1. Field of the Invention
The embodiments of the invention are directed to an apparatus and method for stopping moving vehicles by external means. Specifically, apparatus are provided which employ a housing containing a net that entangles the wheels to the point of loss of rotational motion, thereby causing the vehicle to skid to a stop.
2. Description of Related Art
While conducting checkpoint operations or providing security for fixed locations, the military and/or state and local officials have the need to selectively stop vehicles while searching for weapons, wanted persons or illegal contraband. During these checkpoint operations, it is important for police to have a non-lethal tool that can effectively stop a vehicle that fails to proceed as directed.
While there are a wide range of mechanisms available that attempt to immobilize moving vehicles, current tools suffer issues with portability, selectivity, and effectiveness. Devices that are sufficiently small enough to be transportable and work by deflating tires are not generally effective at stopping vehicles within an appropriate distance. Those devices that are portable and can stop vehicles within appropriate distances are generally not selective (stopping all traffic when deployed and not able to quickly disarm/arm to allow friendly traffic to pass.) Larger, more permanent devices (i.e. full vehicle entrapment or barrier systems) often have the ability to be selectively armed, but require a large infrastructure investment to install and cannot typically be relocated as checkpoint or vehicle entry points change.
An embodiment of the invention is directed to an apparatus for inhibiting the rotation of the tires of a vehicle comprising a housing adapted to releasably contain a net having spikes arranged at a leading edge of the net and an actuator that transmits an electronic command to expose the spikes to the moving vehicle. The housing of the apparatus may be located below ground or above ground. The apparatus may also include a ramp for oncoming traffic whereby the oncoming traffic will normally slow in response to the presence of the ramp. The apparatus may have multiple sections that interlock with one another and together house a single unitary net. Another embodiment of the invention includes separate housing sections, each section individually housing an individual net, respectively, and each net having connectors at its lateral periphery that connect the individual nets to each other. The net of the present embodiment comprises a leading edge adapted to engage the tires and a trailing edge. The leading edge further comprises loops of material connected to or integral with the net, the loops forming an opening sufficient to allow the spikes to grasp the net when the housing is actuated to the “spikes exposed” position. The trailing edge of the net is connected to a releasable elastic restraining element such as a bungee cord whereby upon being fully stretched the bungee cords will tear away from the housing. The longitudinal edges of the net comprise lateral stringers attached at an inner cell junction and threaded through the cells towards the edge. The stringers thread through net cells along the edge, and then through cells laterally inward, where they attach at another inner cell junction. A cartridge containing the net is used to store and transport nets, which are only used once and then may be disposed of. The spikes may be deployed singly or, in a preferred embodiment, the spikes comprise at least two barbs adapted to penetrate a pneumatic tire, the spikes also having a hook or similar device for grasping a loop of the leading edge of the net. The spikes are supported on a platform that is movable between the exposed and unexposed positions. Within the housing are supporting ledges for the spikes. In order to actuate the housing, electromagnetic signals are sent to the housing for positioning the spikes in the spikes exposed or spikes unexposed positions. The actuator may comprise a wirelessly-activated electric motor, or it may be a hard-wired connection.
Another embodiment of the present invention is an apparatus for inhibiting the motion of a vehicle comprising a housing having a cavity, the cavity adapted to contain a net so that the net may be made available for release on command; tire engagement spikes supported by the housing, the spikes being movable to a first position to engage the tires of an oncoming vehicle, the spikes also being movable to a second position to avoid tire engagement, the spikes being positioned to grasp the net when in the first position; and an actuator for moving the spikes between the first and the second positions on command.
Another embodiment of the invention is a method for inhibiting the motion of a moving vehicle, comprising the steps of providing a housing in the path of the vehicle, the housing being adapted to releasably contain a net having spikes arranged at a leading edge of the net; and transmitting an electronic command manually to a motor that exposes the spikes to the moving vehicle. The method further comprises the step of transmitting an electronic command automatically to a motor that exposes the spikes to the moving vehicle. The vehicle may be selected from amongst a group of vehicles, thereby adding a degree of selectivity to the invention. The method further includes engaging the front tires of the vehicle by puncturing them with the spikes and then wrapping the net around the front tires as they continue to rotate, tightening the net around the axles of the vehicle and stopping continued forward rotation whereby forward motion is significantly constrained.
