Tire tread rubber composition and related methods

Information

  • Patent Grant
  • 12365787
  • Patent Number
    12,365,787
  • Date Filed
    Thursday, May 28, 2020
    5 years ago
  • Date Issued
    Tuesday, July 22, 2025
    a day ago
Abstract
Disclosed herein are tire tread rubber compositions comprising a specified elastomer component, reinforcing silica filler, a combination of specified hydrocarbon resins, liquid plasticizer, and a cure package. The elastomer component includes styrene-butadiene rubber; polybutadiene; and natural rubber, polyisoprene, or a combination thereof. Also disclosed are methods for providing a tire tread having improved dry handling and wet traction performance.
Description
FIELD

The present application is directed to tire tread rubber compositions and related methods.


BACKGROUND

Tires comprise many components including a road-contacting tread. The particular ingredients used to prepare the rubber composition which comprises the tire tread may vary. Formulation of tire tread rubber compositions is a complex science since changes to the formulation which result in an improvement in one property (e.g., wet performance) may result in deterioration of another property (e.g., dry traction).


SUMMARY

Disclosed herein are rubber compositions for tire treads and related methods.


In a first embodiment, a tire tread rubber composition is disclosed. The composition is made of ingredients comprising: (a) 100 parts of an elastomer component comprising (i) 15-35 parts of at least one styrene-butadiene rubber having a Tg of about −10 to about −20° C., (ii) 51-60 parts of polybutadiene having a cis 1,4-bond content of at least 95% and a Tg of less than −101° C., and (iii) 20-35 parts of natural rubber, polyisoprene, or a combination thereof; (b) 100-150 phr of at least one reinforcing silica filler having a surface area of about 100 to about 300 m2/g, preferably about 100 to about 200 m2/g; (c) no more than 15 phr of carbon black, preferably no more than 10 phr; (d) 25-50 phr of at least two hydrocarbon resins including (i) a first resin having a Tg of about 70 to about 110° C., preferably about 80 to about 100° C., and (ii) a second resin having a Tg of about 30 to about 50° C., wherein the ratio of the first resin to the second resin is 1/1 to 5/1, preferably 1/1 to 3/1; (e) 10-30 phr of at least one liquid plasticizer; and (f) a cure package.


In a second embodiment, a tire tread rubber composition is disclosed. The composition is made of ingredients comprising: (a) 100 parts of an elastomer component comprising (i) about 20 to about 30 parts of at least one non-functionalized styrene-butadiene rubber having a Mw of at least 600,000 grams/mole, more preferably 600,000 to 1,200,000 grams/mole, (ii) about 51 to about 60 parts of polybutadiene having a cis 1,4-bond content of at least 95% and a Tg of less than −101° C., and (iii) about 20 to about 30 parts of natural rubber, polyisoprene, or a combination thereof; (b) about 120 to about 140 phr of at least one reinforcing silica filler having a surface area of about 100 to about 200 m2/g; (c) about 5 to about 10 phr of carbon black; (d) about 30 to about 40 phr of at least two hydrocarbon resins including (i) a first resin having a Tg of about 70 to about 110° C., preferably about 80 to about 100° C., and (ii) a second resin having a Tg of about 30 to about 50° C., wherein the ratio of the first resin to the second resin is 1/1 to 5/1, preferably 1/1 to 3/1; (e) about 10 to about 30 phr of at least one liquid plasticizer; and (f) a cure package.


In a third embodiment, a method for providing a tire tread is provided. More specifically, the method is for providing a tire tread having improved dry handling and wet traction performance by utilizing a tire tread rubber composition comprising: (a) 100 parts of an elastomer component comprising (i) 15-35 parts of at least one styrene-butadiene rubber having a Tg of about −10 to about −20° C., (ii) 51-60 parts of polybutadiene having a cis 1,4-bond content of at least 95% and a Tg of less than −101° C., and (iii) 20-35 parts of natural rubber, polyisoprene, or a combination thereof; (b) 100-150 phr of at least one reinforcing silica filler having a surface area of about 100 to about 300 m2/g, preferably about 100 to about 200 m2/g; (c) no more than 15 phr of carbon black, preferably no more than 10 phr; (d) 25-50 phr of at least two hydrocarbon resins including (i) a first resin having a Tg of about 70 to about 110° C., preferably about 80 to about 100° C., and (ii) a second resin having a Tg of about 30 to about 50° C., wherein the ratio of the first resin to the second resin is 1/1 to 5/1, preferably 1/1 to 3/1; (e) 10-30 phr of at least one liquid plasticizer; and (f) a cure package.







DETAILED DESCRIPTION

Disclosed herein are rubber compositions for tire treads and related methods.


In a first embodiment, a tire tread rubber composition is disclosed. The composition is made of ingredients comprising: (a) 100 parts of an elastomer component comprising (i) 15-35 parts of at least one styrene-butadiene rubber having a Tg of about −10 to about −20° C., (ii) 51-60 parts of polybutadiene having a cis 1,4-bond content of at least 95% and a Tg of less than −101° C., and (iii) 20-35 parts of natural rubber, polyisoprene, or a combination thereof; (b) 100-150 phr of at least one reinforcing silica filler having a surface area of about 100 to about 300 m2/g, preferably about 100 to about 200 m2/g; (c) no more than 15 phr of carbon black, preferably no more than 10 phr; (d) 25-50 phr of at least two hydrocarbon resins including (i) a first resin having a Tg of about 70 to about 110° C., preferably about 80 to about 100° C., and (ii) a second resin having a Tg of about 30 to about 50° C., wherein the ratio of the first resin to the second resin is 1/1 to 5/1, preferably 1/1 to 3/1; (e) 10-30 phr of at least one liquid plasticizer; and (f) a cure package.


In a second embodiment, a tire tread rubber composition is disclosed. The composition is made of ingredients comprising: (a) 100 parts of an elastomer component comprising (i) about 20 to about 30 parts of at least one non-functionalized styrene-butadiene rubber having a Mw of at least 600,000 grams/mole, more preferably 600,000 to 1,200,000 grams/mole, (ii) about 51 to about 60 parts of polybutadiene having a cis 1,4-bond content of at least 95% and a Tg of less than −101° C., and (iii) about 20 to about 30 parts of natural rubber, polyisoprene, or a combination thereof; (b) about 120 to about 140 phr of at least one reinforcing silica filler having a surface area of about 100 to about 200 m2/g; (c) about 5 to about 10 phr of carbon black; (d) about 30 to about 40 phr of at least two hydrocarbon resins including (i) a first resin having a Tg of about 70 to about 110° C., preferably about 80 to about 100° C., and (ii) a second resin having a Tg of about 30 to about 50° C., wherein the ratio of the first resin to the second resin is 1/1 to 5/1, preferably 1/1 to 3/1; (e) about 10 to about 30 phr of at least one liquid plasticizer; and (f) a cure package.


In a third embodiment, a method for providing a tire tread is provided. More specifically, the method is for providing a tire tread having improved dry handling and wet traction performance by utilizing a tire tread rubber composition comprising: (a) 100 parts of an elastomer component comprising (i) 15-35 parts of at least one styrene-butadiene rubber having a Tg of about −10 to about −20° C., (ii) 51-60 parts of polybutadiene having a cis 1,4-bond content of at least 95% and a Tg of less than −101° C., and (iii) 20-35 parts of natural rubber, polyisoprene, or a combination thereof; (b) 100-150 phr of at least one reinforcing silica filler having a surface area of about 100 to about 300 m2/g, preferably about 100 to about 200 m2/g; (c) no more than 15 phr of carbon black, preferably no more than 10 phr; (d) 25-50 phr of at least two hydrocarbon resins including (i) a first resin having a Tg of about 70 to about 110° C., preferably about 80 to about 100° C., and (ii) a second resin having a Tg of about 30 to about 50° C., wherein the ratio of the first resin to the second resin is 1/1 to 5/1, preferably 1/1 to 3/1; (e) 10-30 phr of at least one liquid plasticizer; and (f) a cure package.


Definitions

The terminology as set forth herein is for description of the embodiments only and should not be construed as limiting the invention as a whole.


As used herein, the term “majority” refers to more than 50%.


As used herein, the abbreviation Mn is used for number average molecular weight.


As used herein, the abbreviation Mp is used for peak molecular weight.


As used herein, the abbreviation Mw is used for weight average molecular weight.


Unless otherwise indicated herein, the term “Mooney viscosity” refers to the Mooney viscosity, ML1+4. As those of skill in the art will understand, a rubber composition's Mooney viscosity is measured prior to vulcanization or curing.


As used herein, the term “natural rubber” means naturally occurring rubber such as can be harvested from sources such as Hevea rubber trees and non-Hevea sources (e.g., guayule shrubs and dandelions such as TKS). In other words, the term “natural rubber” should be construed so as to exclude synthetic polyisoprene.


As used herein, the term “phr” means parts per one hundred parts rubber. The one hundred parts rubber is also referred to herein as 100 parts of an elastomer component.


As used herein the term “polyisoprene” means synthetic polyisoprene. In other words, the term is used to indicate a polymer that is manufactured from isoprene monomers, and should not be construed as including naturally occurring rubber (e.g., Hevea natural rubber, guayule-sourced natural rubber, or dandelion-sourced natural rubber). However, the term polyisoprene should be construed as including polyisoprenes manufactured from natural sources of isoprene monomer.


As used herein, the term “tread,” refers to both the portion of a tire that comes into contact with the road under normal inflation and load as well as any subtread.


Tire Tread Rubber Composition


As mentioned above, the first and second embodiments disclosed herein are directed to tire tread rubber compositions made of specified ingredients and the third embodiment disclosed herein is directed to a method of providing a tire tread by utilizing a tire tread rubber composition prepared from specified ingredients. The subject rubber compositions are used in preparing treads for tires, generally by a process which includes forming of a tread pattern by molding and curing one of the subject rubber compositions. Thus, the tire treads will contain a cured form of one of the tire tread rubber compositions. The tire tread rubber compositions may be present in the form of a tread which has been formed but not yet incorporated into a tire and/or they may be present in a tread which forms part of a tire.


According to the first-third embodiments disclosed herein, the Tg of the overall rubber composition may vary. The Tg of the overall rubber composition may be referred to as a compound Tg or as a rubber composition Tg. In certain embodiments of the first-third embodiments, the rubber composition has a compound Tg of −30 to −60° C. (e.g., −30, −32, −34, −35, −36, −38, −40, −42, −44, −45, −46, −48, −50, −52, −54, −55, −56, −58, or −60° C.), preferably −40 to −55° C. (e.g., −40, −41, −42, −43, −44, −45, −46, −47, −48, −49, −50, −51, −52, −53, −54, or −54° C.). The compound Tg of a rubber composition can be measured using a dynamic mechanical thermal spectrometer (such as the Gabo instrument described below, operating in tension mode) generally following the guidelines of ASTM D5992-96 (2011) and using a temperature sweep (from −70 to 65° C.), under specified test conditions (i.e., frequency 52 Hz, static strain of 6%, dynamic strain of 0.1%, sample geometry 4.75 mm wide×29 mm long×2 mm deep), with the measurement made on the sample after curing for 15 minutes at 170° C., and using a vibratory method to estimate the Tg from the curve that results.


Elastomer Component


As mentioned above, according to the first-third embodiments, the tire tread rubber composition is made of ingredients comprising (including) 100 parts of an elastomer component. The ingredients of the elastomer component include styrene-butadiene rubber; polybutadiene; and natural rubber, polyisoprene, or a combination thereof. The total amount of 100 parts of elastomer or rubber is used so that the amount of other ingredients may be listed in amounts of phr or the number of parts per hundred parts of rubber (or 100 parts of the elastomer component). As a non-limiting example, for a rubber composition containing 25 parts of styrene-butadiene rubber, 55 parts of polybutadiene, 20 parts of natural rubber, and 110 parts of reinforcing silica filler, the amount of silica filler can also be described as 110 phr.


As mentioned above, according to the first embodiment, the 100 parts of elastomer component comprises (includes) (i) 15-35 parts (e.g., 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, or 35 parts) of at least one styrene-butadiene rubber having a Tg of about −10 to about −20° C. or −10 to −20° C. (e.g., −10, −11, −12, 13, −14, −15, −16, −17, −18, −19, or −20° C.), (ii) 51-60 parts (e.g., 51, 52, 53, 54, 55, 56, 57, 58, 59, or 60 parts) of polybutadiene having a cis 1,4-bond content of at least 95% and a Tg of less than −101° C., and (iii) 20-35 parts (e.g., 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, or 35 parts) of natural rubber, polyisoprene, or a combination thereof. In certain embodiments of the first embodiment, the 100 parts of elastomer component comprises (includes) as (i) 15-30 parts (e.g., 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 parts) or 20-30 parts (e.g., 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 parts) of at least one styrene-butadiene rubber having a Tg of about −10 to about −20° C. In certain embodiments of the first embodiment, the at least one styrene-butadiene rubber (i) has a Mw of at least 600,000 grams/mole (e.g., 600,000; 650,000; 700,000; 750,000; 800,000; 850,000; 900,000; 950,000; 1,000,000; 1,050,000; 1,100,000; 1,150,000; 1,200,000; 1,250,000; 1,300,000, or more grams/mole), preferably 600,000 to 1,200,000 grams/mole (e.g., 600,000; 650,000; 700,000; 750,000; 800,000; 850,000; 900,000; 950,000; 1,000,000; 1,050,000; 1,100,000; 1,150,000; or 1,200,000 grams/mole). In certain embodiments of the first embodiment, the 100 parts of elastomer component comprises (includes) as (ii) 51-56 (e.g., 51, 52, 53, 54, 55, or 56 parts) or 53-58 phr (e.g., 53, 54, 55, 56, 57, or 58 parts) of polybutadiene having a cis 1,4-bond content of at least 95% and a Tg of less than −101° C. In certain embodiments of the first embodiment, the 100 parts of elastomer component comprises (includes) as (iii) 20-30 phr (e.g., 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 parts) of natural rubber, polyisoprene, or a combination thereof. In certain embodiments of the first embodiment, the 100 parts of elastomer component consists (only) of (i), (ii), and (iii), in amounts as discussed above. In other embodiments of the first embodiment, the 100 parts of elastomer component includes in addition to (i), (ii), and (iii), one or more additional rubbers (iv). According to the first embodiment, when one or more additional rubbers (iv) is present, the amount will generally be limited preferably to no more than 20 parts (e.g., 20 parts, 15 parts, 10 parts, 5 parts, or less), no more than 15 parts (e.g., 15 parts, 10 parts, 5 parts, or less), or no more than 5 parts (e.g., 5 parts, 4 parts, 3 parts, 2 parts, 1 part, or less). In certain embodiments of the first embodiment, one or more additional rubbers (iv) are selected from diene monomer-containing rubbers; in certain such embodiments, the one or more additional rubbers (iv) are selected from the group consisting of styrene-isoprene rubber, butadiene-isoprene rubber, styrene-isoprene-butadiene rubber, butyl rubber (both halogenated and non-halogenated), ethylene-propylene rubber (EPR), ethylene-butylene rubber (EBR), ethylene-propylene-diene rubber (EPDM), and combinations thereof. In yet other embodiments of the first embodiment, the one or more additional rubbers are selected from one or more styrene-butadiene rubbers other than the styrene-butadiene rubber (i), e.g., a SBR having a Tg of greater than about −10° C. (e.g., −7° C., −5° C., −3° C. or higher) or having a Tg of less than about −20° C. (e.g., −25, −30, −35, −40, −45, −50, −55, −60° C. or lower); one or more polybutadiene rubbers other than the polybutadiene (ii), e.g., a polybutadiene having a low cis 1,-4 bond content (e.g., of less than 50%, less than 45%, less than 40%, etc.); or a combination thereof.


