounted with or without covering the air intake valve (not shown) in the wheel 140 and can provide more room to reliably mount the tire 160 to the wheel 140.
Each element 602, 604 can comprise materials similar to the materials of the layers 110, 120 described previously with reference to
In an exemplary embodiment, the elements 602, 604 can be coupled one at a time to the wheel 140 at location 150. Alternatively, the elements 602, 604 can be coupled together at their outside edges to create a strip of elements 602, 604 that can be wrapped around and coupled to the wheel 140. In addition, a portion of each element 604 that is overlapped by an adjacent element 602 can remain unsecured from the wheel 140 at its edges. That configuration can allow greater tolerances in the manufacturing process.
Component 802a is an outer layer (with respect to the wheel 140) of flow-resistant material attached to the wheel 140 at location 150. Component 802b is an inner layer (with respect to the wheel 140) of flow-resistant material that is attached to the wheel 140 only at its edges beneath component 802a. Thus, a space between the surfaces of components 802a and 802b exists.
Component 802b is longer than component 802a such that it protrudes beyond component 802a a distance of D. The portion of component 802b that extends beyond component 802a is slightly narrower such that its edges do not need to couple directly to the wheel 140. As shown, the illustrated system 800 comprises multiple continuous elements 802 with protruding ends of each component 802b of one element 802 interlocked between surfaces of components 802a and 802b of an adjacent element 802. Centrifugal force will push the components 802a, 802b outward to contact each other to create the flow-resistant barrier. Additionally, the components 802a, 802b will rub together, thereby creating friction to convert sound energy into heat. Accordingly, the illustrated system 800 can provide the diaphragm friction and flow resistance to reduce noise within a tire 160 mounted to the wheel 140.
The system 800 can provide an essentially-sealed, flow-resistant barrier when the tire is rotating, and sufficient air flow for tire inflation when the device is slack. In an exemplary embodiment, the components 802a, 802b of each element 802 can be coupled together with thread, adhesive, or any other suitable material. Multiple adjacent elements 802 can be coupled together at their edges to create a strip of elements 802 that can be wrapped around and coupled to the wheel 140. Alternatively, the elements 802 can be individually coupled to the wheel 140.
The elements 802, either in a strip or individually, can be coupled to the wheel 140 or tire 160 in a variety of ways as otherwise described herein. For example, they can be glued to the wheel, fitted into a groove, or glued to the tire. In addition, adjacent elements 802 can be secured together using fasteners 506 as previously described with reference to
The elements 802 can comprise materials similar to the materials of the layers 110, 120 described previously with reference to
In an exemplary embodiment, elements 902, 904 comprise the same structure. Alternatively, elements 902, 904 can comprise different structures. For example, element 902 can comprise two overlapping continuous layers of material with openings therein as illustrated in any of
Regardless of the structure of elements 902, 904, each element can comprise materials similar to the materials of the layers 110, 120 described previously with reference to
The two elements 902, 904 are coupled to the wheel 140 or tire 160 such that they form three flow-resistant air cavities within the internal tire air chamber. The inner air cavity 170 is formed between the wheel 140 and the inner element 902. The middle air cavity 975 is formed between elements 902 and 904. The outer air cavity 180 is formed between element 904 and the tire. In alternative exemplary embodiments, additional elements can be used to create more air flow-resistant barriers and air cavities within the internal tire air chamber. The creation of multiple flow-resistant barriers restricts air flow through each barrier and therefore absorbs noise associated with sound shock waves passing therethrough. In an exemplary embodiment, the middle air cavity 975 can have a volume that less than the volume of the inner air cavity 170. In another exemplary embodiment, the middle air cavity 975 can have a volume that is about 60-75 percent less than the volume of the inner air cavity 170.
In an exemplary embodiment, the elements 902, 904 can be coupled to each other and then to the wheel 140 or tire 160 at location 150. Alternatively, each element can be coupled to the wheel or tire individually at the same or separate locations. A variety of coupling means can be used as discussed herein including adhesives, clamps, insertion into a groove, or other suitable method.
