The present invention relates to a manufacturing method for tires, more specifically a method for improving the uniformity of a tire by reducing the green (uncured) tire radial runout. In a tire, and more precisely, a radial tire, the green tire radial runout (RRO) can be affected by many variables introduced from the process of assembly of the green tire. When the radial runout in a tire exceeds acceptable limits, the result may be unwanted vibrations affecting the ride and handling of the vehicle. For these reasons, tire manufacturers strive to minimize the level of radial runout in the tires delivered to their customers.
A well-known and commonly practiced method to improve the radial runout is to grind the tread surface of the tire in the zones corresponding to excess tread. This method is effective, but has the drawback of creating an undesirable surface appearance and of removing wearable tread rubber from the product. In addition, this method requires an extra manufacturing step and uses expensive equipment. Another approach is disclosed in U.S. Pat. No. 5,882,452 where the before cure radial runout of the tire is measured, followed by a process of clamping and reshaping the uncured tire to a more circular form.
Still another approach to a manufacturing method for improved uniformity involves a method where the factors relating to tire building and tire curing that contribute to after cure RRO or Radial Force Variation (RFV) are offset relative to a measured before cure RRO. An example of a typical method is given in Japanese Patent Application JP-1-145135. In these methods a sample group of tires, usually four, are placed in a given curing mold with each tire rotated an equal angular increment. The angular increment is measured between a reference location on the tire, such as a product joint, relative to a fixed location on the curing mold. Next, the tires are vulcanized and their composite RFV waveforms recorded. The term “composite waveform” means the raw waveform as recorded from the measuring device. The waveforms are then averaged by superposition of each of the recorded waveforms upon the others. Superposition is a point by point averaging of the recorded waveforms accomplished by overlaying the measured composite waveform from each tire. The effects of the vulcanization are assumed to cancel, leaving only a “formation” factor related to the building of the tire. In like manner, another set of sample tires is vulcanized in a curing mold and their respective RFV waveforms are obtained. The respective waveforms are again averaged by superposition, this time with the staring points of the waveforms offset by the respective angular increments for each tire. In this manner, the effects of tire building are assumed to cancel, leaving only a “vulcanization factor.” Finally, the average waveforms corresponding to the formation factor and the vulcanization factor are superimposed. The superimposed waveforms are offset relative to each other in an attempt to align the respective maximum of one waveform with the minimum of the other waveform. The angular offset thus determined is then transposed to the curing mold. When uncured tires arrive at the mold, each tire is then placed in the mold at the predetermined offset angle. In this manner, the formation and vulcanization contributions to after cure RFV are said to be minimized. A major drawback to this method is its assumption that the formation and vulcanization contributions to after cure RFV are equivalent for each tire. In particular, the factors contributing to the formation factor can vary considerably during a manufacturing run. In fact, these methods contain contradictory assumptions. The methodology used to determine the vulcanization factor relies on an assumption that the step of rotation of the tires in the curing mold cancels the tire building (or formation) effects. This assumption is valid only when the contribution of before cure RRO is consistent from one tire to the next tire, without random contributions. If this assumption is true, then the subsequent method for determination of the formation factor will produce a trivial result.
Further improvements have been proposed in Japanese Patent Application JP-6-182903 and in U.S. Pat. No. 6,514,441. In these references, methods similar to those discussed above are used to determine formation and vulcanization factor waveforms. However, these methods add to these factors an approximate contribution of the before cure RRO to the after cure RFV. The two methods treat the measured before cure RRO somewhat differently. In the method disclosed in reference JP-6-198203 optimizes RRO effects whereas the method disclosed in U.S. Pat. No. 6,514,441 estimates RFV effects by application of a constant stiffness scaling factor to the RRO waveform to estimate an effective RFV. Both these methods continue to rely on the previously described process of overlapping or superpositioning of the respective waveforms in an attempt to optimize after cure RFV.
The most important shortcoming of all the above methods is their reliance of superpositioning or overlapping of the respective waveforms. It is well known in the tire industry that the vehicle response to non-uniformity of RRO is more significant in the lower order harmonics, for example harmonics one through five. Since, the above methods use composite waveforms including all harmonics, these methods fail to optimize the RRO harmonics to which the vehicle is most sensitive. In addition, a method that attempts to optimize uniformity using the composite waveforms can be shown, in some instances, to produce RRO that actually increases the contribution of the important lower order harmonics. In this instance, the tire can cause more vehicle vibration problems than if the process were not optimized at all. Therefore, a manufacturing method that can optimize specific harmonics and that is free of the aforementioned assumptions for determining the effects of tire formation and tire vulcanization would be capable of producing tires of consistently improved uniformity. U.S. Pat. No. 6,856,929, owned in common with the present application, applies a similar approach to solving RFV non-uniformity.