Another embodiment of the present invention is a method of inhibiting the motion of a moving vehicle comprising the steps of providing a housing in the path of the vehicle, the housing being adapted to releasably contain a net having spikes arranged at a leading edge of the net; transmitting an electronic command manually to a motor that exposes the spikes to the moving vehicle; engaging the tires of the moving vehicle with the spikes by puncturing them; pulling the net from the housing by wrapping the net around the tires as the tires continue to move forward; and limiting continued forward motion by tightening the net around the axles thereby ultimately constraining the tires from further rotation.
Another embodiment of the invention is a net comprising a body, the body comprising a series of diamond-shaped interwoven cells formed from the interconnection of strands of rope or other linear material, a leading edge adapted to engage tires of a vehicle, the leading edge comprising loops or partially disconnected cells of material integrally connected to said net, a trailing edge having elastic components attached intermittently to the trailing edge of the net in breakaway design; and edge treatments comprising stringers that laterally traverse the edge of said net from the outer portion of said net to a position inboard, the length of said stringer being sufficient to cinch tires as they are enwrapped.
The inventors have developed the Tire Rapid Entangling and Arresting Device (TREAD) specifically to meet the modern requirements of stopping vehicles safely and controllably by use of external means. One application is a checkpoint stop. Initial testing clearly established that the TREAD, while small enough to be portable within common police and military vehicles, could deploy a net system from a speed bump-shaped module and stop passenger cars and light trucks at speeds of 30 mph within 100 feet. Initial tests on Class-8 tractors ballasted up to 50,000 pounds have also shown that the TREAD can be effective against this size vehicle; however stopping distances are highly dependant on the total vehicle mass. In all tests, vehicle speed was significantly affected and the steering control limited immediately after the TREAD was engaged and generally, the vehicle is quickly brought to a complete stop.
The various embodiments of the invention are directed to apparatus and methods for inhibiting the rotation of the tires of a vehicle comprising a housing adapted to releasably contain a net having spikes arranged at a leading edge of the net, and an actuator that transmits an electronic command to expose the spikes to the vehicle. The general operational concept is that as the vehicle approaches the apparatus, the checkpoint operator selects the vehicle to be stopped after the vehicle's driver has missed or disobeyed a command to stop. As the vehicle rolls over the exposed spikes, the spikes are embedded in the tires, the continued forward motion of the vehicle draws the attached net out of the housing, the net entangles the wheels, tightens, and finally prevents further wheel rotation.
The inventive method includes inhibiting the motion of the moving vehicle comprising the steps of providing the aforementioned housing in the path of the vehicle, the housing being adapted to releasably contain a net having spikes arranged at a leading edge of the net, transmitting an electronic command manually to an actuator that exposes the spikes to the moving vehicle, engaging the tires of the moving vehicle with the spikes by puncturing them, pulling the net from the housing by wrapping the net around the tires as the tires continue to move forward, and finally limiting continued forward motion by self-tightening of the net around the axles thereby ultimately constraining the tires from further rotation.
Particular attention is directed to
The TREAD deployment system is specifically designed to address the selectivity requirement for traffic stop scenarios—i.e. some vehicles should be allowed to pass, while others must be stopped. The modular speed-bump/net deployment design is unique and has several advantages over existing systems:
The modular design of the TREAD permits compact packaging for transport. In a preferred embodiment the TREAD consists of four deployment modules containing tire spikes supported by a vertically movable spike platform. Each module is approximately 4.5 feet wide, 2 feet long and 4.5 inches in height, weighs approximately 120 lbs, and is equipped with handles for ease of transport. Each module has its own motor with receiver so that it may be controlled individually. In multi-unit modules all motor-receiver units can be set to the same frequency, or interconnected so that their response to an electronic command is simultaneous and identical.