As shown in
The tubular barrier 1002 can be coupled around the wheel in a variety of suitable ways. For example, the tubular barrier 1002 can be tapered and coupled at its ends, thus sealing the air cavity in one location. It can also be weaved together to create a continuous circular air cavity. Such an embodiment can be weaved or coupled in any other suitable way either directly around the wheel or in advance and then fitted over the wheel. The element 1002 then can be coupled to the wheel or tire. Alternatively, it can be left unsecured, staying in position by encompassing the circumference of the wheel 140.
The element 1002 can comprise materials similar to the materials of the layers 110, 120 described previously with reference to
Barrier 1102 can comprise materials similar to the materials of the layers 110, 120 described previously with reference to
The element 1300 also comprises an attachment 1304. Attachment 1304 comprises a material attached to the edges of element 1300 to produce a composite edge that provides ease and efficiency in attaching the element 1300 to either the wheel 140 or tire 160. This coupling option provides a possible alternative to the previously mentioned coupling options. Attachment 1304 comprises a material that will couple more easily to the wheel 140 or tire 160 than the material of element 1300 will couple to those items. In alternative exemplary embodiments, attachment 1304 can comprise plastic, cotton, fabric, metal, or any other suitable material for coupling the element 1302 to the wheel 140 or the tire 160.
Attachment 1304 can be attached to the material of element 1300 with adhesive, thread, or other suitable means. As illustrated in
The element 1300 can comprise materials similar to the materials of the layers 110, 120 described previously with reference to
Spacer 1502 comprises a porous, semi-rigid, flexible material that allows for air to flow through it, includes air cavities, and supports the element 1504 away from the internal surface of the tire's 160 tread. In an exemplary embodiment, the spacer 1502 can be comprised of a particulated foam, a non-open nylon, a metal, an expanded glue, a mesh filament, various grades of nylon mesh (including non-woven nylon mesh), and rubber. In addition, other suitable materials can be used that are flexible, allow air flow through the material, and retain their shape under nominal force, such as sponge-like materials. The spacer 1502 can hold the barrier 1504 in position to form one or more air cavities. The spacer 1502 also deflects circular standing waves into the barrier 1504. In an alternative embodiment, the spacer 1502 can have a variable density to reduce weight and to allow for greater resistance to centrifugal force. For example, a layer of the spacer 1502 can be less porous in areas where the spacer 1502 may undergo greater impact from the deflection of the tire 160 as it rotates along a road. This higher density of the spacer 1502 in certain areas can allow for greater durability of the spacer 1502.
Spacer 1502, as a porous material, is an air cavity, and functions as an air cavity as described herein with reference to
In an exemplary embodiment, the spacer 1502 can have any suitable thickness that is less than the distance from the wheel 140 to the tire 160 and that allows for tire mounting. In particular, the thickness of the spacer 1502 can be selected to provide the desired volume of the air cavity defined by the element 1504 and the tire 160, which also determines the volume of the air cavity defined by the element 1504 and the wheel 1508 (potentially also being defined by a portion of the tire 160. Further, in another exemplary embodiment, the spacer 1502 can have a length approximately equal to the circumference of the tire, and a width 1508 that the width of the inside of the tire 160 at the point where the spacer 1502 and the element 1504 contact the tire 160. In one exemplary embodiment, the width 1508 is slightly wider than the width of the tire at that contact point and the thickness is approximately one-half inch. Ends of the spacer 1502 can be coupled together to form a circular ring shape which will fit around the wheel 140 and inside the tire 160. The ends of the spacer 1502 can be coupled together by any suitable means of attachment, including thread and adhesive.
In an exemplary embodiment, element 1504 comprises a flow-resistant barrier. The element 1504 can comprise materials similar to the materials of the layers 110, 120 as described previously herein with reference to
In an exemplary embodiment, the spacer 1502 can be coupled to the element 1504 along the long edge of spacer 1502 and the long edge of element 1504 with thread, adhesive, or by any other suitable method. The spacer 1502 and element 1504 can be situated in a circular manner adjacent to the internal layer of the tire tread surface, such that the spacer 1502 is adjacent to the tire 160. The element 1504 and the spacer 1502 can be coupled to the tire by any suitable means, including, but not limited to, welding, threading, and gluing. In one exemplary embodiment, the element 1504 and the spacer 1502 can be molded to the inside of the tire 160 during manufacture of the tire 160. In an alternative embodiment, element 1504 and the spacer 1502 can be coupled to the sidewalls of the tire 160 and/or coupled to the wheel 140 (not shown). In yet another alternative embodiment, element 1504 and the spacer 1502 can be situated around the wheel 140 and adjacent to the tire 160 without being coupled to either the wheel 140 or the tire 160. In this embodiment, the element 1504 and the spacer 1502 are held in place be centrifugal force when a car on which the wheel 140 and tire 160 is mounted is put into motion. Additionally, the element 1504 and the spacer 1502 can be coupled to the tire by being compression fit into the tire 160 when the element 1504 and the spacer 1502 are slightly wider than the width of the tire 160.