In view of the above background, the present invention provides a tire manufacturing method that can effectively reduce the before cure radial radial runout (RRO) of each tire produced. The method of the present invention operates to independently optimize each harmonic of RRO. A composite RRO signal, such as those described above, is a scalar quantity that is the variation of the tire's radial runout at each angular position around the tire. When this composite is decomposed into its respective harmonic components, each harmonic of RRO can be expressed in polar coordinates as a before cure RRO vector. This vector has a magnitude equal to the peak-to-peak magnitude of the distance variation of the respective harmonic and an azimuth equal to the angular difference between the measuring reference point and the point of maximum RRO.
The invention provides a method for improving the uniformity of a tire comprising: gathering data to build a model of radial runout of a tire, and comprising the sub-step of extracting at least one harmonic of radial runout of said tire; deriving a vector equation as a sum of vectors corresponding to the contributors to green-tire radial runout; determining a set of vector coefficients from the vector equation; building said tire with a predetermined level of green tire radial runout; and applying the said vector equation and vector coefficients to future tires.
The invention further provides wherein the step of gathering data to build the model comprises: recording a carcass building drum identification; building a tire carcass; recording an angle at which the carcass is loaded onto said building drum; inflating the tire carcass and measuring radial runout measurements of the carcass; recording identification for a summit building drum; recording an angle at which the summit is loaded onto said summit building drum; building a tire summit; obtaining a radial runout measurement of the tire summit; recording a transfer ring identification; transferring the summit from said summit building drum onto the inflated tire carcass; recording a transfer ring angle; and obtaining green tire radial runout measurements.
The method of the present invention provides a significant improvement over previous methods by employing a vectorial representation of the several factors that contribute to the measured before cure RRO for a tire produced by a given process. The before cure RRO vector is modeled as a vector sum of each of the vectors representing RRO contributions arising from the tire building steps—the “tire room effect vector.” For a series of tires, the method obtains such measurements as the before cure radial runout (RRO) at one or more stages of the building sequence and measurements of loading angles on the tire building tools and products.
The present invention further improves on previously described methods since it does not rely on manipulation of the measured, composite RRO waveforms to estimate the tire room effects and does not rely on any of the previously described assumptions. The present invention uses the aforementioned measured data as input to a single analysis step. Thus, the coefficients of all the sub-vectors are simultaneously determined. Once these coefficients are known, the tire room effect vector is easily calculated. In summary, the first step of the method comprises gathering data, including carcass radial runout, summit radial runout and green tire radial runout in order to model at least one harmonic of radial runout of the tire; deriving a vector equation as a sum of vectors corresponding to the contributors to green-tire radial runout; determining a set of vector coefficients from the vector equation; and minimizing radial runout, or alternatively building intentionally out of round tires, by applying the gathered data to future tires.
The method of the invention has an additional advantage owing to its simultaneous determination of the sub-vectors. Unlike previous methods, the method of the invention does not require any precise angular increments of the loading positions to determine the sub-vectors. This opens the possibility to continuously update the sub-vector coefficients using the measured data obtained during the production runs. Thus, the method will take into account production variables that arise during a high volume production run.
The invention will be better understood by means of the drawings accompanying the description, illustrating a non-limitative example of the execution of the tire manufacturing method for improving the uniformity of a tire according to the invention.
Reference will now be made in detail to exemplary versions of the invention, one or more versions of which are illustrated in the drawings. Each described example is provided as an explanation of the invention, and not meant as a limitation of the invention. Throughout the description, features illustrated or described as part of one version may be usable with another version. Features that are common to all or some versions are described using similar reference numerals as further depicted in the figures.