As mentioned above, according to the second embodiment, the 100 parts of elastomer component comprises (includes) (i) about 20 to about 30 parts or 20 to 30 parts (e.g., 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 parts) of at least one non-functionalized styrene-butadiene rubber having a Mw of at least 600,000 grams/mole (e.g., 600,000; 650,000; 700,000; 750,000; 800,000; 850,000; 900,000; 950,000; 1,000,000; 1,050,000; 1,100,000; 1,150,000; 1,200,000; 1,250,000; 1,300,000, or more grams/mole), more preferably 600,000 to 1,200,000 grams/mole (e.g., 600,000; 650,000; 700,000; 750,000; 800,000; 850,000; 900,000; 950,000; 1,000,000; 1,050,000; 1,100,000; 1,150,000; or 1,200,000 grams/mole) or a range within the foregoing range, (ii) about 51 to about 60 parts (e.g., 51, 52, 53, 54, 55, 56, 57, 58, 59, or 60 parts) of polybutadiene having a cis 1,4-bond content of at least 95% and a Tg of less than −101° C., and (iii) about 20 to about 30 parts (e.g., 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 parts) of natural rubber, polyisoprene, or a combination thereof. In certain embodiments of the second embodiment, the at least one styrene-butadiene rubber (i) has a Tg of about −10 to about −20° C. (e.g., −10-, −11, −12, −13, −14, −15, −16, −17, −18, −19 or −20° C.). In certain embodiments of the second embodiment, the 100 parts of elastomer component comprises (includes) as (i) 20-25 parts of at least one styrene-butadiene rubber having a Mw of at least 600,000 grams/mole, more preferably 600,000 to 1,200,000 grams/mole or 25-30 parts at least one styrene-butadiene rubber having a Mw of at least 600,000 grams/mole, more preferably 600,000 to 1,200,000 grams/mole (or a range within the foregoing range). In certain embodiments of the second embodiment, the 100 parts of elastomer component comprises (includes) as (ii) 51-56 (e.g., 51, 52, 53, 54, 55, or 56 parts) or 53-58 phr (e.g., 53, 54, 55, 56, 57, or 58 parts) of polybutadiene having a cis 1,4-bond content of at least 95% and a Tg of less than −101° C. In certain embodiments of the second embodiment, the 100 parts of elastomer component comprises (includes) as (iii) 20-30 phr (e.g., 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 parts) of natural rubber, polyisoprene, or a combination thereof. In certain embodiments of the second embodiment, the 100 parts of elastomer component consists (only) of (i), (ii), and (iii), in amounts as discussed above. In other embodiments of the second embodiment, the 100 parts of elastomer component includes in addition to (i), (ii), and (iii), one or more additional rubbers (iv). According to the second embodiment, when one or more additional rubbers (iv) is present, the amount will generally be limited preferably to no more than 20 parts (e.g., 20 parts, 15 parts, 10 parts, 5 parts, or less), no more than 15 parts (e.g., 15 parts, 10 parts, 5 parts, or less), or no more than 5 parts (e.g., 5 parts, 4 parts, 3 parts, 2 parts, 1 part, or less). In certain embodiments of the second embodiment, one or more additional rubbers (iv) are selected from diene monomer-containing rubbers; in certain such embodiments, the one or more additional rubbers (iv) are selected from the group consisting of styrene-isoprene rubber, butadiene-isoprene rubber, styrene-isoprene-butadiene rubber, butyl rubber (both halogenated and non-halogenated), ethylene-propylene rubber (EPR), ethylene-butylene rubber (EBR), ethylene-propylene-diene rubber (EPDM), and combinations thereof. In yet other embodiments of the second embodiment, the one or more additional rubbers are selected from one or more styrene-butadiene rubbers other than the styrene-butadiene rubber (i), e.g., a SBR having a Mw of less than 600,000 grams/mole and optionally a Tg of greater than about −10° C. (e.g., −7° C., −5° C., −3° C. or higher) or a Tg of less than about −20° C. (e.g., −25, −30, −35, −40, −45, −50, −55, −60° C. or lower); one or more polybutadiene rubbers other than the polybutadiene (ii), e.g., a polybutadiene having a low cis 1,-4 bond content (e.g., of less than 50%, less than 45%, less than 40%, etc.); or a combination thereof.


As mentioned above, according to the process of the third embodiment, the 100 parts of elastomer component comprises (includes) (i) 15-35 parts (e.g., 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, or 35 parts) of at least one styrene-butadiene rubber having a Tg of about −10 to about −20° C. or −10 to −20° C. (e.g., −10, −11, −12, 13, −14, −15, −16, −17, −18, −19, or −20° C.), (ii) 51-60 parts (e.g., 51, 52, 53, 54, 55, 56, 57, 58, 59, or 60 parts) of polybutadiene having a cis 1,4-bond content of at least 95% and a Tg of less than −101° C., and (iii) 20-35 parts (e.g., 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, or 35 parts) of natural rubber, polyisoprene, or a combination thereof. In certain embodiments of the third embodiment, the 100 parts of elastomer component comprises (includes) as (i) 15-30 parts (e.g., 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 parts) or 20-30 parts (e.g., 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 parts) of at least one styrene-butadiene rubber having a Tg of about −10 to about −20° C. In certain embodiments of the third embodiment, the at least one styrene-butadiene rubber (i) has a Mw of at least 600,000 grams/mole (e.g., 600,000; 650,000; 700,000; 750,000; 800,000; 850,000; 900,000; 950,000; 1,000,000; 1,050,000; 1,100,000; 1,150,000; 1,200,000; 1,250,000; 1,300,000, or more grams/mole), more preferably 600,000 to 1,200,000 grams/mole (e.g., 600,000; 650,000; 700,000; 750,000; 800,000; 850,000; 900,000; 950,000; 1,000,000; 1,050,000; 1,100,000; 1,150,000; or 1,200,000 grams/mole) or a range within the foregoing range. In certain embodiments of the third embodiment, the 100 parts of elastomer component comprises (includes) as (ii) 51-56 (e.g., 51, 52, 53, 54, 55, or 56 parts) or 53-58 phr (e.g., 53, 54, 55, 56, 57, or 58 parts) of polybutadiene having a cis 1,4-bond content of at least 95% and a Tg of less than −101° C. In certain embodiments of the third embodiment, the 100 parts of elastomer component comprises (includes) as (iii) 20-30 phr (e.g., 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 parts) of natural rubber, polyisoprene, or a combination thereof. In certain embodiments of the third embodiment, the 100 parts of elastomer component consists (only) of (i), (ii), and (iii), in amounts as discussed above. In other embodiments of the third embodiment, the 100 parts of elastomer component includes in addition to (i), (ii), and (iii), one or more additional rubbers (iv). According to the third embodiment, when one or more additional rubbers (iv) is present, the amount will generally be limited preferably to no more than 20 parts (e.g., 20 parts, 15 parts, 10 parts, 5 parts, or less), no more than 15 parts (e.g., 15 parts, 10 parts, 5 parts, or less), or no more than 5 parts (e.g., 5 parts, 4 parts, 3 parts, 2 parts, 1 part, or less). In certain embodiments of the third embodiment, one or more additional rubbers (iv) are selected from diene monomer-containing rubbers; in certain such embodiments, the one or more additional rubbers (iv) are selected from the group consisting of styrene-isoprene rubber, butadiene-isoprene rubber, styrene-isoprene-butadiene rubber, butyl rubber (both halogenated and non-halogenated), ethylene-propylene rubber (EPR), ethylene-butylene rubber (EBR), ethylene-propylene-diene rubber (EPDM), and combinations thereof. In yet other embodiments of the third embodiment, the one or more additional rubbers are selected from one or more styrene-butadiene rubbers other than the styrene-butadiene rubber (i), e.g., a SBR having a Tg of greater than about −10° C. (e.g., −7° C., −5° C., −3° C. or higher) or having a Tg of less than about −20° C. (e.g., −25, −30, −35, −40, −45, −50, −55, −60° C. or lower); one or more polybutadiene rubbers other than the polybutadiene (ii), e.g., a polybutadiene having a low cis 1,-4 bond content (e.g., of less than 50%, less than 45%, less than 40%, etc.); or a combination thereof.


The Tg values referred to herein for elastomers represent a Tg measurement made upon the elastomer without any oil-extension. In other words, for an oil-extended elastomer, the Tg values above refer to the Tg prior to oil extension or to a non-oil-extended version of the same elastomer. Elastomer or polymer Tg values may be measured using a differential scanning calorimeter (DSC) instrument, such as manufactured by TA Instruments (New Castle, Delaware), where the measurement is conducted using a temperature elevation of 10° C./minute after cooling at −120° C. Thereafter, a tangent is drawn to the base lines before and after the jump of the DSC curve. The temperature on the DSC curve (read at the point corresponding to the middle of the two contact points) can be used as Tg.


In certain embodiments of the first-third embodiments, the average Tg of the elastomer component is about −65 to about −90° C., −65 to −90° C. (e.g., −65, −66, −67, −68, −69, −70, −71, −72, −73, −74, −75, −76, −77, −78, −79, −80, −81, −82, −83, −84, −85, −86, −87, −88, −89 or −90° C.), preferably −70 to −80° C. (e.g., −70, −71, −72, −73, −74, −75, −76, −77, −78, −79, or −80° C.). The average Tg of the elastomer component can be calculated using the Tg of each rubber present in the 100 parts of elastomer component and accounting for their relative weight percentage. When one (or more) of the rubbers is oil-extended, only the amount of rubber (i.e., excluding any amount of oil) is utilized in calculating the average Tg of the elastomer component. When one (or more) of the rubbers is oil-extended, the Tg of the non-oil-extended rubber is utilized in calculating the average Tg of the elastomer component.


Styrene-Butadiene Rubber (ii)


According to the first-third embodiments, the Mw of the styrene-butadiene rubber used in (i) may vary. In certain embodiments of the first-third embodiments, (i) of the elastomer component consists of at least one styrene-butadiene rubber having a Tg of about −10 to about −20° C. (e.g., −10, −11, −12, −13, −14, −15, −16, −17, −18, −19, or −20° C.) and a Mw of 700,000 to 1,200,000 grams/mole, (e.g., 700,000; 725,000; 750,000; 775,000; 800,000; 825,000; 850,000; 875,000; 900,000; 925,000; 950,000; 975,000; 1,000,000; 1,025,000; 1,050,000; 1,075,000; 1,100,000; 1,125,000; 1,150,000; 1,175,000; or 1,200,000 grams/mole), a Mw of 700,000 to 950,000 grams/mole (e.g., 700,000; 725,000; 750,000; 775,000; 800,000; 825,000; 850,000; 875,000; 900,000; 925,000; or 950,000 grams/mole), or a Mw of 800,000 to 950,000 grams/mole (e.g., 800,000; 825,000; 850,000; 875,000; 900,000; 925,000; or 950,000 grams/mole); in certain such embodiments, (i) includes only one SBR and it has a Tg and Mw within one of the foregoing ranges. In certain embodiments of the first-third embodiments, (i) of the elastomer component includes at least one styrene-butadiene rubber having a Tg of about −10 to about −20° C. and a Mw of 700,000 to 1,200,000 grams/mole (e.g., 700,000; 725,000; 750,000; 775,000; 800,000; 825,000; 850,000; 875,000; 900,000; 925,000; 950,000; 975,000; 1,000,000; 1,025,000; 1,050,000; 1,075,000; 1,100,000; 1,125,000; 1,150,000; 1,175,000; or 1,200,000 grams/mole), a Mw of 700,000 to 950,000 grams/mole (e.g., 700,000; 725,000; 750,000; 775,000; 800,000; 825,000; 850,000; 875,000; 900,000; 925,000; or 950,000 grams/mole), or a Mw of 800,000 to 950,000 grams/mole (e.g., 800,000; 825,000; 850,000; 875,000; 900,000; 925,000; or 950,000 grams/mole); in certain such embodiments, (i) includes only one SBR and it has a Mw within one of the foregoing ranges. The Mw values referred to herein are weight average molecular weights which can be determined by using gel permeation chromatography (GPC) calibrated with styrene-butadiene standards and Mark-Houwink constants for the polymer in question.


According to the first-third embodiments, the Mn of the at least one styrene-butadiene rubber used in (i) may vary. In certain embodiments of the first-third embodiments, (i) of the elastomer component includes at least one styrene-butadiene rubber having at least one of a Tg of about −10 to about −20° C. or a Mw of at least 600,000 grams/mole, preferably 600,000 to 1,200,000 grams/mole; and also has an Mn of 300,000 to 500,000 grams/mole (e.g., 300,000; 325,000; 350,000; 375,000; 400,000; 425,000; 450,000; 475,000; or 500,000 grams/mole); in certain such embodiments, (i) includes only one SBR and it has a Mn within the foregoing range. In certain embodiments of the first-third embodiments, (i) of the elastomer component includes at least one styrene-butadiene rubber having a Tg of about −10 to about −20° C. and an Mn of 350,000 to 450,000 (e.g., 350,000; 375,000; 400,000; 425,000; or 450,000 grams/mole); in certain such embodiments, (i) includes only one SBR and it has a Mn within the foregoing range. The SBR of (i) can have a Mn within one of the foregoing ranges in combination with a Mw within one of the foregoing ranges, optionally in combination with a Mw/Mn value as discussed below. The Mn values referred to herein are number average molecular weights which can be determined by using gel permeation chromatography (GPC) calibrated with styrene-butadiene standards and Mark-Houwink constants for the polymer in question.


In certain embodiments of the first-third embodiments disclosed herein, (i) of the elastomer component includes at least one styrene-butadiene rubber having at least one of a Tg of about −10 to about −20° C. or a Mw of at least 600,000 grams/mole, preferably 600,000 to 1,200,000 grams/mole; and also has a Mw/Mn (polydispersity) of 1.5 to 2.5 to (e.g., 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, or 2.5, preferably 1.7 to 2.5; in certain such embodiments, (i) includes only one SBR and it has a Mw/Mn within one of the foregoing ranges.


According to the first-third embodiments, as discussed above, (i) of the elastomer component consists of at least one styrene-butadiene rubber having a Tg of about −10 to about −20° C. and/or a Mw of least 600,000 grams/mole, more preferably 600,000 to 1,200,000 grams/mole. In certain preferred embodiments of the first-third embodiments, the at least one styrene-butadiene rubber comprises (includes) an oil-extended styrene-butadiene rubber. When an oil-extended styrene-butadiene rubber is used as (i), the SBR may be extended with varying amounts of oil, preferably 30-40 parts (e.g., 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40 parts) of oil per 100 parts of styrene-butadiene rubber. As a non-limiting example, an oil-extended SBR that was extended with 35 parts of oil per 100 parts of styrene-butadiene rubber would provide 7 parts of oil for every 20 parts of the SBR used in a rubber composition. The amounts (parts) of the at least one styrene-butadiene rubber discussed above refer to the polymer amount of the styrene-butadiene rubber and do not include the amount of oil contributed when an oil-extended SBR is utilized as (i). In preferred embodiments of the first-third embodiments, the at least one styrene-butadiene rubber (i) has a styrene content of at least 20% (e.g., 20%, 25%, 30%, 35%, 40%, 45%, 50%, or more), more preferably at least 25% (e.g., 25%, 30%, 35%, 40%, 45%, 50%, or more) or 20-50% (e.g., 20%, 25%, 30%, 35%, 40%, 45%, or 50%) or 20-40% (e.g., 20%, 25%, 30%, 35%, or 40%). In certain such embodiments, the at least one styrene-butadiene rubber also has a vinyl bond content of 30 to 60% (e.g., 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, or 60%), 35 to 55% (e.g., 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, or 55%), 40 to 50% (e.g., 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, or 50%), or 42 to 48% (e.g., 42%, 43%, 44%, 45%, 46%, 47%, or 48%). The vinyl bond contents referred to herein should be understood as being for the overall vinyl bond content in the SBR polymer chain rather than of the vinyl bond content in the butadiene portion of the SBR polymer chain, and can be determined by H1-NMR and C13-NMR (e.g., using a 300 MHz Gemini 300 NMR Spectrometer System (Varian)). In certain embodiments of the first-third embodiments, the styrene-butadiene rubber used for (i) may have a vinyl bond content and styrene content within one of the foregoing ranges, optionally in combination with one or more of the Mw, Mn, and/or Mw/Mn ranges discussed above.


According to the first-third embodiments, the at least one styrene-butadiene rubber of (i) may be functionalized or non-functionalized. As used herein, the term functionalized should be understood to encompass the use of both functional groups and coupling agents. One or more than one type of functional group may be utilized for each SBR. Generally, a functional group may be present at the head of the polymer, at the tail of the polymer, along the backbone of the polymer chain, or a combination thereof. Functional groups present at one or both terminals of a polymer are generally the result of the use of a functional initiator, a functional terminator, or both. Alternatively or additionally, the functional group may be present as a result of coupling of multiple polymer chains using a coupling agent (as described below). In certain embodiments of the first-third embodiments, at least one styrene-butadiene rubber of (i) is functionalized, preferably with a silica-reactive functional group. In certain such embodiments of the first-third embodiments, (i) consists (only) of one styrene-butadiene rubber, as described above, which is functionalized with a silica-reactive functional group. In other embodiments of the first-third embodiments, the at least one styrene-butadiene rubber of (i) is unfunctionalized. In certain such embodiments of the first-third embodiments, (i) consists (only) of one styrene-butadiene rubber, as described above, which is unfunctionalized (i.e., contains no functional group and no coupling agent). In other embodiments of the first-third embodiments, (i) consists of more than one styrene-butadiene rubber (e.g., two, three, or more), as described above; in certain such embodiments, at least one of the styrene-butadiene rubbers is functionalized with a silica-reactive functional group. Non-limiting examples of silica-reactive functional groups generally include nitrogen-containing functional groups, silicon-containing functional groups, oxygen- or sulfur-containing functional groups, and metal-containing functional groups, as discussed in more detail below.