Individual housing modules such as shown in
In one embodiment the TREAD is designed to operate as a traffic speed control device in its unarmed state. By shaping the housing in the form of a speed bump, approaching traffic will be slowed at the traffic checkpoint in a fashion similar to that of a standard speed bump (though it is also possible to recess the TREAD within the road surface to present a lower profile to oncoming traffic).
In the single-net embodiment designed for four modules to contain a single net, a single net cartridge spans the width of the four TREAD modules which is sufficient to control a single lane of traffic. Alternate embodiments may have practically any number of modules per traffic lane, the only limiting factor being the length of the module in relation to the width of the traffic lane to be covered. The cartridge can be folded to allow transport by one person. The replaceable cartridge system allows quick initial deployment while assuring and maintaining the proper net fold pattern and positioning within the housings. The correct net fold pattern is important due to the high velocity at which the net can be deployed from the housing. The unique cartridge system has been designed to provide spike connection during the arming process, minimizing initial deployment time. In an individual net embodiment of the invention, individual nets fit within each module but may be synchronously controlled for deployment.
In one embodiment arming controls for the TREAD consist of a remote hand-held electronic enclosure with an arming toggle and an indicator light for TREAD status. Each TREAD module is actuated by a single electric motor that is selected for extended performance in hot, cold, dusty, wet and sandy environments. A protective housing door or cover allows vehicles to safely pass over the spikes in the unarmed state. When the TREAD is armed, the housing doors rotate or flip back and the spikes rise to the armed/exposed position.
Once the operator presses the remote ARM trigger, the TREAD is active and exposes the series of spikes or staples in less then one second. The TREAD can be set in either “normally open” or “normally closed” default states, with manual control of the default state change. This allows operators to either actively arm the system or actively disarm the system, depending on the threat environment at the checkpoint location. In the armed configuration, the net will engage and entangle the next wheeled vehicle that attempts to cross the TREAD. In order to allow the clearance of the disabled vehicle out of the checkpoint area (TREAD deployment area), the TREAD net can be removed from the target vehicle. It has been the inventor's experience that the net can be removed in approximately 10 minutes using the proper tools. Because of the material strength, the net is not easily cut with conventional knives; however, it can be cut using specialized scissors or a hot-knife. Specialized handheld cutting devices are provided as part of the TREAD tool kit. Once the net is removed, the target vehicle can be driven over short distances under its own power—likely with two flat tires. In prototype testing of the system, the vehicle sustained tire damage but no significant body or mechanical damage during the arresting process. Several usage scenarios are possible with the TREAD system including laying multiple units end to end to control the flow of multiple traffic lanes and laying multiple rows of tread systems across a road lane so that several vehicles in series could be stopped before reloading the TREAD housings with new cartridges.
The following embodiments are illustrations of the inventions discussed herein, and should not be applied so as to limit the appended claims in any manner.
A first embodiment of the invention will now be introduced. With attention directed to
Spike platform 40 has two main functions, the first being to provide a support point for the spikes, and the second to move from a position where the spikes are exposed to vehicular traffic (also known as the “open” position) to the second position of having the spikes unexposed or covered (“closed” position). In order to allow for coordinated movement of the spikes and the cover 31, and as shown in
The housing may be adapted to support two forms of the device, depending upon whether the spikes are integral with the net, or are separately stored in the housing until such time as the net is loaded into the net cavity of the housing. The embodiment shown immediately above presumes the spikes are separate from the net. This is preferred for safety reasons because the net cartridge will not contain the spikes and so its handling and transport will be significantly less dangerous. Other embodiments of the invention may include the spikes being integral with the net, but protected by covers that would be removed upon completion of loading of the net into the housing. Anchoring the spikes to the leading portion of the net could be accomplished in numerous ways, for example the spikes could be simply threaded through the individual strands of the net. Another way to anchor the spikes is to form two or more holes in the spike base and then attach the net cells through the holes in the spike base. Yet a third way is to form a grommet or hole in the net itself which would then be looped over the spike One of ordinary skill will be able to create any number of different ways to accomplish the result of attaching the spikes to the net, all of which come within the spirit and scope of the present invention.