In an alternative exemplary embodiment, the element 1504 can be glued or otherwise adhered to a surface of the spacer 1502 to couple the element 1504 and the spacer 1502 together.
When a car on which the wheel 140 and tire 160 is mounted is put into motion and the tire 160 and wheel 140 begin to rotate, centrifugal force forces the spacer 1502 and the element 1504 outward. The centrifugal force also compresses the spacer 1502 and forces the element 1504 against the spacer 1502 to create air cavities. As such, the flow-resistant barrier 1504 defines air cavities 1506 and 1510. The volume of air cavity 1506 comprises the volume between the wheel 140 and the flow resistant barrier 1504. The volume of air cavity 1510 comprises the volume between the flow resistant barrier 1504 and the tire 160, and thus comprises the volume of the spacer 1502.
In addition, when a car on which the wheel 140 and tire 160 is mounted is put into motion and the tire 160 and wheel 140 begin to rotate, the spacer 1502 decreases the rolling resistance of the tire 160 by, for example, improving the tire to road contact. The spacer 1502 thus provides a flexible energy damper which lowers rolling resistance. Lowering rolling resistance improves fuel economy of the car on which the wheel 140 and tire 160 is mounted.
In an exemplary embodiment, elements 1502, 1606 comprise a spacer as described herein with reference to
The spacers 1502, 1606 and the flow-resistant barriers 1504, 1608 are arranged in alternating order. For example, as shown in
As such, multiple air cavities are created when a car on which the tire 160 and wheel 140 is mounted is put into motion. As shown in
The creation of multiple air cavities using additional flow-resistant barriers further dampens shock waves and reduces the associated tire noise. Three air cavities will fill more slowly than two air cavities, which will increase absorption of shock waves at lower frequencies. The increased time to pressurize the air cavities lowers the minimum operating frequency, which reduces tire noise. In addition, the multiple spacers 1502, 1606 can resonate at different frequencies when a car on which the tire 160 and wheel 140 is mounted is put into motion because they can have different dimensions and weights. As such, this embodiment of the invention can absorb various resonances. By distributing absorption of the resonances between two or more spacers with different resonances, the system provides higher absorption of sound waves.
The spacers 1502, 1606 can be coupled to the flow-resistant barriers 1504, 1608 by any suitable method, as described herein. In addition, the spacers 1502, 1606 and/or the flow-resistant barriers 1504, 1608 can be coupled to the tire 160 by any suitable method, as described herein with reference to
In an alternative embodiment, additional spacers 1502 and additional flow-resistant barriers 1504 can be used, arranged in an alternating formation as described previously herein. For example, a third spacer and a third flow-resistant barrier can be used, creating a fourth air cavity, the volume of the fourth air cavity comprising the volume of the third spacer. The multiple spacers 1502 can have different densities from one another, thus allowing greater resistance to centrifugal forces, as described herein above. For example, the following elements could be disposed in the following order, starting from the tire 160: a high density spacer 1502; a barrier 1504; a medium density spacer 1502; a barrier 1504; and a light density spacer 1502.
In an exemplary embodiment, elements 1502, 1702 comprise a spacer as described herein with reference to
The two spacers 1502, 1702 are arranged adjacent to each other and adjacent to the tire 160. The flow-resistant barrier 1504 is arranged adjacent to the spacers 1502, 1702.