When a functionalized SBR is used in (i) for certain embodiments of the first-third embodiments, the functionalization can be achieved by adding a functional group to one or both terminus of the polymer, by adding a functional group to the backbone of the poly (or a combination of the foregoing) or by coupling more than one polymer chains to a coupling agent, or by a combination thereof, such effects can be achieved by treating a living polymer with coupling agents, functionalizing agents, or a combination thereof which serve to couple and/or functionalize other chains. In certain embodiments of the first-third embodiments, the functionalized SBR of (i) contains one or more functional groups but is not coupled (i.e., does not contain any coupling agents). The coupling agent and/or functionalizing agent can be used at various molar ratios. Alternatively, in certain embodiments of the first-third embodiments, the functionalized styrene-butadiene rubber of (i) may be silica-reactive merely from the result of using a coupling agent. Although reference is made herein to the use of both coupling agents and functionalizing groups (and compounds used therefor), those skilled in the art appreciate that certain compounds may serve both functions. That is, certain compounds may both couple and provide the polymer chains with a functional group. Those skilled in the art also appreciate that the ability to couple polymer chains may depend upon the amount of coupling agent reacted with the polymer chains. For example, advantageous coupling may be achieved where the coupling agent is added in a one to one ratio between the equivalents of lithium on the initiator and equivalents of leaving groups (e.g., halogen atoms) on the coupling agent. Non-limiting examples of coupling agents include metal halides, metalloid halides, alkoxysilanes, alkoxystannanes, and combinations thereof.


Non-limiting examples of nitrogen-containing functional groups that can be utilized in certain embodiments of the first-third embodiments as a silica-reactive functional group in the styrene-butadiene rubber of (i) include, but are not limited to, a substituted or unsubstituted amino group, an amide residue, an isocyanate group, an imidazolyl group, an indolyl group, an imino group, a nitrile group, a pyridyl group, and a ketimine group. The foregoing substituted or unsubstituted amino group should be understood to include a primary alkylamine, a secondary alkylamine, or a cyclic amine, and an amino group derived from a substituted or unsubstituted imine. In certain embodiments of the first-third embodiments, the styrene-butadiene rubber of (i) comprises at one silica-reactive functional group selected from the foregoing list of nitrogen-containing functional groups.


In certain embodiments of the first-third embodiments, the styrene-butadiene rubber of (i) includes a silica-reactive functional group from a compound which includes nitrogen in the form of an imino group. Such an imino-containing functional group may be added by reacting the active terminal of a polymer chain with a compound having the following formula (I):




embedded image



wherein R, R′, R″, and R′″ each independently are selected from a group having 1 to 18 carbon atoms (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, or 18 carbon atoms) selected from the group consisting of an alkyl group, an allyl group, and an aryl group; m and n are integers of 1 to 20 (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20) and 1 to 3 (1, 2, or 3), respectively. Each of R, R′, R″, and R′″ are preferably hydrocarbyl and contain no heteroatoms. In certain embodiments of the first-third embodiments, each R and R′ are independently selected from an alkyl group having 1 to 6 carbon atoms (e.g., 1, 2, 3, 4, 5, or 6 carbon atoms), preferably 1 to 3 carbon atoms (e.g., 1, 2, or 3 carbon atoms). In certain embodiments of the first-third embodiments, m is an integer of 2 to 6 (e.g., 2, 3, 4, 5, or 6), preferably 2 to 3. In certain embodiments of the first-third embodiments, R′″ is selected from a group having 1 to 6 carbon atoms (e.g., 1, 2, 3, 4, 5, or 6 carbon atoms), preferably 2 to 4 carbon atoms (e.g., 2, 3, or 4 carbon atoms). In certain embodiments of the first-third embodiments, R″ is selected from an alkyl group having 1 to 6 carbon atoms (e.g., 1, 2, 3, 4, 5, or 6 carbon atoms), preferably 1 to 3 carbon atoms (e.g., 1, 2, or 3 carbon atoms), most preferably 1 carbon atom (e.g., methyl). In certain embodiments of the first-third embodiments, n is 3 resulting in a compound with a trihydrocarboxysilane moiety such as a trialkoxysilane moiety. Non-limiting examples of compounds having an imino group and meeting formula (I) above, which are suitable for providing the silica-reactive functional group for the styrene-butadiene rubber of (i), include, but are not limited to, N-(1,3-dimethylbutylidene)-3-(triethoxysilyl)-1-propaneamine, N-(1-methylethylidene)-3-(triethoxysilyl)-1-propaneamine, N-ethylidene-3-(triethoxysilyl)-1-propaneamine, N-(1-methylpropylidene)-3-(triethoxysilyl)-1-propaneamine, and N-(4-N,N-dimethylaminobenzylidene)-3-(triethoxysilyl)-1-propaneamine.


Non-limiting examples of silicon-containing functional groups that can be utilized in certain embodiments of the first-third embodiments as a silica-reactive functional group in the styrene-butadiene rubber of (i) include, but are not limited to, an organic silyl or siloxy group, and more precisely, the such functional group may be selected from an alkoxysilyl group, an alkylhalosilyl group, a siloxy group, an alkylaminosilyl group, and an alkoxyhalosilyl group. Optionally, the organic silyl or siloxy group may also contain one or more nitrogens. Suitable silicon-containing functional groups for use in functionalizing diene-based elastomer also include those disclosed in U.S. Pat. No. 6,369,167, the entire disclosure of which is herein incorporated by reference. In certain embodiments of the first-third embodiments, the styrene-butadiene rubber of (i) comprises at least one silica-reactive functional group selected from the foregoing list of silicon-containing functional groups.


In certain embodiments of the first-third embodiments, the styrene-butadiene rubber of (i) includes a silica-reactive functional group which includes a silicon-containing functional group having a siloxy group (e.g., a hydrocarbyloxysilane-containing compound), wherein the compound optionally includes a monovalent group having at least one functional group. Such a silicon-containing functional group may be added by reacting the active terminal of a polymer chain with a compound having the following formula (II):




embedded image



wherein A1 represents a monovalent group having at least one functional group selected from epoxy, isocyanate, imine, cyano, carboxylic ester, carboxylic anhydride, cyclic tertiary amine, non-cyclic tertiary amine, pyridine, silazane and sulfide; Rc represents a single bond or a divalent hydrocarbon group having from 1 to 20 carbon atoms (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 carbon atoms); Rd represents a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 carbon atoms), a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms (e.g., 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, or 18 carbon atoms) or a reactive group; Re represents a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 carbon atoms) or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms (e.g., 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, or 18 carbon atoms); b is an integer of 0 to 2; when more than one Rd or ORe are present, each Rd and/or ORe may be the same as or different from each other; and an active proton is not contained in a molecule) and/or a partial condensation product thereof. As used herein, a partial condensation product refers to a product in which a part (not all) of a SiOR group in the hydrocarbyloxysilane compound is turned into a SiOSi bond by condensation. In certain embodiments of the first-third embodiments, at least one of the following is met: (a) Rc represents a divalent hydrocarbon group having 1 to 12 carbon atoms (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 carbon atoms), 2 to 6 carbon atoms (e.g., 2, 3, 4, 5, or 6 carbon atoms), or 2 to 3 carbon atoms (e.g., 2 or 3 carbon atoms); (b) Re represents a monovalent aliphatic hydrocarbon group having 1 to 12 carbon atoms (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 carbon atoms), 2 to 6 carbon atoms (e.g., 2, 3, 4, 5, or 6 carbon atoms), or 1 to 2 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 8 carbon atoms; (c) Rd represents a monovalent aliphatic hydrocarbon group having 1 to 12 carbon atoms (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 carbon atoms), 2 to 6 carbon atoms (e.g., 2, 3, 4, 5, or 6 carbon atoms), or 1 to 2 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 8 carbon atoms; in certain such embodiments, each of (a), (b) and (c) are met and Rc, Re and Rd are selected from one of the foregoing groups.


In certain embodiments of the first-third embodiments, the functional group of the styrene-butadiene rubber of (i) results from a compound represented by Formula (II) wherein A1 has at least one epoxy group. Non-limiting specific examples of such compounds include 2-glycidoxyethyltrimethoxysilane, 2-glycidoxyethyltriethoxysilane, (2-glycidoxyethyl)methyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, (3-glycidoxypropyl)-methyldimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyl(methyl)dimethoxysilane and the like. Among them, 3-glycidoxypropyltrimethoxysilane and 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane are particularly suited.


In certain embodiments of the first-third embodiments, the functional group of the styrene-butadiene rubber of (i) results from a compound represented by Formula (II) wherein A1 has at least one isocyanate group. Non-limiting specific examples of such compounds include 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-isocyanatopropylmethyldiethoxysilane, 3-isocyanatopropyltriisopropoxysilane and the like, and among them, 3-isocyanatopropyltrimethoxysilane is particularly preferred.


In certain embodiments of the first-third embodiments, the functional group of the styrene-butadiene rubber of (i) results from a compound represented by Formula (II) wherein A1 has at least one imine group. Non-limiting specific examples of such compounds include N-(1,3-dimethylbutylidene)-3-(triethoxysilyl)-1-propaneamine, N-(1-methylethylidene)-3-(triethoxysilyl)-1-propaneamine, N-ethylidene-3-(triethoxysilyl)-1-propaneamine, N-(1-methylpropylidene)-3-(triethoxysilyl)-1-propaneamine, N-(4-N,N-dimethylaminobenzylidene)-3-(triethoxysilyl)-1-propaneamine, N-(cyclohexylidene)-3-(triethoxysilyl)-1-propaneamine and trimethoxysilyl compounds, methyldiethoxysilyl compounds, ethyldimethoxysilyl compounds and the like each corresponding to the above triethoxysilyl compounds. Among them, N-(1,3-dimethylbutylidene)-3-(triethoxysilyl)-1-propaneamine and N-(1-methylpropylidene)-3-(triethoxysilyl)-1-propaneamine are particularly suited. Also, the imine(amidine) group-containing compounds include preferably 1-[3-trimethoxysilyl]propyl]-4,5-dihydroimidazole, 3-(1-hexamethyleneimino)propyl(triethoxy)silane, (1-hexamethyleneimino)methyl(trimethoxy)silane, N-(3-triethoxysilylpropyl)-4,5-dihydroimidazole, N-(3-isopropoxysilylpropyl)-4,5-dihydroimidazole, N-(3-methyldiethoxysilylpropyl)-4,5-dihydroimidazole and the like, and among them, N-(3-triethoxysilylpropyl)-4,5-dihydroimidazole and N-(3-isopropoxysilylpropyl)-4,5-dihydroimidazole are preferred.


In certain embodiments of the first-third embodiments, the functional group of the styrene-butadiene rubber of (i) results from a compound represented by Formula (II) wherein A1 has at least one carboxylic ester group. Non-limiting specific examples of such compounds include 3-methacryloyloxypropyltriethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-methacryloyloxypropylmethyldiethoxysilane, 3-methacryloyloxypropyltriisopropoxysilane and the like, and among them, 3-methacryloyloxypropyltriethoxysilane is preferred.


In certain embodiments of the first-third embodiments, the functional group of the styrene-butadiene rubber of (i) results from a compound represented by Formula (II) wherein A1 has at least one carboxylic anhydride group. Non-limiting specific examples of such compounds include 3-trimethoxysilylpropylsuccinic anhydride, 3-triethoxysilylpropylsuccinic anhydride, 3-methyldiethoxysilylpropylsuccinic anhydride and the like, and among them, 3-triethoxysilylpropylsuccinic anhydride is preferred.


In certain embodiments of the first-third embodiments, the functional group of the styrene-butadiene rubber of (i) results from a compound represented by Formula (II) wherein A1 has at least one cyano group. Non-limiting specific examples of such compounds include 2-cyanoethylpropyltriethoxysilane and the like.


In certain embodiments of the first-third embodiments, the functional group of the styrene-butadiene rubber of (i) results from a compound represented by Formula (II) wherein A1 has at least one cyclic tertiary amine group. Non-limiting specific examples of such compounds include 3-(1-hexamethyleneimino)propyltriethoxysilane, 3-(1-hexamethyleneimino)propyltrimethoxysilane, (1-hexamethyleneimino)methyltriethoxysilane, (1-hexamethyleneimino)methyltrimethoxysilane, 2-(1-hexamethyleneimino)ethyltriethoxysilane, 3-(1-hexamethyleneimino)ethyltrimethoxysilane, 3-(1-pyrrolidinyl)propyltrimethoxysilane, 3-(1-pyrrolidinyl)propyltriethoxysilane, 3-(1-heptamethyleneimino)propyltriethoxysilane, 3-(1-dodecamethyleneimino)propyltriethoxysilane, 3-(1-hexamethyleneimino)propyldiethoxymethylsilane, 3-(1-hexamethyleneimino)propyldiethoxyethylsilane, 3-[10-(triethoxysilyl)decyl]-4-oxazoline and the like. Among them, 3-(1-hexamethyleneimino)propyltriethoxysilane and (1-hexamethyleneimino)methyltriethoxysilane can preferably be listed.


In certain embodiments of the first-third embodiments, the functional group of the styrene-butadiene rubber of (i) results from a compound represented by Formula (II) wherein A1 has at least one non-cyclic tertiary amine group. Non-limiting specific examples of such compounds include 3-dimethylaminopropyltriethoxysilane, 3-dimethylaminopropyltrimethoxysilane, 3-diethylaminopropyltriethoxysilane, 3-dimethylaminopropyltrimethoxysilane, 2-dimethylaminoethyltriethoxysilane, 2-dimethylaminoethyltrimethoxysilane, 3-dimethylaminopropyldiethoxymethylsilane, 3-dibutylaminopropyltriethoxysilane and the like, and among them, 3-dimethylaminopropyltriethoxysilane and 3-diethylaminopropyltriethoxysilane are suited.


In certain embodiments of the first-third embodiments, the functional group of the styrene-butadiene rubber of (i) results from a compound represented by Formula (II) wherein A1 has at least one pyridine group. Non-limiting specific examples of such compounds include 2-trimethoxysilylethylpyridine and the like.


In certain preferred embodiments of the first-third embodiments, the functional group of the styrene-butadiene rubber of (i) results from a compound represented by Formula (II) wherein A1 has at least one silazane group. Non-limiting specific examples of such compounds include N,N-bis(trimethylsilyl)-aminopropylmethyldimethoxysilane, 1-trimethylsilyl-2,2-dimethoxy-1-aza-2-silacyclopentane, N,N-bis(trimethylsilyl)aminopropyltrimethoxysilane, N,N-bis(trimethylsilyl)aminopropyltriethoxysilane, N,N-bis(trimethylsilyl)aminopropylmethyldiethoxysilane, N,N-bis(trimethylsilyl)aminoethyltrimethoxysilane, N,N-bis(trimethylsilyl)aminoethyltriethoxysilane, N,N-bis(trimethylsilyl)aminoethylmethyldimethoxysilane, N,N-bis(trimethylsilyl)aminoethylmethyldiethoxysilane and the like. N,N-bis(trimethylsilyl)aminopropyltriethoxysilane, N,N-bis(trimethylsilyl)aminopropylmethyldiethoxysilane or 1-trimethylsilyl-2,2-dimethoxy-1-aza-2-silacyclopentane are particularly preferred.


In those embodiments of the first-third embodiments wherein a silica-reactive functional group according to formula (II) is used wherein A1 contains one or more protected nitrogens (as discussed in detail above), the nitrogen may be deprotected or deblocked by hydrolysis or other procedures to convert the protected nitrogen(s) into a primary nitrogen. As a non-limiting example, a nitrogen bonded to two trimethylsilyl groups could be deprotected and converted to a primary amine nitrogen (such a nitrogen would still be bonded to the remainder of the formula (II) compound). Accordingly, in certain embodiments of the first-third embodiments wherein a silica-reactive functional group of the styrene-butadiene rubber results from use of a compound according to formula (II) wherein A1 contains one or more protected nitrogens, the functionalized polymer can be understood as containing a functional group resulting from a deprotected (or hydrolyzed) version of the compound.