A second preferred embodiment of the invention is embodied by
A fourth preferred embodiment of the invention is shown in
Rotation of the housing cover assembly is accomplished, as in the previous embodiments, by transfer of rotational motion through an electric motor and interconnected gears and/or chains.
With respect to all embodiments of the vehicle capture device, an actuator that transmits an electronic command to expose the spikes to the vehicle is used by the operator to activate the raising or lowering of the housing cover. The actuator is defined to be a mechanism for opening or closing the cover of the housing to expose or alternatively to cover the spikes. In a preferred embodiment, the actuator device may be a combination of a hand-held wireless transmitter device such as a cell phone, and a receiver which is attached to the motor located inside the housing. Upon receipt of the signal, the motor will then be instructed to open or close the cover, depending on the specific signal received. In other embodiments the actuation function is accomplished by use of a hard-wired connection to the units and their respective motors simply by pushing a button, or transmitting a number or series of numbers on a keypad. It is likely that no matter what specific actuation embodiment is chosen, electronic signal transmission will be the preferred embodiment. For example, the wireless signal transmission device may vary from a radio transmitter to an infrared transmitter. Devices and methods of transmitting signals are well known to one of ordinary skill. Non-electrical actuators may include pneumatic hoses, manually-pulled wire cables, etc. It is well within the level of ordinary skill in the art to select different methods of non-electrical signal transmission.
The firmware utilized in this design allows for the system to process each command and act appropriately. If the system receives an unrecognized command it will ignore it and keep monitoring all of the other inputs until a correct procedure is received. With attention directed to
With attention directed to
A second innovation in the design of this net are the edge treatments 90, which are designed to minimize the amount of net required outboard of the wheel to stop a vehicle by taking advantage of the lateral expansion of the net as it engages with suspension components and begins to retard wheel rotation. The edge treatments 90 are best seen in
The edge treatments 90 are created from two separate pieces of 5/16″ diameter DYNEEMA® brand rope per edge. DYNEEMA brand polyethylene rope is preferred, although similar high-strength ropes may also be substituted in the net of the invention. The two pieces of rope are staggered to maximize the cinching effect. A preferred embodiment is composed of five lateral stringers, three from one continuous piece of rope and two from another, separate continuous piece of rope. Additionally, the offset design with multiple pieces of rope is more effective than a single length of rope (the drawstring example) because in addition to the cinching action, it creates a separate “net” on the outside of the wheel that helps hold the body of the net in place. The DYNEEMA is used so that the edge treatments have the same abrasion resistance and load-carrying capacity as the rest of the net. The ends of the edge treatments are simply tied to the net at cell intersections and then woven between each cell of the net to loosely hold it into place.
Other preferred embodiments of the net 80 are seen in
The following data were collected during testing of the embodiments of the invention discussed above, which data is presented in partial support of the utility of the inventions. The second and fourth embodiments were used during some of the testing, while additional tests were conducted using wooden housing mock-ups. The primary net embodiment is depicted in
Repeatability tests were conducted for several configurations. The tests were conducted at a speed of 30 mph with no throttle application after initial net engagement. As indicated in Table 1, the reported stopping distances are approximate.
As can be seen from the data in the “Coupe” entry, a medium-sized car was stopped in approximately 60 feet using the disclosed invention, while a heavy truck took considerably longer (250 feet) to stop.
Many alterations and modifications may be made by those having ordinary skill in the art without departing from the spirit and scope of the invention. Therefore, it must be understood that the illustrated embodiments have been set forth only for the purposes of example and that it should not be taken as limiting the invention as defined by the following claims. For example, notwithstanding the fact that the elements of a claim are set forth below in a certain combination, it must be expressly understood that the invention includes other combinations of fewer, more or different elements, which are disclosed in the above even when not initially claimed in such combinations.