When a car on which the tire 160 and wheel 140 is mounted is put into motion, two air cavities are created, defined by the flow-resistant barrier 1504. A first air cavity is defined by the combined volumes of cavities 1708 and 1706. The volume of cavity 1708 comprises a volume of a first spacer 1502. The volume of cavity 1706 comprises a volume of a second spacer 1702. Because there is no barrier to resist air flow between cavities 1708 and 1706, the combined volume of cavities 1708 and 1706 forms a single first air cavity. A second air cavity 1704 comprises a volume equal to the remaining volume between the flow-resistant barrier 1504 and the wheel 140.
The combination of spacers 1502, 1702 creates a larger air cavity which can reduce tire noise. Further, the additional spacer can contribute to the reduction in rolling resistance when the car on which the tire 160 and wheel 140 is mounted is put into motion.
The spacers 1502, 1702 can be coupled to the flow-resistant barrier 1504 by any suitable method described herein. In addition, the spacers 1502, 1702 and/or the flow-resistant barrier 1504 can be coupled to the tire 160 by any suitable method described herein with reference to
In an alternative embodiment, additional spacers and/or additional flow-resistant barriers can be used. For example, a third spacer can be situated between the spacer 1702 and flow-resistant barrier 1504, providing for additional volume in the air cavity created between flow resistant barrier 1504 and the tire 160. Additionally, alternating elements and spacers as described with reference to
The spacer 1502 is arranged at a distance from the internal layer of the tire tread surface and at a distance from the wheel 140, such that an air cavity 1808 exists between the tire 160 and the spacer 1502. In this embodiment, the spacer 1502 does not contact the internal layer of the tire tread surface. The flow-resistant barrier 1504 is arranged adjacent to the spacer 1502.
When a car on which the tire 160 and wheel 140 is mounted is put into motion, two air cavities are created, defined by the flow-resistant barrier 1504. A first air cavity is defined by the combined volumes of cavities 1808 and 1806. The volume of cavity 1808 comprises a volume created by the distance between the spacer 1502 and the tire 160. The volume of cavity 1806 comprises a volume of the spacer 1502. Because there is no barrier to resist air flow between cavities 1808 and 1806, the combined volume of cavities 1808 and 1806 forms a single first air cavity. A second air cavity 1804 comprises a volume equal to the remaining volume between the flow-resistant barrier 1504 and the wheel 140.
The spacer 1502 can be coupled to the flow-resistant barrier 1504 by any suitable method described herein. In addition, the spacer 1502 and/or the flow-resistant harrier 1504 can be coupled to the tire 160 by any suitable method described herein with reference to
In an alternative embodiment, additional spacers and/or additional flow-resistant barriers can be used. For example, a second spacer can be situated between the spacer 1502 and flow-resistant barrier 1504, providing for additional volume in the air cavity created between flow resistant barrier 1504 and the tire 160. Additionally, alternating elements and spacers as described with reference to
In yet a further embodiment (not shown), the systems 1500, 1600, 1700, 1800 can be arranged such that the spacers and/or flow-resistant barriers are coupled to the wheel instead of the tire. Alternatively, the systems of 1500, 1600, 1700, 1800 can be arranged such that the spacers and/or flow-resistant barriers are merely situated within the cavity created by the wheel 140 and the tire 160 and are held in place by centrifugal force.
As discussed herein, a tire noise reducing device can comprise continuous air flow-resistant layers of overlapped material with openings therein; a single flow-resistant and continuous layer without openings; multiple individual elements with overlapping and/or interlocking end portions; multiple discontinuous elements; two or more layers of elements that create multiple flow-resistant barriers; a single tubular element; a semicircular element; or multiple tubular elements.
In exemplary embodiments, small production runs for the material of the flow-resistant barriers described herein can comprise laser cutting the layers or individual elements to the specific wheel and tire dimensions. Large production runs can be die cut.
According to an exemplary embodiment, the tire noise absorbing systems described herein can absorb sound in the full audio band of about 15 Hz to about 20 kHz. Since some tire structures do not include noise in frequencies significantly above 800 Hz, the tire noise absorbing systems described herein also can absorb sound in a range of about 15 Hz to about 800 Hz. Additionally, varying the material of the flow-resistant barrier and the size of the cavity defined by the barrier can adjust the sound frequency absorbing characteristics of the systems to a desired range.