Non-limiting examples of oxygen- or sulfur-containing functional groups that can be utilized in certain embodiments of the first-third embodiments as a silica-reactive functional group in the styrene-butadiene rubber of (i) include, but are not limited to, a hydroxyl group, a carboxyl group, an epoxy group, a glycidoxy group, a diglycidylamino group, a cyclic dithiane-derived functional group, an ester group, an aldehyde group, an alkoxy group, a ketone group, a thiocarboxyl group, a thioepoxy group, a thioglycidoxy group, a thiodiglycidylamino group, a thioester group, a thioaldehyde group, a thioalkoxy group, and a thioketone group. In certain embodiments of the first-third embodiments, the foregoing alkoxy group may be an alcohol-derived alkoxy group derived from a benzophenone. In certain embodiments of the first-third embodiments, the styrene-butadiene rubber of (i) comprises at least silica-reactive functional group selected from the foregoing list of oxygen- or sulfur-containing functional groups.


According to the first-third embodiments, the one or more styrene-butadiene rubbers having a silica-reactive functional group of (i) may be prepared by either solution polymerization or by emulsion polymerization. In certain preferred embodiments of the first-third embodiments, the only styrene-butadiene rubbers having a silica-reactive functional group used in (i) are prepared by solution polymerization. In other embodiments of the first-third embodiments, the only styrene-butadiene rubbers having a silica-reactive functional group used in (i) are prepared by emulsion polymerization. In certain embodiments of the first-third embodiments, when more than one styrene-butadiene rubber having a silica-reactive functional group is used for (i) the rubbers are a combination of solution polymerized SBR and emulsion polymerized SBR (e.g., one solution SBR and one emulsion SBR). As mentioned above, in certain embodiments of the first-third embodiments, the only styrene-butadiene rubber(s) present in the elastomer component (including for the SBR having a silica-reactive functional group) is a solution SBR (i.e., no emulsion SBR is present).


In one or more embodiments of the first-third embodiments, the coupling agent for the styrene-butadiene rubber of (i) comprises a metal halide or metalloid halide selected from the group comprising compounds expressed by the formula (1) R*nM1Y(4-n), the formula (2) M1Y4, and the formula (3) M2Y3, where each R* is independently a monovalent organic group having 1 to 20 carbon atoms, M1 is a tin atom, silicon atom, or germanium atom, M2 is a phosphorous atom, Y is a halogen atom, and n is an integer of 0-3.


Exemplary compounds expressed by the formula (1) include halogenated organic metal compounds, and the compounds expressed by the formulas (2) and (3) include halogenated metal compounds.


In the case where M1 represents a tin atom, the compounds expressed by the formula (1) can be, for example, triphenyltin chloride, tributyltin chloride, triisopropyltin chloride, trihexyltin chloride, trioctyltin chloride, diphenyltin dichloride, dibutyltin dichloride, dihexyltin dichloride, dioctyltin dichloride, phenyltin trichloride, butyltin trichloride, octyltin trichloride and the like. Furthermore, tin tetrachloride, tin tetrabromide and the like can be exemplified as the compounds expressed by formula (2).


In the case where M1 represents a silicon atom, the compounds expressed by the formula (1) can be, for example, triphenylchlorosilane, trihexylchlorosilane, trioctylchlorosilane, tributylchlorosilane, trimethylchlorosilane, diphenyldichlorosilane, dihexyldichlorosilane, dioctyldichlorosilane, dibutyldichlorosilane, dimethyldichlorosilane, methyltrichlorosilane, phenyltrichlorosilane, hexyltrichlorosilane, octyltrichlorosilane, butyltrichlorosilane, methyltrichlorosilane and the like. Furthermore, silicon tetrachloride, silicon tetrabromide and the like can be exemplified as the compounds expressed by the formula (2). In the case where M1 represents a germanium atom, the compounds expressed by the formula (1) can be, for example, triphenylgermanium chloride, dibutylgermanium dichloride, diphenylgermanium dichloride, butylgermanium trichloride and the like. Furthermore, germanium tetrachloride, germanium tetrabromide and the like can be exemplified as the compounds expressed by the formula (2). Phosphorous trichloride, phosphorous tribromide and the like can be exemplified as the compounds expressed by the formula (3). In one or more embodiments, mixtures of metal halides and/or metalloid halides can be used.


In one or more embodiments of the first-third embodiments, the coupling agent for the styrene-butadiene rubber of (i) comprises an alkoxysilane or alkoxystannane selected from the group comprising compounds expressed by the formula (4) R*nM1(OR{circumflex over ( )})4-n, where each R* is independently a monovalent organic group having 1 to 20 carbon atoms, M1 is a tin atom, silicon atom, or germanium atom, OR{circumflex over ( )} is an alkoxy group where R{circumflex over ( )} is a monovalent organic group, and n is an integer of 0-3.


Exemplary compounds expressed by the formula (4) include tetraethyl orthosilicate, tetramethyl orthosilicate, tetrapropyl orthosilicate, tetraethoxy tin, tetramethoxy tin, and tetrapropoxy tin.


Polybutadiene Rubber (ii)


According to the first-third embodiments, (ii) of the elastomer component consists of polybutadiene rubber having a cis bond content of at least 95% (e.g., 95%, 96%, 97%, 98%, 99%, or more) and a Tg of less than −101° C. (e.g., −102, −103, −104, −105, −106, −107, −108, −109° C. or less). In certain such embodiments, the Tg of the polybutadiene rubber (ii) is −101 to −110° C. The cis bond content refers to the cis 1,4-bond content. The cis 1,4-bond contents referred to herein are determined by FTIR (Fourier Transform Infrared Spectroscopy) wherein a polymer sample is dissolved in CS2 and then subjected to FTIR. In certain embodiments of the first-third embodiments, the polybutadiene rubber of (ii) may have a cis 1,4-bond content of at least 98% (e.g., 98%, 99%, or more) or at least 99% (e.g., 99%, 99.5%, or more). In certain embodiments of the first-third embodiments, any polybutadiene rubber used in the tread rubber compositions has a Tg of −105° C. or less (e.g., −105, −106, −107, −108, −109° C. or less) such as −105 to −110° C. or −105 to −108° C. In certain embodiments of the first-third embodiments, any polybutadiene rubber used in the tread rubber compositions contains less than 3% by weight (e.g., 3%, 2%, 1%, 0.5%, or less), preferably less than 1% by weight (e.g., 1%, 0.5%, or less) or 0% by weight syndiotactic 1,2-polybutadiene. Generally, according to the first-third embodiments, one or more than one polybutadiene rubber having a cis bond content of at least 95% and a Tg of less than −101° C. may be used for (ii). In certain embodiments of the first-third embodiments, (ii) consists of only one polybutadiene rubber having a cis bond content of at least 95% (e.g., 95%, 96%, 97%, 98%, 99%, or more) and a Tg of less than −101° C. In preferred embodiments of the first-third embodiments, the amount of any polybutadiene rubber having a high vinyl content (i.e., above about 70%) is limited (in the overall tread rubber composition) to less than 25 parts, more preferably less than 10 parts, even more preferably less than 5 parts or 0 parts.


Natural Rubber, Polyisoprene, or a Combination Thereof of (iii)


According to the first-third embodiments, (iii) of the elastomer component consists of natural rubber, polyisoprene, or a combination thereof. In certain embodiments of the first-third embodiments, (iii) consists (only) of natural rubber. In other embodiments of the first-third embodiments, (iii) consists (only) of polyisoprene. When natural rubber is present for (iii) of the elastomer component, it may include Hevea natural rubber, non-Hevea natural rubber (e.g., guayule natural rubber), or a combination thereof. When natural rubber is utilized in the tread rubber compositions of the first-third embodiments, the natural rubber preferably has a Mw of 1,000,000 to 2,000,000 grams/mole (e.g., 1 million, 1.1 million, 1.2 million, 1.3 million, 1.4 million, 1.5 million, 1.6 million, 1.7 million, 1.8 million, 1.9 million, 2 million grams/mole); 1,250,000 to 2,000,000 grams/mole, or 1,500,000 to 2,000,000 grams/mole (as measured by GPC using a polystyrene standard). When natural rubber is utilized in the tread rubber compositions of the first-third embodiments, the Tg of the natural rubber may vary. Preferably, according to the first-third embodiments, when natural rubber is utilized it has a Tg of −65 to −80° C. (e.g., −65, −66, −67, −68, −69, −70, −71−, −72, −73, −74, −75, −76, −77, −78, −79, or −80° C.), more preferably a Tg of −67 to −77° C. (e.g., −67, −68, −69, −70, −71, −72, −73, −74, −75, −76, or −77° C.). When polyisoprene is utilized in the tread rubber compositions of the first-third embodiments, the Tg of the polyisoprene may vary. Preferably, according to the first-third embodiments, when polyisoprene is utilized it has a Tg of −55 to −75° C. (e.g., −55, −56, −57, −58, −59, −60, −61, −62, −63, −64, −65, −66, −67, −68, −69, −70, −71, −72, −73, −74, or −75° C.), more preferably −58 to −74° C. (e.g., −58, −59, −60, −61, −62, −63, −64, −65, −66, −67, −68, −69, −70, −71, −72, −73, or −74° C.).


Fillers


As used herein, the term “reinforcing” with respect to “reinforcing carbon black filler,” “reinforcing silica filler,” and “reinforcing filler” generally should be understood to encompass both fillers that are traditionally described as reinforcing as well as fillers that may traditionally be described as semi-reinforcing. Traditionally, the term “reinforcing filler” is used to refer to a particulate material that has a nitrogen absorption specific surface area (N2SA) of more than about 100 m2/g, and in certain instances more than 100 m2/g, more than about 125 m2/g, more than 125 m2/g, or even more than about 150 m2/g or more than 150 m2/g. Alternatively (or additionally), the traditional use of the term “reinforcing filler” can also be used to refer to a particulate material that has a particle size of about 10 nm to about 50 nm (including 10 nm to 50 nm). Traditionally, the term “semi-reinforcing filler” is used to refer to a filler that is intermediary in either particle size, surface area (N2SA), or both, to a non-reinforcing filler (as discussed below) and a reinforcing filler. In certain embodiments of the first-third embodiments disclosed herein, the term “reinforcing filler” is used to refer to a particulate material that has a nitrogen absorption specific surface area (N2SA) of about 20 m2/g or greater, including 20 m2/g or greater, more than about 50 m2/g, more than 50 m2/g, more than about 100 m2/g, or more than 100 m2/g. In certain embodiments of the first-third embodiments disclosed herein, the term “reinforcing filler” is used to refer to a particulate material that has a particle size of about 10 nm up to about 1000 nm, including 10 nm to 1000 nm, about 10 nm up to about 50 nm and 10 nm to 50 nm.


Reinforcing Silica Filler


As mentioned above, according to the first and third embodiments disclosed herein, the tread rubber compositions comprise (include) 100-150 phr (e.g., 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, or 150 phr) of at least one reinforcing silica filler having a surface area of about 100 to about 300 m2/g, preferably about 100 to about 200 m2/g and according to the second embodiment comprises (includes) about 120 to about 140 phr or 120-140 phr (e.g., 120, 122, 124, 125, 126, 128, 130, 132, 134, 135, 136, 138 or 140 phr) of at least one reinforcing silica filler having a surface area of about 100 to about 200 m2/g or 100 to 200 m2/g. In certain embodiments of the first and third embodiments, the tread rubber composition comprises (includes) at least one reinforcing silica filler having a surface area of 100 to 300 m2/g (e.g., 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, or 300 m2/g). In certain preferred embodiments of the first and third embodiments the tread rubber composition comprises (includes) at least one reinforcing silica filler having a surface area of 100 to 200 m2/g (e.g., 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, or 200 m2/g) which should be understood as including intermediary ranges such as 100-180, 100-160, 100-140, 120-180, 120-160, 120-140, etc. In certain embodiments of second embodiment, the tread rubber composition comprises (includes) at least one reinforcing silica filler having a surface area of 100 to 200 m2/g (e.g., 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, or 200 m2/g) which should be understood as including intermediary ranges such as 100-180, 100-160, 100-140, 120-180, 120-160, 120-140, etc. According to the first-third embodiments, one or more than one reinforcing silica filler having a surface area as discussed above may be utilized; in those embodiments where more than one such reinforcing silica filler is utilized, the foregoing amounts refer to the total amount of all reinforcing silica fillers. In certain embodiments of the first-third embodiments, only one reinforcing silica filler having a surface area as discussed above is utilized. In preferred embodiments of the first-third embodiments, the only reinforcing silica filler(s) used in the tread rubber composition have a surface area of as discussed above; in such embodiments, the tread rubber composition can be understood as being free of (i.e., contains 0 phr of) reinforcing silica filler having a surface area outside the above-discussed ranges.


According to the first-third embodiments, the particular type of silica used for the at least one reinforcing silica filler having a surface area as discussed above may vary. Non-limiting examples of reinforcing silica fillers suitable for use in certain embodiments of the first-third embodiments include, but are not limited to, precipitated amorphous silica, wet silica (hydrated silicic acid), dry silica (anhydrous silicic acid), fumed silica, calcium silicate and the like. Other suitable reinforcing silica fillers for use in certain embodiments of the first-third embodiments include, but are not limited to, aluminum silicate, magnesium silicate (Mg2SiO4, MgSiO3 etc.), magnesium calcium silicate (CaMgSiO4), calcium silicate (Ca2SiO4 etc.), aluminum silicate (Al2SiO5, Al4·3SiO4·5H2O etc.), aluminum calcium silicate (Al2O3·CaO2SiO2, etc.), and the like. Among the listed reinforcing silica fillers, precipitated amorphous wet-process, hydrated silica fillers are preferred. Such reinforcing silica fillers are produced by a chemical reaction in water, from which they are precipitated as ultrafine, spherical particles, with primary particles strongly associated into aggregates, which in turn combine less strongly into agglomerates. The surface area, as measured by the BET method, is a preferred measurement for characterizing the reinforcing character of different reinforcing silica fillers. In certain embodiments of the first-third embodiments disclosed herein, the rubber composition comprises a reinforcing silica filler having a surface area (as measured by the BET method), as discussed infra. In certain embodiments of the first-third embodiments disclosed herein, the rubber composition comprises reinforcing silica filler having a pH of about 5.5 to about 8, 5.5 to 8 (e.g., 5.5, 5.7, 5.9, 6.1, 6.3, 6.5, 6.7, 6.9, 7.1, 7.3, 7.5, 7.7, 7.9, or 8), about 6 to about 8, 6 to 8 (e.g., 6, 6.2, 6.4, 6.6, 6.8, 7, 7.2, 7.4, 7.6, 7.8, or 8), about 6 to about 7.5, 6 to 7.5, about 6.5 to about 8, 6.5 to 8, about 6.5 to about 7.5, 6.5 to 7.5, about 5.5 to about 6.8, or 5.5 to 6.8. Some of the commercially available reinforcing silica fillers which can be used in certain embodiments of the first-third embodiments include, but are not limited to, Hi-Sil® EZ120G, Hi-Sil® EZ120G-D, Hi-Sil® 134G, Hi-Sil®EZ 160G, Hi-Sil©EZ 160G-D, Hi-Sil®190, Hi-Sil®190G-D, Hi-Sil® EZ 200G, Hi-Sil® EZ 200G-D, Hi-Sil® 210, Hi-Sil® 233, Hi-Sil® 243LD, Hi-Sil® 255CG-D, Hi-Sil® 315-D, Hi-Sil® 315G-D, Hi-Sil® HDP 320G and the like, produced by PPG Industries (Pittsburgh, Pa.) As well, a number of useful commercial grades of different reinforcing silica fillers are also available from Evonik Corporation (e.g., Ultrasil® 320 GR, Ultrasil® 5000 GR, Ultrasil® 5500 GR, Ultrasil® 7000 GR, Ultrasil® VN2 GR, Ultrasil® VN2, Ultrasil® VN3, Ultrasil® VN3 GR, Ultrasil® 7000 GR, Ultrasil® 7005, Ultrasil® 7500 GR, Ultrasil® 7800 GR, Ultrasil® 9500 GR, Ultrasil® 9000 G, Ultrasil® 9100 GR), and Solvay (e.g., Zeosil® 1115MP, Zeosil® 1085GR, Zeosil® 1165MP, Zeosil® 1200MP, Zeosil® Premium, Zeosil® 195HR, Zeosil® 195GR, Zeosil® 185GR, Zeosil® 175GR, and Zeosil® 165 GR).


Silica Coupling Agent


In certain embodiments of the first-third embodiments disclosed herein, one or more than one silica coupling agent may also (optionally) be utilized. In preferred embodiments of the first-third embodiments, at least one silica coupling agent is utilized. Silica coupling agents are useful in preventing or reducing aggregation of the silica filler in rubber compositions. Aggregates of the silica filler particles are believed to increase the viscosity of a rubber composition, and, therefore, preventing this aggregation reduces the viscosity and improves the processability and blending of the rubber composition.