The words used in this specification to describe the various embodiments of the invention are to be understood not only in the sense of their commonly defined meanings, but to include by special definition in this specification structure, material or acts beyond the scope of the commonly defined meanings. Thus if an element can be understood in the context of this specification as including more than one meaning, then its use in a claim must be understood as being generic to all possible meanings supported by the specification and by the word itself.
The definitions of the words or elements of the following claims are, therefore, defined in this specification to include not only the combination of elements which are literally set forth, but all equivalent structure, material or acts for performing substantially the same function in substantially the same way to obtain substantially the same result. In this sense it is therefore contemplated that an equivalent substitution of two or more elements may be made for any one of the elements in the claims below or that a single element may be substituted for two or more elements in a claim. Although elements may be described above as acting in certain combinations and even initially claimed as such, it is to be expressly understood that one or more elements from a claimed combination can in some cases be excised from the combination and that the claimed combination may be directed to a subcombination or variation of a subcombination.
Insubstantial changes from the claimed subject matter as viewed by a person with ordinary skill in the art, now known or later devised, are expressly contemplated as being equivalently within the scope of the claims. Therefore, obvious substitutions now or later known to one with ordinary skill in the art are defined to be within the scope of the defined elements.
The claims are thus to be understood to include what is specifically illustrated and described above, what is conceptually equivalent, what can be obviously substituted and also what incorporates the essential idea of the invention. All patents and references cited herein are explicitly incorporated by reference in their entirety.
The U.S. Government has a paid-up license in this invention and the right in limited circumstances to require the patent owner to license others on reasonable terms as provided for by the terms of Contract No. W91CRB-07-D-0013 awarded by the United States Army.
Number | Name | Date | Kind |
---|---|---|---|
4318079 | Dickinson | Mar 1982 | A |
4759655 | Gorlov | Jul 1988 | A |
4818137 | Gorlov | Apr 1989 | A |
4923327 | Gorlov | May 1990 | A |
5026230 | Dolezych et al. | Jun 1991 | A |
5301277 | Kanai | Apr 1994 | A |
5310277 | Uotila | May 1994 | A |
5330285 | Greves et al. | Jul 1994 | A |
5498102 | Bissell | Mar 1996 | A |
5634738 | Jackson et al. | Jun 1997 | A |
5775832 | Kilgrow et al. | Jul 1998 | A |
5890832 | Soleau | Apr 1999 | A |
6048128 | Jones, III et al. | Apr 2000 | A |
6062765 | Dotson | May 2000 | A |
6220781 | Miller | Apr 2001 | B1 |
6312188 | Ousterhout et al. | Nov 2001 | B1 |
6322285 | Ben | Nov 2001 | B1 |
6409420 | Horton et al. | Jun 2002 | B1 |
6443385 | Grandauer et al. | Sep 2002 | B1 |
6474903 | Marts et al. | Nov 2002 | B1 |
6896443 | Ousterhout et al. | May 2005 | B1 |
7056054 | Keith et al. | Jun 2006 | B1 |
7121760 | Curry, Jr. | Oct 2006 | B1 |
7125197 | Krewsun et al. | Oct 2006 | B2 |
7179015 | Rittenhouse et al. | Feb 2007 | B1 |
7195419 | Gelfand | Mar 2007 | B2 |
7201531 | Shackelford et al. | Apr 2007 | B2 |
7210875 | Christle et al. | May 2007 | B1 |
7220076 | Boll | May 2007 | B2 |
7226238 | Collier | Jun 2007 | B2 |
20050214071 | Collier | Sep 2005 | A1 |
20050244223 | Shackelford et al. | Nov 2005 | A1 |
20060140715 | Lyddon et al. | Jun 2006 | A1 |
20060245828 | Jonasz et al. | Nov 2006 | A1 |
20070140791 | Gelfand | Jun 2007 | A1 |
20090317185 | Coomber et al. | Dec 2009 | A1 |
20100196092 | Castro et al. | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
1 873 315 | Jan 2008 | EP |
WO2004072382 | Aug 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20100178104 A1 | Jul 2010 | US |