The tire noise absorbing systems according to the exemplary embodiments described herein can provide several benefits. For example, reducing internal tire energy can reduce tire structure hysteresis. This affect can increase tread adhesion by reducing the energy that causes tread contact bounce. Further, reducing hysteresis can reduce the tire temperature, which can allow a tire manufacturer to use tire compounds with greater adhesion but lower maximum temperature. Reducing tire temperature also can extend the life of tires under racing conditions. For commercial applications, the reduction of temperature and the increase of adhesion can result in lower rolling resistance and greater tire life. This affect would result in significantly lower operating costs for applications such as heavy trucks and public transit. Each of these improvements can result in tire and automobile performance improvements.
The device increases tire life by absorbing energy inside the tire, thereby reducing contact bounce. This reduction increases adhesion of the tire to the road surface, which can reduce the scrubbing movement between the tire and road surface. Since scrubbing off rubber by adhesion slip is a large cause of tire wear, the tire noise absorbing systems can increase the dynamic performance and adhesion of a tire.
In addition, the device can reduce a tire's rolling resistance by providing a flexible energy damper disposed in contact with the internal surface of the tire's tread, which increases a tire's energy efficiency. As such, the device can reduce fuel consumption of the vehicle embodying the device. In addition, the spacer of the device can deflect the circular resonance.
In an alternative embodiment (not shown), the device can be mounted on both the rim 140 and the tire 160. For example, two devices, as described above with reference to
In another alternative exemplary embodiment (not shown), one or more micro-perforated metal layers can be used instead of cloth layers. The metal layers can be formed to have the desired shape around the circumference of the wheel 140, can be coupled to the wheel 140 or to a tire 160 mounted on the wheel 140, and can create an inner and outer air cavity 170, 180 between the tire 160 and the wheel 140. The perforations in the layers can restrict air flow between the outer and inner cavities 170, 180, thereby absorbing low-frequency energy of shock waves transmitted between the outer and inner cavities 170, 180 and vice versa. Additionally, if multiple layers are used, the shock waves can cause the multiple layers to move relative to each other, thereby absorbing additional energy by converting friction energy into heat. According to an exemplary embodiment, the perforations on the metal layers can produce a porosity in the range of about 10% to about 50% cavity fill at cavity saturation.
In yet another alternative embodiment (not shown), a ridge element can be situated along the internal surface of the tire's tread from one side to another or in a circular manner. In an exemplary embodiment, the ridge element comprise a thin cord of rubber, or another suitable material and shape. The ridge element can be arranged in the shape of a sine wave (or sinusoid), alternating from side to side along the internal surface of the tire's tread. Alternatively, the ridge can be arranged in a zigzag pattern along the internal surface of the tire's tread, or in another suitable arrangement. When a car upon which the tire 160 is put into motion, the deflection of the tire 160 as it travels along a road creates a circular resonance. The ridge element can deflect this circular resonance into a flow resistant barrier, thus reducing tire wear. The ridge element can be used alone, or in combination with any of the embodiments described above with references to
Although specific embodiments have been described above in detail, the description is merely for purposes of illustration. Various modifications of, and equivalent steps corresponding to, the disclosed aspects of the exemplary embodiments, in addition to those described above, can be made by those skilled in the art without departing from the spirit and scope of the invention defined in the following claims, the scope of which is to be accorded the broadest interpretation so as to encompass such modifications and equivalent structures.
This patent application is a continuation of U.S. patent application Ser. No. 12/894,857 entitled “Tire and Wheel Noise Reducing Device and System,” filed Sep. 30, 2010, which claims priority under 35 U.S.C. §§120 and 363 to International Patent Application No. PCT/US2009/039286 entitled “Tire and Wheel Noise Reducing Device and System,” filed Apr. 2, 2009, which claims priority under 35 U.S.C. §119 to U.S. Provisional Patent Application No. 61/072,940, entitled “Tire and Wheel Noise Reducing Device and System,” filed Apr. 3, 2008. The complete disclosure of the above identified priority applications is hereby fully incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61072940 | Apr 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12894857 | Sep 2010 | US |
Child | 13710242 | US | |
Parent | PCT/US09/39286 | Apr 2009 | US |
Child | 12894857 | US |