Generally, any conventional type of silica coupling agent can be used, such as those having a silane and a constituent component or moiety that can react with a polymer, particularly a vulcanizable polymer. The silica coupling agent acts as a connecting bridge between silica and the polymer. Suitable silica coupling agents for use in certain embodiments of the first-third embodiments disclosed herein include those containing groups such as alkyl alkoxy, mercapto, blocked mercapto, sulfide-containing (e.g., monosulfide-based alkoxy-containing, disulfide-based alkoxy-containing, tetrasulfide-based alkoxy-containing), amino, vinyl, epoxy, and combinations thereof. In certain embodiments, the silica coupling agent can be added to the rubber composition in the form of a pre-treated silica; a pre-treated silica has been pre-surface treated with a silane prior to being added to the rubber composition. The use of a pre-treated silica can allow for two ingredients (i.e., silica and a silica coupling agent) to be added in one ingredient, which generally tends to make rubber compounding easier.


Alkyl alkoxysilanes have the general formula R10pSi(OR11)4-p where each R11 is independently a monovalent organic group, and p is an integer from 1 to 3, with the proviso that at least one R10 is an alkyl group. Preferably p is 1. Generally, each R10 independently comprises C1 to C20 aliphatic, C5 to C20 cycloaliphatic, or C6 to C20 aromatic; and each R11 independently comprises C1 to C6 aliphatic. In certain exemplary embodiments, each R10 independently comprises C6 to C15 aliphatic and in additional embodiments each R10 independently comprises C8 to C14 aliphatic. Mercapto silanes have the general formula HS—R13—Si(R14)(R15)2 where R13 is a divalent organic group, R14 is a halogen atom or an alkoxy group, each R15 is independently a halogen, an alkoxy group or a monovalent organic group. The halogen is chlorine, bromine, fluorine, or iodine. The alkoxy group preferably has 1-3 carbon atoms. Blocked mercapto silanes have the general formula B—S—R16—Si—X3 with an available silyl group for reaction with silica in a silica-silane reaction and a blocking group B that replaces the mercapto hydrogen atom to block the reaction of the sulfur atom with the polymer. In the foregoing general formula, B is a block group which can be in the form of an unsaturated heteroatom or carbon bound directly to sulfur via a single bond; R16 is C1 to C6 linear or branched alkylidene and each X is independently selected from the group consisting of C1 to C4 alkyl or C1 to C4 alkoxy.


Non-limiting examples of alkyl alkoxysilanes suitable for use in certain embodiments of the first-third embodiments include, but are not limited to, octyltriethoxysilane, octyltrimethoxysilane, trimethylethoxysilane, cyclohexyltriethoxysilane, isobutyltriethoxy-silane, ethyltrimethoxysilane, cyclohexyl-tributoxysilane, dimethyldiethoxysilane, methyltriethoxysilane, propyltriethoxysilane, hexyltriethoxysilane, heptyltriethoxysilane, nonyltriethoxysilane, decyltriethoxysilane, dodecyltriethoxysilane, tetradecyltriethoxysilane, octadecyltriethoxysilane, methyloctyldiethoxysilane, dimethyldimethoxysilane, methyltrimethoxysilane, propyltrimethoxysilane, hexyltrimethoxysilane, heptyltrimethoxysilane, nonyltrimethoxysilane, decyltrimethoxysilane, dodecyltrimethoxysilane, tetradecyltrimethoxysilane, octadecyl-trimethoxysilane, methyloctyl dimethoxysilane, and mixtures thereof.


Non-limiting examples of bis(trialkoxysilylorgano)polysulfides suitable for use in certain embodiments of the first-third embodiments include bis(trialkoxysilylorgano) disulfides and bis(trialkoxysilylorgano)tetrasulfides. Specific non-limiting examples of bis(trialkoxysilylorgano)disulfides include, but are not limited to, 3,3′-bis(triethoxysilylpropyl) disulfide, 3,3′-bis(trimethoxysilylpropyl)disulfide, 3,3′-bis(tributoxysilylpropyl)disulfide, 3,3′-bis(tri-t-butoxysilylpropyl)disulfide, 3,3′-bis(trihexoxysilylpropyl)disulfide, 2,2′-bis(dimethylmethoxysilylethyl)disulfide, 3,3′-bis(diphenylcyclohexoxysilylpropyl)disulfide, 3,3′-bis(ethyl-di-sec-butoxysilylpropyl)disulfide, 3,3′-bis(propyldiethoxysilylpropyl)disulfide, 12,12′-bis(triisopropoxysilylpropyl)disulfide, 3,3′-bis(dimethoxyphenylsilyl-2-methylpropyl)disulfide, and mixtures thereof. Non-limiting examples of bis(trialkoxysilylorgano)tetrasulfide silica coupling agents suitable for use in certain embodiments of the first-third embodiments include, but are not limited to, bis(3-triethoxysilylpropyl)tetrasulfide, bis(2-triethoxysilylethyl) tetrasufide, bis(3-trimethoxysilylpropyl)tetrasulfide, 3-trimethoxysilylpropyl-N,N-dimethylthiocarbamoyl tetrasulfide, 3-triethoxysilylpropyl-N,N-dimethylthiocarbamoyl tetrasulfide, 2-triethoxysilyl-N,N-dimethylthiocarbamoyl tetrasulfide, 3-trimethoxysilylpropyl-benzothiazole tetrasulfide, 3-triethoxysilylpropylbenzothiazole tetrasulfide, and mixtures thereof. Bis(3-triethoxysilylpropyl)tetrasulfide is sold commercially as Si69® by Evonik Degussa Corporation.


Non-limiting examples of mercapto silanes suitable for use in certain embodiments of first-third embodiments disclosed herein include, but are not limited to, 1-mercaptomethyltriethoxysilane, 2-mercaptoethyltriethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldiethoxysilane, 2-mercaptoethyltripropoxysilane, 18-mercaptooctadecyldiethoxychlorosilane, and mixtures thereof.


Non-limiting examples of blocked mercapto silanes suitable for use in certain embodiments of the first-third embodiments disclosed herein include, but are not limited to, those described in U.S. Pat. Nos. 6,127,468; 6,204,339; 6,528,673; 6,635,700; 6,649,684; and 6,683,135, the disclosures of which are hereby incorporated by reference. Representative examples of the blocked mercapto silanes include, but are not limited to, 2-triethoxysilyl-1-ethylthioacetate; 2-trimethoxysilyl-1-ethylthioacetate; 2-(methyldimethoxysilyl)-1-ethylthioacetate; 3-trimethoxysilyl-1-propylthioacetate; triethoxysilylmethyl-thioacetate; trimethoxysilylmethylthioacetate; triisopropoxysilylmethylthioacetate; methyldiethoxysilylmethylthioacetate; methyldimethoxysilylmethylthioacetate; methyldiisopropoxysilylmethylthioacetate; dimethylethoxysilylmethylthioacetate; dimethylmethoxysilylmethylthioacetate; dimethylisopropoxysilylmethylthioacetate; 2-triisopropoxysilyl-1-ethylthioacetate; 2-(methyldiethoxysilyl)-1-ethylthioacetate, 2-(methyldiisopropoxysilyl)-1-ethylthioacetate; 2-(dimethylethoxysilyl-1-ethylthioacetate; 2-(dimethylmethoxysilyl)-1-ethylthioacetate; 2-(dimethylisopropoxysilyl)-1-ethylthioacetate; 3-triethoxysilyl-1-propylthioacetate; 3-triisopropoxysilyl-1-propylthioacetate; 3-methyldiethoxysilyl-1-propyl-thioacetate; 3-methyldimethoxysilyl-1-propylthioacetate; 3-methyldiisopropoxysilyl-1-propylthioacetate; 1-(2-triethoxysilyl-1-ethyl)-4-thioacetylcyclohexane; 1-(2-triethoxysilyl-1-ethyl)-3-thioacetylcyclohexane; 2-triethoxysilyl-5-thioacetylnorbornene; 2-triethoxysilyl-4-thioacetylnorbornene; 2-(2-triethoxysilyl-1-ethyl)-5-thioacetylnorbornene; 2-(2-triethoxy-silyl-1-ethyl)-4-thioacetylnorbornene; 1-(1-oxo-2-thia-5-triethoxysilylphenyl)benzoic acid; 6-triethoxysilyl-1-hexylthioacetate; 1-triethoxysilyl-5-hexylthioacetate; 8-triethoxysilyl-1-octylthioacetate; 1-triethoxysilyl-7-octylthioacetate; 6-triethoxysilyl-1-hexylthioacetate; 1-triethoxysilyl-5-octylthioacetate; 8-trimethoxysilyl-1-octylthioacetate; 1-trimethoxysilyl-7-octylthioacetate; 10-triethoxysilyl-1-decylthioacetate; 1-triethoxysilyl-9-decylthioacetate; 1-triethoxysilyl-2-butylthioacetate; 1-triethoxysilyl-3-butylthioacetate; 1-triethoxysilyl-3-methyl-2-butylthioacetate; 1-triethoxysilyl-3-methyl-3-butylthioacetate; 3-trimethoxysilyl-1-propylthiooctanoate; 3-triethoxysilyl-1-propyl-1-propylthiopalmitate; 3-triethoxysilyl-1-propylthiooctanoate; 3-triethoxysilyl-1-propylthiobenzoate; 3-triethoxysilyl-1-propylthio-2-ethylhexanoate; 3-methyldiacetoxysilyl-1-propylthioacetate; 3-triacetoxysilyl-1-propylthioacetate; 2-methyldiacetoxysilyl-1-ethylthioacetate; 2-triacetoxysilyl-1-ethylthioacetate; 1-methyldiacetoxysilyl-1-ethylthioacetate; 1-triacetoxysilyl-1-ethyl-thioacetate; tris-(3-triethoxysilyl-1-propyl)trithiophosphate; bis-(3-triethoxysilyl-1-propyl)methyldithiophosphonate; bis-(3-triethoxysilyl-1-propyl)ethyldithiophosphonate; 3-triethoxysilyl-1-propyldimethylthiophosphinate; 3-triethoxysilyl-1-propyldiethylthiophosphinate; tris-(3-triethoxysilyl-1-propyl)tetrathiophosphate; bis-(3-triethoxysilyl-1 propyl)methyltrithiophosphonate; bis-(3-triethoxysilyl-1-propyl)ethyltrithiophosphonate; 3-triethoxysilyl-1-propyldimethyldithiophosphinate; 3-triethoxysilyl-1-propyldiethyldithiophosphinate; tris-(3-methyldimethoxysilyl-1-propyl)trithiophosphate; bis-(3-methyldimethoxysilyl-1-propyl)methyldithiophosphonate; bis-(3-methyldimethoxysilyl-1-propyl)-ethyldithiophosphonate; 3-methyldimethoxysilyl-1-propyldimethylthiophosphinate; 3-methyldimethoxysilyl-1-propyldiethylthiophosphinate; 3-triethoxysilyl-1-propylmethylthiosulfate; 3-triethoxysilyl-1-propylmethanethiosulfonate; 3-triethoxysilyl-1-propylethanethiosulfonate; 3-triethoxysilyl-1-propylbenzenethiosulfonate; 3-triethoxysilyl-1-propyltoluenethiosulfonate; 3-triethoxysilyl-1-propylnaphthalenethiosulfonate; 3-triethoxysilyl-1-propylxylenethiosulfonate; triethoxysilylmethylmethylthiosulfate; triethoxysilylmethylmethanethiosulfonate; triethoxysilylmethylethanethiosulfonate; triethoxysilylmethylbenzenethiosulfonate; triethoxysilylmethyltoluenethiosulfonate; triethoxysilylmethylnaphthalenethiosulfonate; triethoxysilylmethylxylenethiosulfonate, and the like. Mixtures of various blocked mercapto silanes can be used. A further example of a suitable blocked mercapto silane for use in certain exemplary embodiments is NXT™ silane (3-octanoylthio-1-propyltriethoxysilane), commercially available from Momentive Performance Materials Inc. of Albany, NY.


Non-limiting examples of pre-treated silicas (i.e., silicas that have been pre-surface treated with a silane) suitable for use in certain embodiments of the first-third embodiments disclosed herein include, but are not limited to, Ciptane® 255 LD and Ciptane® LP (PPG Industries) silicas that have been pre-treated with a mercaptosilane, and Coupsil® 8113 (Degussa) that is the product of the reaction between organosilane bis(triethoxysilylpropyl) polysulfide (Si69) and Ultrasil® VN3 silica. Coupsil 6508, Agilon 400™ silica from PPG Industries, Agilon 454® silica from PPG Industries, and 458® silica from PPG Industries. In those embodiments where the silica comprises a pre-treated silica, the pre-treated silica is used in an amount as previously disclosed for the silica filler (e.g., 100-150 phr or about 120 to about 140 phr, etc.).


When a silica coupling agent is utilized in an embodiment of the first-third embodiments, the amount used may vary. In certain embodiments of the first-third embodiments, the rubber compositions do not contain any silica coupling agent. In other preferred embodiments of the first-third embodiments, the silica coupling agent is present in an amount sufficient to provide a ratio of the total amount of silica coupling agent to silica filler of about 0.1:100 to about 1:5 (i.e., about 0.1 to about 20 parts by weight per 100 parts of silica), including 0.1:100 to 1:5, about 1:100 to about 1:10, 1:100 to 1:10, about 1:100 to about 1:20, 1:100 to 1:20, about 1:100 to about 1:25, and 1:100 to 1:25 as well as about 1:100 to about 0:100 and 1:100 to 0:100. In preferred embodiments of the first-third embodiments, the ratio of the total amount of silica coupling agent to silica filler falls within a ratio of 1:10 to 1:20 (i.e., 10 to 5 parts by weight per 100 parts of silica). In certain embodiments according to the first-third embodiments, the rubber composition comprises about 0.1 to about 15 phr silica coupling agent, including 0.1 to 15 phr (e.g., 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 phr), about 0.1 to about 12 phr, 0.1 to 12 phr, about 0.1 to about 10 phr, 0.1 to 10 phr, about 0.1 to about 7 phr, 0.1 to 7 phr, about 0.1 to about 5 phr, 0.1 to 5 phr, about 0.1 to about 3 phr, 0.1 to 3 phr, about 1 to about 15 phr, 1 to 15 phr (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 phr), about 1 to about 12 phr, 1 to 12 phr (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 phr), about 1 to about 10 phr, 1 to 10 phr (e.g., 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, or 10 phr), about 1 to about 7 phr, 1 to 7 phr, about 1 to about 5 phr, 1 to 5 phr, about 1 to about 3 phr, 1 to 3 phr, about 3 to about 15 phr, 3 to 15 phr, about 3 to about 12 phr, 3 to 12 phr, about 3 to about 10 phr, 3 to 10 phr, about 3 to about 7 phr, 3 to 7 phr, about 3 to about 5 phr, 3 to 5 phr, about 5 to about 15 phr, 5 to 15 phr, about 5 to about 13 phr, 5 to 13 phr, about 5 to about 10 phr, 5 to 10 phr, about 5 to about 7 phr, or 5 to 7 phr. In preferred embodiments of the first-third embodiments, the rubber composition comprises silica coupling agent in an amount of 5 to 13 phr or one of the foregoing ranges falling within this range.


Carbon Black Filler


According to the first-third embodiments disclosed herein, the amount of carbon black filler used in the tread rubber composition is limited. More specifically, according to the first and third embodiments disclosed herein, the tread rubber composition contains no more than about 15 phr, preferably no more than about 10 phr of carbon black filler and according to the second embodiment disclosed herein, the tread rubber composition contains about 5 to about 10 phr of carbon black. In certain embodiments of the first and third embodiments, the tread rubber composition contains no more than 15 phr of carbon black filler (e.g., 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 or even 0 phr). In preferred embodiments of the first and third embodiments, the tread rubber composition contains no more than 10 phr of carbon black filler (e.g., 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 or even 0 phr). In certain embodiments of the second embodiment, the tread rubber composition contains 5 to 10 phr of carbon black filler (e.g., 5, 6, 7, 8, 9 or 10 phr). In particularly preferred embodiments of the first-third embodiments, the tread rubber composition contains no more than 7 phr of carbon black. In certain embodiments of the first-third embodiments, the tread rubber composition contains 0 phr of carbon black filler. In certain embodiments of the first-third embodiments, the foregoing limited amounts of carbon black filler should be understood to refer to reinforcing carbon black filler. In other embodiments of the first-third embodiments, the foregoing limited amounts of carbon black filler should be understood to refer to non-reinforcing carbon black filler. In yet other embodiments of the first-third embodiments, the foregoing limited amounts of carbon black filler should be understood to refer to all carbon black fillers (i.e., both reinforcing and non-reinforcing carbon black filler).