Modern pneumatic tires are generally manufactured with great care and precision. The tire designer's goal is that the finished tire is free of non-uniformity in either the circumferential or lateral directions. However, the designer's good intentions notwithstanding, the multitude of steps in the tire manufacturing process can introduce a variety of non-uniformities. An obvious non-uniformity is that the tire may not be perfectly circular (radial runout or RRO). Another form of non-uniformity is radial force variation (RFV). Consider a tire mounted on a freely rotating hub that has been deflected a given distance and rolls on a flat surface. A certain radial force reacting on the flat surface that is a function of the design of the tire can be measured by a variety of known means. This radial force is, on average, equal to the applied load on the tire. However, as the tire rolls, that radial force will vary slightly due to variations in the internal tire geometry that lead to variations in the local radial stiffness of the tire. These variations may be caused on the green tire by localized conditions such as product joints used in the manufacture of the green tire, inaccurate placement of certain products. The process of curing the tire may introduce additional factors due to the curing presses or slippage of products during curing.
In the description of an example of the method that follows, the particular example is confined to the optimization of the first harmonic H1. However, it is within the scope of the present invention to apply the method to optimize a different harmonic such as H2, H3, etc. Likewise, the following example describes the optimization of radial runout, whereas it is within the scope of the invention to apply the method to the correction of other uniformity characteristics such as radial force variation or lateral force variation. In brief, the method may be used to optimize the harmonics of any measurable uniformity characteristic with suitable modifications to the vector equations described below.
The measurement of green tire RRO (xii) is preferably at the completion of tire building and before the green tire is removed from the building drum 15. The Carcass gain vector (x) and Summit gain vector (xi) are also shown in
The sub-vector advantage can also be use to improve the curing room effects. An effect similar to the foregoing false RRO exists for measurement of after cure RFV. That is, the measurement machine itself introduces a contribution to the as-measured tire RFV.
The foregoing graphical representations in vector space can now be recast as equation (1) below where each term represents the vectors shown in the example of
FRH1=(FRH1cr Effect vector)+(FRH1sr Effect vector)+(1st Stage Building Drum RRO vector)+(2nd Stage Building Drum RRO vector)+(Summit Building Drum RRO vector)+(Transfer Ring RRO vector)+(Belt1 Ply RRO vector)+(Belt2 Ply RRO vector)+(Cap RRO vector)+(Tread RRO vector) (1)
The preceding equation applies to modeling the 1st harmonic of radial runout, but holds for other harmonics such as FRH2-FRH5 as well.
The first step in implementation of the method is to gather data to build the modeling equation. The Green RRO and Effect vectors are measured quantities. The challenge is to estimate the gain vectors, the product vectors, the tooling vectors and the intercept vector. This is accomplished by vector rotation and regression analysis.
First, a reference point on the tire, such as a barcode applied to the carcass or a product joint that will be accessible through then entire process is identified. In the specific example described herein, the invention contains an improvement to account for the radial runout of the measurement drum itself. This effect may be significant when the tire building drum 15 is used as the measurement drum. The loading angle of the tire carcass on the measurement drum is recorded. For this specific example, the loading angle is measured as the carcass 10 is loaded on either the first stage of a unistage or a second stage of a two-stage machine. It is advantageous to ensure a wide variation of the loading angle within a given sample of tires to ensure accurate estimation of the effect of the measurement drum runout on the vector coefficients.
Next, the RRO of the finished, green tire 30 is measured by a measurement device 70 while the tire is mounted on the finishing stage building drum 15 and rotated. Alternatively, the finished, green tire may be moved to separate measurement apparatus and the RRO measurement made there. This RRO measurement is repeated for multiple tires to randomize the effects that are not modeled. There are many known devices 70 to obtain the RRO measurement such as a non-contact system using a vision system or a laser. It has been found that systems for measurement of radial runout that are based on tangential imaging are preferred to those using radial imaging. The RRO data thus acquired are recorded in a computer 80.
Once these data have been acquired for a suitable sample of tires, the harmonic data are extracted from the RRO waveforms. In the present invention the first harmonic data of the green radial runout GR1 (magnitude FRM1 and azimuth FRA1), carcass runout (magnitude FRM1cr and azimuth FRA1cr) and summit runout (magnitude FRM1sr and azimuth FRA1sr) respectively are extracted and stored. The following table indicates the specific terminology.