In those embodiments of the first-third embodiments where carbon black filler is present, the particular type or types of carbon black utilized may vary. Generally, suitable carbon blacks for use as a reinforcing filler in the rubber composition of certain embodiments of the first-third embodiments include any of the commonly available, commercially-produced carbon blacks, including those having a surface area of at least about 20 m2/g (including at least 20 m2/g) and, more preferably, at least about 35 m2/g up to about 200 m2/g or higher (including 35 m2/g up to 200 m2/g). Surface area values used herein for carbon blacks are determined by ASTM D-1765 using the cetyltrimethyl-ammonium bromide (CTAB) technique. Among the useful carbon blacks are furnace black, channel blacks, and lamp blacks. More specifically, examples of useful carbon blacks include super abrasion furnace (SAF) blacks, high abrasion furnace (HAF) blacks, fast extrusion furnace (FEF) blacks, fine furnace (FF) blacks, intermediate super abrasion furnace (ISAF) blacks, semi-reinforcing furnace (SRF) blacks, medium processing channel blacks, hard processing channel blacks and conducting channel blacks. Other carbon blacks which can be utilized include acetylene blacks. In certain embodiments of the first-third embodiments, the rubber composition includes a mixture of two or more of the foregoing blacks. Preferably according to the first-third embodiments, if a carbon black filler is present it consists of only one type (or grade) of reinforcing carbon black. Typical suitable carbon blacks for use in certain embodiments of the first-third embodiments are N-110, N-220, N-339, N-330, N-351, N-550, and N-660, as designated by ASTM D-1765-82a. The carbon blacks utilized can be in pelletized form or an unpelletized flocculent mass. Preferably, for more uniform mixing, unpelletized carbon black is preferred.


Other Reinforcing Fillers


In certain embodiments of the first-third embodiments, the tread rubber composition comprises a reinforcing filler other than carbon black or silica (i.e., an additional reinforcing filler). While one or more than one additional reinforcing filler may be utilized, their total amount is preferably limited to no more than 10 phr (e.g., 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 or 0 phr), or no more than 5 phr (e.g., 5, 4, 3, 2, 1, or 0 phr). In certain preferred embodiments of the first-third embodiments, the tread rubber composition contains no additional reinforcing filler (i.e., 0 phr); in other words, in such embodiments no reinforcing filler other than silica and optionally carbon black are present.


In those embodiments of the first-third embodiments wherein an additional reinforcing filler is utilized, the additional reinforcing filler or fillers may vary. Non-limiting examples of suitable additional reinforcing fillers for use in the tread rubber compositions of certain embodiments of the first-third embodiments include, but are not limited to, alumina, aluminum hydroxide, clay (reinforcing grades), magnesium hydroxide, boron nitride, aluminum nitride, titanium dioxide, reinforcing zinc oxide, and combinations thereof.


Non-Reinforcing Fillers


In certain embodiments of the first-third embodiments, the tread rubber composition further comprises at least one non-reinforcing filler. In other preferred embodiments of the first-third embodiments, the tread rubber composition contains no non-reinforcing fillers (i.e., 0 phr). In embodiments of the first-third embodiments wherein at least one non-reinforcing filler is utilized, the at least one non-reinforcing filler may be selected from clay (non-reinforcing grades), graphite, magnesium dioxide, aluminum oxide, starch, boron nitride (non-reinforcing grades), silicon nitride, aluminum nitride (non-reinforcing grades), calcium silicate, silicon carbide, ground rubber, and combinations thereof. The term “non-reinforcing filler” is used to refer to a particulate material that has a nitrogen absorption specific surface area (N2SA) of less than about 20 m2/g (including less than 20 m2/g), and in certain embodiments less than about 10 m2/g (including less than 10 m2/g). The N2SA surface area of a particulate material can be determined according to various standard methods including ASTM D6556. In certain embodiments, the term “non-reinforcing filler” is alternatively or additionally used to refer to a particulate material that has a particle size of greater than about 1000 nm (including greater than 1000 nm). In those embodiments of the first-third embodiments, wherein a non-reinforcing filler is present in the rubber composition, the total amount of non-reinforcing filler may vary but is preferably no more than 10 phr (e.g., 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 phr), and in certain embodiments 1-10 phr, no more than 5 phr (e.g., 5, 4, 3, 2, or 1 phr), 1-5 phr, or no more than 1 phr.


Hydrocarbon Resins


As mentioned above, according to the first and third embodiments, the tread rubber composition comprises (includes) (d) 25-50 phr (e.g., 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 phr) of at least two hydrocarbon resins or according to the second embodiment about 30 to about 40 phr of at least two hydrocarbon resins. According to the first-third embodiments, the first resin (i) has a Tg of about 70 to about 110° C., preferably about 80 to about 100° C., and the second resin (ii) has a Tg of about 30 to about 50° C., and the ratio of the first resin to the second resin is 1/1 to 5/1 (e.g., 1/1, 2/1, 3/1, 4/1, or 5/1), preferably 1/1 to 3/1 (e.g., 1/1, 1.5/1, 2/1, 2.5/1, or 3/1).


In certain embodiments of the first-third embodiments, the first resin (i) has a Tg of 70-110° C. (e.g., 70, 75, 80, 85, 90, 95, 100, 105, or 110° C.). Hydrocarbon resin Tg can be determined by DSC, according to the procedure discussed above for elastomer Tg measurements. In other embodiments of the first embodiment, the first resin (ii) has a Tg of 75-105° C. (e.g., 75, 80, 85, 90, 95, 100 or 105° C.), preferably 80-100° C. (e.g., 80, 82, 84, 85, 86, 88, 90, 92, 94, 95, 96, 98, or 100° C.). In certain embodiments of the first and third embodiments, the total amount of hydrocarbon resins (i.e., the at least two hydrocarbon resins including the first resin (i) and second resin (ii)) is 35-70 phr (e.g., 35, 40, 45, 50, 55, 60, 65, or 70 phr)), preferably 40 to 60 phr (e.g., 40, 42, 44, 45, 46, 48, 50, 52, 54, 55, 56, 58, or 60 phr). As discussed in more detail below, in preferred embodiments of the first-third embodiments, the first hydrocarbon resin (i) comprises a cycloaliphatic resin.


In certain embodiments of the first-third embodiments, the second hydrocarbon resin (ii) has a Tg of 30-50° C. (e.g., 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50° C.). In other embodiments of the first-third embodiments, the second hydrocarbon resin (ii) has a Tg of 35-50° C. (e.g., 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50° C.), or 35-45° C. (e.g., 35, 36, 37, 38, 39, 40, 41, 42, 44, or 45° C.). As discussed in more detail below, in preferred embodiments of the first-third embodiments, the second hydrocarbon resin (ii) comprises an aromatic resin.


In preferred embodiments of the first-third embodiments, the first hydrocarbon resin (i) comprises a cycloaliphatic resin; in certain such embodiments, the second hydrocarbon resin (ii) comprises an aromatic resin. In other embodiments of the first-third embodiments, the first hydrocarbon resin (i) consists of (only) a cycloaliphatic resin; in certain such embodiments, the second hydrocarbon resin (ii) consists of (only) an aromatic resin. When a cycloaliphatic resin is used for the first resin (i), one or more than one cycloaliphatic resins may be utilized. In certain embodiments of the first-third embodiments, the overall tread rubber composition includes less than 5 phr of terpene resin, and preferably excludes any terpene resin (i.e., 0 phr of terpene resin is present in the tread rubber composition). As used herein, the term cycloaliphatic resin should be understood to include both cycloaliphatic homopolymer resins and cycloaliphatic copolymer resins. A cycloaliphatic copolymer resin refers to a resin which comprises one or more cycloaliphatic monomers, optionally in combination with one or more other (non-cycloaliphatic) monomers, with the majority by weight of all monomers being cycloaliphatic. Non-limiting examples of cycloaliphatic resins suitable for use as the first hydrocarbon resin (i) in certain embodiments of the first-third embodiments include cyclopentadiene (“CPD”) homopolymer or copolymer resins, dicyclopentadiene (“DCPD”) homopolymer or copolymer resins, and combinations thereof. Non-limiting examples of cycloaliphatic copolymer resins include CPD/vinyl aromatic copolymer resins, DCPD/vinyl aromatic copolymer resins, CPD/terpene copolymer resins, DCPD/terpene copolymer resins, CPD/aliphatic copolymer resins (e.g., CPD/C5 fraction copolymer resins), DCPD/aliphatic copolymer resins (e.g., DCPD/C5 fraction copolymer resins), CPD/aromatic copolymer resins (e.g., CPD/C9 fraction copolymer resins), DCPD/aromatic copolymer resins (e.g., DCPD/C9 fraction copolymer resins), CPD/aromatic-aliphatic copolymer resins (e.g., CPD/C5 & C9 fraction copolymer resins), DCPD/aromatic-aliphatic copolymer resins (e.g., DCPD/C5 & C9 fraction copolymer resins), CPD/vinyl aromatic copolymer resins (e.g., CPD/styrene copolymer resins), DCPD/vinyl aromatic copolymer resins (e.g., DCPD/styrene copolymer resins), CPD/terpene copolymer resins (e.g., limonene/CPD copolymer resin), and DCPD/terpene copolymer resins (e.g., limonene/DCPD copolymer resins). Exemplary such cycloaliphatic resins are commercially available from various companies including Chemfax, Dow Chemical Company, Eastman Chemical Company, Idemitsu, Neville Chemical Company, Nippon, Polysat Inc., Resinall Corp., and Zeon under various trade names.


In certain embodiments of the first-third embodiments, the first resin (i) comprises a DCPD homopolymer resin, DCPD copolymer resin (e.g., DCPD in combination with one or more non-cycloaliphatic monomer), or a combination thereof. In other embodiments of the first-third embodiments, the first resin (i) consists of a DCPD homopolymer resin, DCPD copolymer resin (e.g., DCPD in combination with one or more non-cycloaliphatic monomer), or a combination thereof. In certain embodiments of the first-third embodiments, the first resin (i) comprises a DCPD homopolymer resin. In other embodiments of the first-third embodiments, the first resin (i) consists of a DCPD homopolymer resin. In certain embodiments of the first-third embodiments, the first resin (i) consists of a DCPD copolymer resin (e.g., DCPD in combination with one or more non-cycloaliphatic monomers). In those embodiments of the first-third embodiments wherein the first resin (i) includes a DCPD copolymer resin, the weight percentage of DCPD monomer is preferably at least 80% (e.g., 80%, 85%, 90%, 95%, 98%, 99%, or more) or at least 90% (e.g., 90%, 95%, 98%, 99%, or more). In certain embodiments of the first-third embodiments wherein the first resin (i) includes a cycloaliphatic polymer or copolymer resin, DCPD monomer is present in an amount of at least 80% (e.g., 80%, 85%, 90%, 95%, 98%, 99%, or more) or at least 90% (e.g., 90%, 95%, 98%, 99%, or more).


In certain preferred embodiments of the first-third embodiments, the first resin (i) has a softening point of about 120 to about 160° C., 120-160° C. (e.g., 120, 125, 130, 135, 140, 145, 150, 155, or 160° C.), about 130 to about 150° C., or 130-150° C. (e.g., 130, 135, 140, 145, or 150° C.). Generally the softening point of a hydrocarbon resin will have a relationship to its Tg such that the Tg is lower than its softening point, and such that the lower the Tg the lower the softening point. As a non-limiting example, for two hydrocarbon resins having Tgs of 70 and 100° C., the resin with the Tg of 70° C. will have a lower softening point than the resin with the Tg of 100° C.


In certain preferred embodiments of the first-third embodiments, the first resin (i) meets at least one of the following: (a) a Mw of about 1000 to about 3500 grams/mole, 1000-3500 grams/mole (e.g., 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000, 3100, 3200, 3300, 3400, or 3500 grams/mole), about 1000 to about 3000 grams/mole, 1000-3000 grams/mole (e.g., 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, or 3000 grams/mole), about 1000 to about 2500 grams/mole, 1000-2500 grams/mole (e.g., 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, or 2500 grams/mole), about 1100 to about 2000 grams/mole, 1100-2000 grams/mole (e.g., 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, or 2000 grams/mole), about 1200 to about 1600 grams/mole, or 1200-1600 grams/mole (e.g., 1200, 1250, 1300, 1350, 1400, 1450, 1500, 1550, or 1600 grams/mole); (b) a Mn of about 300 to about 1500 grams/mole, 300-1500 grams/mole (e.g., 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, or 1500 grams/mole), about 500 to about 1200 grams/mole, 500-1200 grams/mole (e.g., 500, 600, 700, 800, 900, 1000, 1100, or 1200 grams/mole), about 500 to about 1000 grams/mole, or 500-1000 grams/mole (e.g., 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, or 1000 grams/mole); or (c) a polydispersity (Mw/Mn) of about 1.5 to about 2.5, 1.5-2.5 (e.g., 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, or 2.5), about 2 to about 2.5, 2-2.5 (e.g., 2, 2.1, 2.2, 2.3 2.4, or 2.5), about 1.5 to about 2, or 1.5-2 (e.g., 1.5, 1.6, 1.7, 1.8, 1.9, or 2). In certain preferred embodiments of the first-third embodiments, the first resin (i) has a Mw, Mn and Mw/Mn falling within one of the foregoing ranges; in certain such embodiments, the first resin (i) is a cycloaliphatic resin.


In certain embodiments of the first-third embodiments, the first hydrocarbon resin (i) comprises a cycloaliphatic resin (as discussed above) having an aromatic hydrogen content (as measured by 1H NMR) of about 3 to about 25 (e.g., 3, 5, 10, 15, 20, or 25%) 3-25, about 5 to about 25%, 5-25% (e.g., 5, 10, 15, 20, or 25%), about 5 to about 20%, 5-20% (e.g., 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20%), about 5 to about 15%, 5-15% (e.g., 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15%), about 10 to about 20%, 10-20% (e.g., 10, 11, 12, 13, 14, 15 16, 17, 18, 19%, or 20%), about 10 to about 15%, or about 10-15% (e.g., 10, 11, 12, 13, 14, or 15%). The amounts of aromatic hydrogen are weight percentages of hydrogen atoms bonded to aromatic carbons, based upon the total weight of hydrogen atoms present in the respective hydrocarbon resin. According to such NMR measurement, a sample of the resin is dissolved in chloroform and the total amount of all hydrogens (i.e., aromatic hydrogen, aliphatic hydrogen, and olefinic hydrogen) is 100%.


In preferred embodiments of the first-third embodiments, the second resin (ii) comprises an aromatic resin; in certain such embodiments, the first resin (i) comprises a cycloaliphatic resin. In other embodiments of the first-third embodiments, the second resin (ii) consists of (only) an aromatic resin; in certain such embodiments, the first resin (i) consists of (only) a cycloaliphatic resin. When an aromatic resin is used for the second resin (ii), one or more than one aromatic resins may be utilized. As used herein, the term aromatic resin should be understood to include both aromatic homopolymer resins and aromatic copolymer resins. An aromatic copolymer resins refers to a hydrocarbon resin which comprises a combination of one or more aromatic monomers in combination with one or more other (non-aromatic) monomers, with the largest amount of any type of monomer being aromatic. An aromatic copolymer resin would include a hydrocarbon resin having 45% by weight aromatic monomers, in addition to 25% by weight cycloaliphatic monomers and 30% by weight aliphatic monomers as well as a hydrocarbon resin having 55% by weight aromatic monomers, in addition to 30% by weight cycloaliphatic monomers and 15% by weight aliphatic monomers. In certain embodiments of the first-third embodiments, the second resin (ii) comprises one or more aromatic copolymer resins having a majority by weight of all monomers being aromatic (e.g., 51%, 55%, 60%, 65%, etc.). Non-limiting examples of aromatic resins suitable for use as the second resin (ii) in certain embodiments of the first-third embodiments include coumarone-indene resins and alkyl-phenol resins as well as vinyl aromatic homopolymer or copolymer resins such as those including one or more of the following monomers: alpha-methylstyrene, styrene, ortho-methylstyrene, meta-methylstyrene, para-methylstyrene, vinyltoluene, para(tert-butyl)styrene, methoxystyrene, chlorostyrene, hydroxystyrene, vinylmesitylene, divinylbenzene, vinylnaphthalene or any vinyl aromatic monomer resulting from C9 fraction or C8-C10 fraction. Non-limiting examples of vinylaromatic copolymer resins include vinylaromatic/terpene copolymer resins (e.g., limonene/styrene copolymer resins), vinylaromatic/C5 fraction resins (e.g., C5 fraction/styrene copolymer resin), vinylaromatic/aliphatic copolymer resins (e.g., CPD/styrene copolymer resin, and DCPD/styrene copolymer resin). Non-limiting examples of alkyl-phenol resins include alkylphenol-acetylene resins such as p-tert-butylphenol-acetylene resins, alkylphenol-formaldehyde resins (such as those having a low degree of polymerization). Exemplary such aromatic resins are commercially available from various companies including Chemfax, Dow Chemical Company, Eastman Chemical Company, Idemitsu, Neville Chemical Company, Nippon, Polysat Inc., Resinall Corp., and Zeon under various trade names.


In certain embodiments of the first-third embodiments, the second resin (ii) comprises an aromatic resin based upon one or more of the above-mentioned vinyl aromatic monomers (e.g., styrene, alpha-methylstyrene); in certain such embodiments at least 80% by weight, at least 85% by weight, at least 90% by weight, at least 95% by weight, at least 98% by weight, at least 99% by weight, or even 100% by weight of the monomers in the aromatic resin are aromatic monomers. In certain embodiments of the first-third embodiments, the second resin (ii) consists of an aromatic resin based upon one or more of the above-mentioned vinyl aromatic monomers (e.g., styrene, alpha-methylstyrene); in certain such embodiments at least 80% by weight, at least 85% by weight, at least 90% by weight, at least 95% by weight, at least 98% by weight, at least 99% by weight, or even 100% by weight of the monomers in the aromatic resin are aromatic monomers. In certain embodiments of the first-third embodiments, the aromatic resin may include a hydrogenated form of one of the aromatic resins discussed above (i.e., a hydrogenated aromatic resin). In other embodiments of the first-third embodiments, the aromatic resin excludes any hydrogenated aromatic resin; in other words, in such embodiments, the aromatic resin is not hydrogenated.


In certain embodiments of the first-third embodiments, the second resin (ii) meets at least one of the following: (a) a Mw of 1000 to about 4000 grams/mole, 1000-4000 grams/mole (e.g., 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000, 3100, 3200, 3300, 3400, 3500, 3600, 3700, 3800, 3900, or 4000 grams/mole), about 1000 to about 3000 grams/mole, 1000-3000 grams/mole (e.g., 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, or 3000 grams/mole), about 1000 to about 2500 grams/mole, 1000-2500 grams/mole (e.g., 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, or 2500 grams/mole), about 1000 to about 2000 grams/mole, 1000-2000 grams/mole (e.g., 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, or 2000 grams/mole), about 1100 to about 1800 grams/mole, or 1100-1800 grams/mole (e.g., 1100, 1200, 1300, 1400, 1500, 1600, 1700, or 1800 grams/mole); (b) a Mn of about 700 to about 1500 grams/mole, 700-1500 grams/mole (e.g., 700, 800, 900, 1000, 1100, 1200, 1300, 1400, or 1500 grams/mole), about 800 to about 1400 grams/mole, 800-1400 grams/mole (e.g., 800, 900, 1000, 1100, 1200, 1300, or 1400 grams/mole), about 800 to about 1300 grams/mole, 800-1300 grams/mole (e.g., 800, 900, 1000, 1100, 1200, or 1300 grams/mole), about 900 to about 1200 grams/mole, or 900-1200 grams/mole (e.g., 900, 950, 1000, 1050, 1100, 1150, or 1200 grams/mole); or (c) a polydispersity (Mw/Mn) of about 1 to about 2, 1-2 (e.g., 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, or 2), about 1.1 to about 1.8, 1.1-1.8 (e.g., 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, or 1.8), about 1.1 to about 1.7, 1.1-1.7 (e.g., 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, or 1.7), about 1.2 to about 1.5, or 1.2 to 1.5 (e.g., 1.2, 1.3, 1.4, or 1.5). In certain preferred embodiments of the first-third embodiments, the second resin (ii) has a Mw according to one of the ranges provided above, in combination with a Mn according to one of the ranges provided above, further in combination with a Mw/Mn according to one of the ranges provided above; in certain such embodiments, the second resin (ii) is an aromatic resin.


In certain embodiments of the first-third embodiments, the second resin (ii) comprises an aromatic resin (as discussed above) having an aromatic monomer at least about 40% by weight, at least 40% by weight (e.g., 40, 45, 50, 51, 55, 60% by weight, or more), about 40% to about 65% by weight, 40-65% by weight (e.g., 40, 42, 44, 45, 46, 48, 50, 52, 54, 55, 56, 58, 60, 62, 64, or 65% by weight), at least about 45% by weight, at least 45% by weight (e.g., 45, 50, 51, 55, 60% by weight, or more), about 45% to about 65% by weight, 45-65% by weight (e.g., 45, 47, 49, 50, 51, 53, 55, 57, 59, 60, 61, 63, or 65% by weight), at least 51% by weight (e.g., 51, 55, 60, 65% by weight, or more), about 51% to about 65% (e.g., 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, or 65%), 51-65%, about 51% to about 60%, 51-60% (e.g., 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, or 60%), about 51% to about 55%, or 51-55% (e.g., 51, 52, 53, 54, or 55%). The amounts of aromatic monomer content are weight percentages based upon the total weight of the respective hydrocarbon resin.


Liquid Plasticizers (Including Oils and Non-Oils)


As mentioned above, according to the first-third embodiments, the tread rubber composition comprises about 10 to about 30 phr (second embodiment) or (according to the first and third embodiments) 10-30 phr (e.g., 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, or 10 phr) of liquid plasticizer. In certain embodiments of the first-third embodiments, the tread rubber composition comprises 15-30 phr of liquid plasticizer (e.g., 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 phr) or 15-25 phr of liquid plasticizer (e.g., 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 phr). The term liquid plasticizer is used to refer to plasticizer ingredients which are liquid at room temperature (i.e., liquid at 25° C. and above) and to distinguish hydrocarbon resin plasticizers which will generally be solid at room temperature. Generally, liquid plasticizers will have a Tg that below 0° C., generally well below such as less than −30° C., less than −40° C., or less than −50° C. In certain embodiments of the first-third embodiments, the liquid plasticizer has a Tg of less than 0° C. to −100° C., a Tg of −30° C. to −100° C., or a Tg of −50 to −100° C. As discussed in more detail below, liquid plasticizers include both oils (e.g., petroleum oils as well as plant-sourced oils) and other non-oil liquid plasticizers including, but not limited to, ether plasticizers, ester plasticizers, phosphate plasticizers, and sulfonate plasticizers. Moreover, the term liquid plasticizer is meant to encompass both free liquid plasticizer (which is usually added during the compounding process) and extender oil (which is used to extend a rubber). Thus, by stating that the tread rubber composition comprises 15-30 phr of liquid plasticizer it should be understood that the total amount of any free liquid plasticizer and any extender oil is 15-30 phr. In certain embodiments of the first-third embodiments, the tread rubber composition contains only free liquid plasticizer in one of the foregoing amounts (e.g., 10-30 phr, 15-30 phr, 15-25 phr, etc.). In other embodiments of the first-third embodiments, the tread rubber composition contains only extender oil in one of the foregoing amounts (e.g., 10-30 phr, 15-30 phr, 15-25 phr, etc.). In yet other (preferred) embodiments of the first-third embodiments, the tread rubber composition includes both free liquid plasticizer and extender oil, and less than 50% (e.g., 50%, 45%, 40%, or less) by weight of the liquid plasticizer in the tread rubber composition is provided by oil from an oil-extended polymer, e.g., an oil extended SBR for (i). In those embodiments of the first-third embodiments wherein an oil-extended rubber is used, the amount of oil used to prepare the oil-extended rubber may vary. In those embodiments of the first-third embodiments wherein an oil-extended rubber is used, the amount of oil used to prepare the oil-extended rubber may vary; in certain such embodiments, the amount of extender oil present in the oil-extended rubber (polymer) is 10-50 parts oil per 100 parts of rubber (e.g., 10, 15, 20, 25, 30, 35, 40, 45 or 50 parts of oil per 100 parts or rubber), preferably 10-40 parts oil per 100 parts or rubber or 20-40 parts oil per 100 parts of rubber. As a non-limiting example, extender oil could be used in an amount of 40 parts oil per 100 parts rubber in an SBR for (i) which SBR is used in an amount of 20 parts (the 20 parts being the amount of polymer of the oil-extended SBR, as discussed previously) in the overall tread rubber composition and, thus, the amount of oil contributed by the oil-extended SBR to the tread rubber composition would be as 8 phr. Oil-extension of rubbers (especially styrene-butadiene rubbers) can be beneficial to ease of processing or mixing when the SBR has a relatively high Mw and/or a relatively high Mooney viscosity. In certain embodiments of the first-third embodiments disclosed herein, the styrene-butadiene rubber having a Tg of about −10 to about −20° C. as used in (i) is an oil-extended styrene-butadiene rubber having a polymer Mooney viscosity ML1+4 at 100° C. of at least 100. By polymer Mooney viscosity is meant the Mooney viscosity of the rubber or polymer before oil-extension. When an oil-extended rubber is used in the elastomer component of the tread rubber composition disclosed herein, the amounts specified for (i), (ii) and (iii) should be understood to refer to the amounts of rubber only rather than the amounts of oil-extended rubber. As used herein, oil refers to both petroleum based oils (e.g., aromatic, naphthenic, and low PCA oils) as well as plant oils (such as can be harvested from vegetables, nuts, and seeds). Plant oils will generally comprise triglycerides and the term should be understood to include synthetic triglycerides as well as those actually sourced from a plant.


According to the first-third embodiments when one or more oils are present in the tread rubber composition, various types of processing and extender oils may be utilized, including, but not limited to aromatic, naphthenic, and low PCA oils (petroleum-sourced or plant-sourced). Suitable low PCA oils include those having a polycyclic aromatic content of less than 3 percent by weight as determined by the IP346 method. Procedures for the IP346 method may be found in Standard Methods for Analysis & Testing of Petroleum and Related Products and British Standard 2000 Parts, 2003, 62nd edition, published by the Institute of Petroleum, United Kingdom. Exemplary petroleum-sourced low PCA oils include mild extraction solvates (MES), treated distillate aromatic extracts (TDAE), TRAE, and heavy naphthenics. Exemplary MES oils are available commercially as CATENEX SNR from SHELL, PROREX 15, and FLEXON 683 from EXXONMOBIL, VIVATEC 200 from BP, PLAXOLENE MS from TOTAL FINA ELF, TUDALEN 4160/4225 from DAHLEKE, MES-H from REPSOL, MES from Z8, and OLIO MES S201 from AGIP. Exemplary TDAE oils are available as TYREX 20 from EXXONMOBIL, VIVATEC 500, VIVATEC 180, and ENERTHENE 1849 from BP, and EXTENSOIL 1996 from REPSOL. Exemplary heavy naphthenic oils are available as SHELLFLEX 794, ERGON BLACK OIL, ERGON H2000, CROSS C2000, CROSS C2400, and SAN JOAQUIN 2000L. Exemplary low PCA oils also include various plant-sourced oils such as can be harvested from vegetables, nuts, and seeds. Non-limiting examples include, but are not limited to, soy or soybean oil, sunflower oil (including high oleic sunflower oil), safflower oil, corn oil, linseed oil, cotton seed oil, rapeseed oil, cashew oil, sesame oil, camellia oil, jojoba oil, macadamia nut oil, coconut oil, and palm oil. The foregoing processing oils can be used as an extender oil, i.e., to prepare an oil-extended polymer or copolymer or as a processing or free oil.


As mentioned above, according to the first-third embodiments, the liquid plasticizer may include a non-oil plasticizer, non-limiting examples of which include ether plasticizers, ester plasticizers, phosphate plasticizers, and sulfonate plasticizers. Exemplary ether plasticizers include polyethylene glycols and polypropylene glycols. Exemplary ester plasticizers include triesters and diesters in particular (which may be selected from the group consisting of di- and triesters of carboxylic acid, of phosphoric acid, or of sulphonic acid, and mixtures of these triesters). More specifically, exemplary carboxylic acid ester plasticizers include compounds selected from the group consisting of trimellitates, pyromellitates, phthalates, 1,2-cyclohexanedicarboxylates, adipates, azelates, sebacates, glyercol triesters, and mixtures of the foregoing. More specifically as to glycerol triesters, these may include more than 50% by weight, more preferably more than 80% by weight of an unsaturated C18 fatty acid (e.g., oleic acid, linoleic acid, linolenic acid, and mixtures thereof). Other exemplary carboxylic acid ester plasticizers include stearic acid esters, ricinoleic acid esters, phthalic acid esters (e.g., di-2-ethylhexyl phthalate and diosodecyl phthalate), isophthalic acid esters, tetrahydrophthalic acid esters, adipic acid esters (e.g., di(2-ethylhexyl)adipate and diisooctyl adipate), malic acid esters, sebic acid esters (e.g., di(2-ethylhexyl)sebacate and diisooctyl sebacate), and fumaric acid esters. Exemplary phosphate plasticizers include those with a tri-hydrocarbyl phosphate and di-hydrocarbyl phosphate structures (where each hydrocarbyl is independently selected from alkyl of C1 to C12, preferably C1 to C8, and aromatic of C6 to C12 both substituted and un-substituted, preferably when aromatic C6 either substituted or un-substituted). More specifically, exemplary phosphate plasticizers include trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, dioctyl phosphate, 2-ethylhexyl diphenyl phosphate, tributoxyethyl phosphate, triphenyl phosphate, cresyl diphenyl phosphate, isodecyl diphenyl phosphate, tricresyl phosphate, tritolyl phosphate, trixylenyl phosphate, tris(chloroethyl) phosphate, and diphenyl mono-o-xenyl phosphate. Exemplary sulfonate plasticizers include sulfonic acid esters such as sulfone butylamide, toluenesulfonamide, N-ethyl-toluenesulfonamide, and N-cyclohexyl-p-toluencesulfonamide. Of the foregoing non-oil liquid plasticizers, phosphate plasticizers, in particular phosphoric acid derivatives (which can be understood as being phosphate esters) are preferred.


In those embodiments of the first-third embodiments wherein one or more oils are present in the tread rubber composition, the Tg of the oil or oils used may vary. In certain embodiments of the first-third embodiments, any oil utilized has a Tg of about −40 to about −100° C., −40 to −100° C. (e.g., −40, −45, −50, −55, −60, −65, −70, −75, −80, −85, −90, −95, or −100° C.), about −40 to about −90° C., −40 to −90° C. (e.g., −40, −45, −50, −55, −60, −65, −70, −75, −80, −85, or −90° C.), about −45 to about −85° C., −45 to −85° C. (e.g., −45, −50, −55, −60, −65, −70, −75, −80, or −85° C.), about −50 to about −80° C., or −50 to −80° C. (e.g., −50, −55, −60, −65, −70, −75, or −80° C.).


In certain embodiments of the first-third embodiments, the tread rubber composition contains less than 5 phr (e.g., 4.5, 4, 3, 2, 1, or 0 phr) of MES or TDAE oil, or even no MES or TDAE oil (i.e., 0 phr). In certain embodiments of the first-third embodiments, the tread rubber composition contains no petroleum oil (i.e., 0 phr) and instead any oil utilized is a plant oil. In certain embodiments of the first-third embodiments, the tread rubber composition contains soybean oil in one of the above-mentioned amounts. In certain embodiments of the first-third embodiments, the tread rubber composition contains no sunflower oil (i.e., 0 phr).


In certain embodiments of the first-third embodiments, the tread rubber composition includes one or more ester plasticizers. Suitable ester plasticizers are known to those of skill in the art and include, but are not limited to, phosphate esters, phthalate esters, adipate esters and oleate esters (i.e., derived from oleic acid). Taking into account that an ester is a chemical compound derived from an acid wherein at least one —OH is replaced with an —O— alkyl group, various alkyl groups may be used in suitable ester plasticizers for use in the tread rubber compositions, including generally linear or branched alkyl of C1 to C20 (e.g., C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17, C18, C19, C20), or C6 to C12. Certain of the foregoing esters are based upon acids which have more than one —OH group and, thus, can accommodate one or more than one O-alkyl group (e.g., trialkyl phosphates, dialkyl phthalates, dialkyl adipates). Non-limiting examples of suitable ester plasticizers include trioctyl phosphate, dioctyl phthalate, dioctyl adipate, nonyl oleate, octyl oleate, and combinations thereof. The use of an ester plasticizer such as one or more of the foregoing may be beneficial to the snow or ice performance of a tire made from a tread rubber composition containing such ester plasticizer at least in part due to the relatively low Tg of ester plasticizers. In certain embodiments of the first-third embodiments, the tread rubber composition includes one or more ester plasticizers having a Tg of −40° C. to −70° C. (e.g., −40, −45, −50, −55, −60, −65, or −70° C.), or −50° C. to −65° C. (e.g., −50, −51, −52, −53, −54, −55, −56, −57, −58, −59, −60, −61, −62, −63, −64, or −65° C.). In those embodiments of the first-third embodiments wherein one or more ester plasticizers is utilized the amount utilized may vary. In certain embodiments of the first-third embodiments, one or more ester plasticizers are utilized in a total amount of 1-12 phr (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 phr), 1-10 phr (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 phr), 2-6 phr (e.g., 2, 3, 4, 5, or 6 phr) or 2-5 phr (e.g., 2, 3, 4, or 5 phr). In certain embodiments of the first-third embodiments, one or more ester plasticizers is used in combination with liquid plasticizer in one of the foregoing amounts.