To facilitate rapid application of equation (1) in a manufacturing environment, it is advantageous to use a digital computer to solve the equation. This requires converting the vector equations above to a set of arithmetic equations in Cartesian coordinates. In Cartesian coordinates, each vector or sub-vector has an x-component and a y-component as shown in the example below:
FRH1X=(FRM1)*COS(FRA1), and FRH1Y=(FRM1)*SIN(FRA1) (2)
The dependent vector (FRH1rx,FRH1ry) is the sum of the vectors in the equations below.
FRH1rx=Gcr·FRM1cr·COS(θ+FRA1cr)+Gsr·FRM1sr·COS(c+FRA1sr)+BM1r·COS(BA1r+CBD—REF)+TM1r·COS(TA1r+FBD—REF)+SM1r·COS(SA1r+SBD—REF)+RM1r·COS(RA1r+TSR—REF)+NM1r·COS(NA1r+NBD—REF)+BZM1r·COS(BZA1r+BBD—REF)+KM1r·COS(KA1r+KBD—REF)+IM1r·COS(IA1r) (3)
FRH1ry=Gcr·FRM1cr·SIN(θ+FRA1cr)+Gsr·FRM1sr·SIN(θ+FRA1sr)+BM1r·SIN(BA1r+CBD—REF)+TM1r·SIN(TA1r+FBD—REF)+SM1r·SIN(SA1r+SBD—REF)+RM1r·SIN(RA1r+TSR—REF)+NM1r·SIN(NA1r+NBD—REF)+BZM1r·SIN(BZA1r+BBD—REF)+KM1r·SIN(KA1r+KBD—REF)+IM1r·SIN(IA1r) (4)
Expanding these equations with standard trigonometric identities yields:
FRH1rx=Gcr·COS(θ)·FRM1cr·COS(FRA1cr)−Gcr·SIN(θ)·FRM1cr·SIN(FRA1cr)+Gsr·COS(θ)·FRM1sr·COS(FRA1sr)−Gsr·SIN(θ)·FRM1sr·SIN(FRA1sr)+BM1r·COS(BA1r)·COS(CBD—REF)−BM1r·SIN(BA1r)·SIN(CBD—REF)+TM1r·COS(TA1r)·COS(FBD—REF)−TM1r·SIN(TA1r)·SIN(FBD—REF)+SM1r·COS(SA1r)·COS(SBD—REF)−SM1r·SIN(SA1r)·SIN(sBD—REF)+RM1r·COS(RA1r)·COS(TSR—REF)−RM1r·SIN(RA1r)·SIN(TSR—REF)+NM1r·COS(NA1r)·COS(NBD—REF)−NM1r·SIN(NA1r)·SIN(NBD—REF)+BZM1r·COS(BZA1r)·COS(BBD—REF)−BZM1r·SIN(BZA1r)·SIN(BBD—REF)+KM1r·COS(KA1r)·COS(KBD—REF)−KM1r·SIN(KA1r)·SIN(KBD—REF)+IM1r·COS(IA1r) (5)
FRH1ry=Gcr·COS(θ)·FRM1cr·SIN(FRA1cr)+Gcr·SIN(θ)·FRM1cr·COS(FRA1cr)+Gsr·COS(θ)·FRM1sr·SIN(FRA1sr)+Gsr·SIN(θ)·FRM1sr·COS(FRA1sr)+BM1r·COS(BA1r)·SIN(CBD—REF)+BM1r·SIN(BA1r)·COS(CBD—REF)+TM1r·COS(TA1r)·SIN(FBD—REF)+TM1r·SIN(TA1r)·COS(FBD—REF)+SM1r·COS(SA1r)·SIN(SBD—REF)+SM1r·SIN(SA1r)·COS(sBD—REF)+RM1r·COS(RA1r)·SIN(TSR—REF)+RM1r·SIN(RA1r)·COS(TSR—REF)+NM1r·COS(NA1r)·SIN NBD—REF)+NM1r·SIN(NA1r)·COS(NBD—REF)+BZM1r·COS(BZA1r)·SIN(BBD—REF)+BZM1r·SIN(BZA1r)·COS(BBD—REF)+KM1r·COS(KA1r)·SIN(KBD—REF)+KM1r·SIN(KA1r)·COS(KBD—REF)+IM1r·COS(IA1r) (6)
To simplify the expanded equation, convert from polar to Cartesion coordinates and introduce the following identities:
a=Gcr·COS(θ), b=Gcr·SIN(θ) (7)
c=Gsr·COS(θ), d=Gsr·SIN(θ) (8)
e=BM1r·COS(BA1r), f=BM1r·SIN(BA1r) (9)
g=TM1r·COS(TA1r), h=TM1r·SIN(TA1r) (10)
i=SM1r·COS(SA1r), j=SM1r·SIN(SA1r) (11)
k=RM1r·COS(RA1r), l=RM1r·SIN(RA1r) (12)
m=NM1r·COS(NA1r), n=NM1r·SIN(nA1r) (13)
o=BZM1r·COS(BZA1r), p=BZM1r·SIN(BZA1r) (14)
q=KM1r·COS(KA1r), r=KM1r·SIN(KA1r) (15)
Substituting these identities into the expanded form of equations (3) and (4) yields:
FRH1rx=a·FRM1crx−b·FRM1cry+c·FRM1srx−d·FRM1sry+e·CBD—REFx−f·CBD—REFy+g·FBD—REFx−h·FBD—REFy+i·SBD—REFx−j·SBD—REFy+k·TSR—REFx−l·TSR—REFy+m·NBD—REFx−n·NBD—REFy+o·BBD—REFx−p·BBD—REFy+q·KBD—REFx−r·KBD—REFy+Ix (16)
FRH1ry=a·FRM1cry+b·FRM1crx+c·FRM1sry+d·FRM1srx+e·CBD—REFy+f·CBD—REFx+g·FBD—REFy+h·FBD—REFx+i·SBD—REFy+j·SBD—REFx+k·TSR—REFy+l·TSR—REFx+m·NBD—REFy+n·NBD—REFx+o·BBD—REFy+p·BBD—REFx+q·KBD—REFy+r·KBD—REFx+Iy (17)
The equations (16) and (17) immediately above can be written in matrix format. When the predictive coefficients vectors (a,b), (c,d), (e,f), (g,h), (i,j), (k,l), (m,n), (o,p), (q,r), and (I1X,I1Y) are known, the matrix equation provides a modeling equation by which the VRH1 vector for an individual tire may be estimated. This basic formulation can also be modified to include other process elements and to account for different production organization schemes. These coefficient vectors may be obtained by various known mathematical methods to solve the matrix equation above.
In a manufacturing environment and to facilitate real-time use and updating of the coefficients, the method is more easily implemented if the coefficients are determined simultaneously by a least-squares regression estimate. All coefficients for all building drums and products may be solved for in a single regression step. Finally the vector coefficients are stored in a database for future use. The coefficients have a physical significance as follows: (a,b) is the carcass gain vector in units of mm of GTFR, (c,d) is the summit gain vector in units of mm of GTFR, (e,f) is the first stage building drum vector in units of mm of GTFR, (g,h) is the second stage building drum vector in units of mm of GTFR, (i,j) is the summit building drum vector in units of mm of GTFR, (k,l) is the transfer ring vector in units of mm of GTFR, (m,n) is the belt ply vector in units of mm of GTFR, (o,p) is the cap vector in units of mm of GTFR, (q,r) is the tread vector in units of mm of GTFR and (IX,IY) is the Intercept vector I1 in units of mm of GTFR.
The equations listed above are for one first stage building drum, one second stage building drum, one summit building drum, etc. The products and tooling factors are nested factors meaning that although the actual process contains many building drums and many products, each tire will see only one of each. Thus the complete equation may include a vector for each building drum and each product.
The final step is to apply the model to optimize the RRO of individual tires as they are manufactured according to the illustration shown in
Another advantageous and unique feature of the invention is the ability to update the predictive coefficients vectors with the data measured from each individual tire to account for the constant variations associated with a complex manufacturing process. Because the green RRO is continuously measured, the model may be updated at periodic intervals with these new production data so as to adjust the predictive equations for changes in the process. These updates may be appended to the existing data or used to calculate a new, independent set of predictive coefficient vectors which may replace the original data.
It should be understood that the present invention includes various modifications that can be made to the tire manufacturing method described herein as come within the scope of the appended claims and their equivalents.
This application is a continuation-in-part of previously filed PCT application “Tire Manufacturing Method For Improving The Uniformity Of A Tire”, assigned PCT/US2004/039021, filed Nov. 19, 2004, which is a continuation-in-part of PCT application “Tire Manufacturing Method For Improving The Uniformity Of A Tire”, assigned PCT/IB2003/006462, filed Nov. 21, 2003.