In certain embodiments of the first-third embodiments, the total amount of hydrocarbon resin (d) and liquid plasticizer (e) is no more than 59 phr (e.g., 59, 55, 54, 50, 49, 45, 44, or 40 phr, or less). In certain embodiments of the first-third embodiments, the total amount of hydrocarbon resin (d) and liquid plasticizer (e) is no more than 55 phr (e.g., 55, 54, 50, 49, 45, 44, or 40 phr, or less). In certain embodiments of the first-third embodiments, the total amount of hydrocarbon resin (d) and liquid plasticizer (e) is 25-59 phr (e.g., 25, 29, 30, 34, 35, 39, 40, 44, 45, 49, 50, 54, 55, or 59 phr), 25-55 phr (e.g., 25, 29, 30, 34, 35, 39, 40, 44, 45, 49, 50, 51, 52, 53, 54, or 55 phr), 30-59 phr (e.g., 30, 34, 35, 39, 40, 44, 45, 49, 50, 54, 55, or 59 phr), or 30-55 phr (e.g., 30, 34, 35, 39, 40, 44, 45, 49, 50, 51, 52, 53, 54, or 55 phr).


Cure Package


As discussed above, according to the first-third embodiments disclosed herein, the tread rubber composition includes (comprises) a cure package. Although the contents of the cure package may vary according to the first-third embodiments, generally, the cure package includes at least one of: a vulcanizing agent; a vulcanizing accelerator; a vulcanizing activator (e.g., zinc oxide, stearic acid, and the like); a vulcanizing inhibitor; and an anti-scorching agent. In certain embodiments of the first-third embodiments, the cure package includes at least one vulcanizing agent, at least one vulcanizing accelerator, at least one vulcanizing activator and optionally a vulcanizing inhibitor and/or an anti-scorching agent. Vulcanizing accelerators and vulcanizing activators act as catalysts for the vulcanization agent. Various vulcanizing inhibitors and anti-scorching agents are known in the art and can be selected by one skilled in the art based on the vulcanizate properties desired.


Examples of suitable types of vulcanizing agents for use in certain embodiments of the first-third embodiments, include but are not limited to, sulfur or peroxide-based curing components. Thus, in certain such embodiments, the curative component includes a sulfur-based curative or a peroxide-based curative. In preferred embodiments of the first-third embodiments, the vulcanizing agent is a sulfur-based curative; in certain such embodiments the vulcanizing agent consists of (only) a sulfur-based curative. Examples of specific suitable sulfur vulcanizing agents include “rubbermaker's” soluble sulfur; sulfur donating curing agents, such as an amine disulfide, polymeric polysulfide, or sulfur olefin adducts; and insoluble polymeric sulfur. Preferably, the sulfur vulcanizing agent is soluble sulfur or a mixture of soluble and insoluble polymeric sulfur. For a general disclosure of suitable vulcanizing agents and other components used in curing, e.g., vulcanizing inhibitor and anti-scorching agents, one can refer to Kirk-Othmer, Encyclopedia of Chemical Technology, 3rd ed., Wiley Interscience, N.Y. 1982, Vol. 20, pp. 365 to 468, particularly Vulcanization Agents and Auxiliary Materials, pp. 390 to 402, or Vulcanization by A. Y. Coran, Encyclopedia of Polymer Science and Engineering, Second Edition (1989 John Wiley & Sons, Inc.), both of which are incorporated herein by reference. Vulcanizing agents can be used alone or in combination. Generally, the vulcanizing agents may be used in certain embodiments of the first-third embodiments in an amount ranging from 0.1 to 10 phr (e.g., 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 phr), including from 1 to 7.5 phr, including from 1 to 5 phr, and preferably from 1 to 3.5 phr (e.g., 1, 1.5, 2, 2.5, 3, or 3.5 phr).


Vulcanizing accelerators are used to control the time and/or temperature required for vulcanization and to improve properties of the vulcanizate. Examples of suitable vulcanizing accelerators for use in certain embodiments of the first-third embodiments disclosed herein include, but are not limited to, thiazole vulcanization accelerators, such as 2-mercaptobenzothiazole, 2,2′-dithiobis(benzothiazole) (MBTS), N-cyclohexyl-2-benzothiazole-sulfenamide (CBS), N-tert-butyl-2-benzothiazole-sulfenamide (TBBS), and the like; guanidine vulcanization accelerators, such as diphenyl guanidine (DPG) and the like; thiuram vulcanizing accelerators; carbamate vulcanizing accelerators; and the like. Generally, the amount of the vulcanization accelerator used ranges from 0.1 to 10 phr (e.g., 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 phr), preferably 0.5 to 5 phr (e.g., 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, or 5 phr). Preferably, any vulcanization accelerator used in the tread rubber compositions of the first-third embodiments excludes any thiurams such as thiuram monosulfides and thiuram polysulfides (examples of which include TMTM (tetramethyl thiuram monosulfide), TMTD (tetramethyl thiuram disulfide), DPTT (dipentamethylene thiuram tetrasulfide), TETD (tetraethyl thiuram disulfide), TiBTD (tetraisobutyl thiuram disulfide), and TBzTD (tetrabenzyl thiuram disulfide)); in other words, the tread rubber compositions of the first-third embodiments preferably contain no thiuram accelerators (i.e., 0 phr).


Vulcanizing activators are additives used to support vulcanization. Generally vulcanizing activators include both an inorganic and organic component. Zinc oxide is the most widely used inorganic vulcanization activator. Various organic vulcanization activators are commonly used including stearic acid, palmitic acid, lauric acid, and zinc salts of each of the foregoing. Generally, in certain embodiments of the first-third embodiments the amount of vulcanization activator used ranges from 0.1 to 6 phr (e.g., 0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, or 6 phr), preferably 0.5 to 4 phr (e.g., 0.5, 1, 1.5, 2, 2.5, 3 3.5, or 4 phr). In certain embodiments of the first-third embodiments, one or more vulcanization activators are used which includes one or more thiourea compounds (used in the of the foregoing amounts), and optionally in combination with one or more of the foregoing vulcanization activators. Generally, a thiourea compound can be understood as a compound having the structure (R1)(R2)NS(═C)N(R3)(R4) wherein each of R1, R2, R3, and R4 are independently selected from H, alkyl, aryl, and N-containing substituents (e.g., guanyl). Optionally, two of the foregoing structures can be bonded together through N (removing one of the R groups) in a dithiobiurea compound. In certain embodiments, one of R1 or R2 and one of R3 or R4 can be bonded together with one or more methylene groups (—CH2—) therebetween. In certain embodiments of the first-third embodiments, the thiourea has one or two of R1, R2, R3 and R4 selected from one of the foregoing groups with the remaining R groups being hydrogen. Exemplary alkyl include C1-C6 linear, branched or cyclic groups such as methyl, ethyl, propyl, iso-propyl, butyl, iso-butyl, pentyl, hexyl, and cyclohexyl. Exemplary aryl include C6-C12 aromatic groups such as phenyl, tolyl, and naphthyl. Exemplary thiourea compounds include, but are not limited to, dihydrocarbylthioureas such as dialkylthioureas and diarylthioureas. Non-limiting examples of particular thiourea compounds include one or more of thiourea, N,N′-diphenylthiourea, trimethylthiourea, N,N′-diethylthiourea (DEU), N,N′-dimethylthiourea, N,N′-dibutylthiourea, ethylenethiourea, N,N′-diisopropylthiourea, N,N′-dicyclohexylthiourea, 1,3-di(o-tolyl)thiourea, 1,3-di(p-tolyl)thiourea, 1,1-diphenyl-2-thiourea, 2,5-dithiobiurea, guanylthiourea, 1-(1-naphthyl)-2-thiourea, 1-phenyl-2-thiourea, p-tolylthiourea, and o-tolylthiourea. In certain embodiments of the first-third embodiments, the activator includes at least one thiourea compound selected from thiourea, N,N′-diethylthiourea, trimethylthiourea, N,N′-diphenylthiourea, and N—N′-dimethylthiourea.


Vulcanization inhibitors are used to control the vulcanization process and generally retard or inhibit vulcanization until the desired time and/or temperature is reached. Common vulcanization inhibitors include, but are not limited to, PVI (cyclohexylthiophthalmide) from Santogard. Generally, in certain embodiments of the first-third embodiments the amount of vulcanization inhibitor is 0.1 to 3 phr (e.g., 0.1, 0.5, 1, 1.5, 2, 2.5, or 3 phr), preferably 0.5 to 2 phr (e.g., 0.5, 1, 1.5, or 2 phr).


Preparing the Rubber Compositions


The particular steps involved in preparing the tread rubber compositions of the first-third embodiments disclosed herein are generally those of conventionally practiced methods comprising mixing the ingredients in at least one non-productive master-batch stage and a final productive mixing stage. In certain embodiments of the first-third embodiments, the tread rubber composition is prepared by combining the ingredients for the rubber composition (as disclosed above) by methods known in the art, such as, for example, by kneading the ingredients together in a Banbury mixer or on a milled roll. Such methods generally include at least one non-productive master-batch mixing stage and a final productive mixing stage. The term non-productive master-batch stage is known to those of skill in the art and generally understood to be a mixing stage (or stages) where no vulcanizing agents or vulcanization accelerators are added. The term final productive mixing stage is also known to those of skill in the art and generally understood to be the mixing stage where the vulcanizing agents and vulcanization accelerators are added into the rubber composition. In certain embodiments of the first-third embodiments, the tread rubber composition is prepared by a process comprising more than one non-productive master-batch mixing stage.


In certain embodiments of the first-third embodiments, the tread rubber composition is prepared by a process wherein the master-batch mixing stage includes at least one of tandem mixing or intermeshing mixing. Tandem mixing can be understood as including the use of a mixer with two mixing chambers with each chamber having a set of mixing rotors; generally, the two mixing chambers are stacked together with the upper mixer being the primary mixer and the lower mixer accepting a batch from the upper or primary mixer. In certain embodiments, the primary mixer utilizes intermeshing rotors and in other embodiments the primary mixer utilizes tangential rotors. Preferably, the lower mixer utilizes intermeshing rotors. Intermeshing mixing can be understood as including the use of a mixer with intermeshing rotors. Intermeshing rotors refers to a set of rotors where the major diameter of one rotor in a set interacts with the minor diameter of the opposing rotor in the set such that the rotors intermesh with each other. Intermeshing rotors must be driven at an even speed because of the interaction between the rotors. In contrast to intermeshing rotors, tangential rotors refers to a set of rotors where each rotor turns independently of the other in a cavity that may be referred to as a side. Generally, a mixer with tangential rotors will include a ram whereas a ram is not necessary in a mixer with intermeshing rotors.


Generally, the rubbers (or polymers) and at least one reinforcing filler (as well as any silane coupling agent and liquid plasticizer) will be added in a non-productive or master-batch mixing stage or stages. Generally, at least the vulcanizing agent component and the vulcanizing accelerator component of a cure package will be added in a final or productive mixing stage.


In certain embodiments of the first-third embodiments, the tread rubber composition is prepared using a process wherein at least one non-productive master batch mixing stage is conducted at a temperature of about 130° C. to about 200° C. In certain embodiments of the first-third embodiments, the tread rubber composition is prepared using a final productive mixing stage conducted at a temperature below the vulcanization temperature in order to avoid unwanted pre-cure of the rubber composition. Therefore, the temperature of the productive or final mixing stage generally should not exceed about 120° C. and is typically about 40° C. to about 120° C., or about 60° C. to about 110° C. and, especially, about 75° C. to about 100° C. In certain embodiments of the first-third embodiments, the tread rubber composition is prepared according to a process that includes at least one non-productive mixing stage and at least one productive mixing stage. The use of silica fillers may optionally necessitate a separate re-mill stage for separate addition of a portion or all of such filler. This stage often is performed at temperatures similar to, although often slightly lower than, those employed in the masterbatch stage, i.e., ramping from about 90° C. to a drop temperature of about 150° C.


Tire Tread Properties


The use of the tire tread rubber composition of the first-third embodiments in tires, may result in a tire having improved or desirable tread properties. These improved or desirable properties may include one or more of rolling resistance, snow or ice traction, wet traction, or dry handling. Additional improved or desirable properties include elongation at break (Eb), tensile at break (Tb) and TbxEb. While these properties may be measured by various methods, the values referred to herein for rolling resistance, snow or ice traction, wet traction, and dry handling refer to tan δ values measured at the following temperatures and according to the following procedures. Tan δ values can be measured with a dynamic mechanical thermal spectrometer (Eplexor® 500N from Gabo Qualimeter Testanlagen GmbH of Ahiden, Germany) generally following the guidelines of ASTM D5992-96 (2011) under the following conditions: measurement mode: tensile test mode; measuring frequency: 52 Hz; applying 0.2% strain from −50 to −5° C. and 1% strain from −5 to 65° C.; collecting data approximately every 1° C. in order to provide measurements at temperatures of −30° C., 0° C., 30° C., and 60° C.; sample shape: 4.75 mm wide×29 mm long×2.0 mm thick. Measurement is made upon a cured sample of rubber (cured for 15 minutes at 170° C.). A rubber composition's tan δ at −30° C. is indicative of its snow or ice traction when incorporated into a tire tread, tan δ at 0° C. is indicative of its wet traction when incorporated into a tire tread, tan δ at 30° C. is indicative of its dry handling when incorporated into a tire tread and its tan δ at 60° C. is indicative of its rolling resistance when incorporated into a tire tread.


In certain embodiments of the first-third embodiments, the rubber composition has a value for tan δ at 60° C. of 0.3 to 0.35 (e.g., 0.3, 0.31, 0.32, 0.33, 0.34, or 0.35), 0.28 to 0.33 (e.g., 0.28, 0.29, 0.3, 0.31, 0.32, or 0.33), 0.31 to 0.35 (e.g., 0.31, 0.32, 0.33, 0.34, or 0.35), or 0.32 to 0.35 (e.g., 0.32, 0.33, 0.34 or 0.35). A tan δ at 60° C. within one of the foregoing ranges can be understood as being indicative of a tire (or more specifically, a tire tread) with an intermediate rolling resistance (as opposed to a tire with low rolling resistance which would generally be indicated by a tan δ at 60° C. of less than or equal to 0.2). In certain embodiments of the first-third embodiments, the value for tan δ at 60° C. is combined with at least one of the following: (a) a value for tan δ at −30° C. of at least 1.2 times the tan δ at 60° C. value (e.g., 1.2 times, 1.3 times, 1.4 times, 1.5 times, 1.6 times, 1.7 times, 1.8 times, 1.9 times, or more), preferably between 1.2 times and 1.7 times the tan δ at 60° C.; (b) a value for tan δ at 0° C. of at least 1.5 times the tan δ at 60° C. value (e.g., 1.5 times, 1.6 times, 1.7 times, 1.8 times, 1.9 times, 2 times, 2.1 times, or more), preferably between 1.5 and 2 times the tan δ at 60° C. value; or (c) a value for tan δ at 30° C. of at least 1.1 times the tan δ at 60° C. value (e.g., 1.1 times, 1.2 times, 1.3 times, 1.4 times, 1.5 times, 1.6 times, 1.7 times, 1.8 times, or more), preferably 1.1 times to 1.6 times the tan δ at 60° C. value; in certain such embodiments, the value for tan δ at 60° C. is combined with each of (a), (b), and (c). In certain embodiments of the first-third embodiments, one of the foregoing values for tan δ at 60° C. (e.g., 0.3 to 0.35, 0.31 to 0.35, or 0.32 to 0.35) is combined with (a) a value for δ at −30° C. of between 1.2 times and 1.7 times (e.g., 1.3 times, 1.4 times, 1.5 times, 1.6 times, 1.7 times) the tan δ at 60° C. value. In certain embodiments of the first-third embodiments, one of the foregoing values for tan δ at 60° C. (e.g., 0.3 to 0.35, 0.31 to 0.35, or 0.32 to 0.35) is combined with (b) a value for δ at 0° C. of between 1.5 and 2 times (e.g., 1.5 times, 1.6 times, 1.7 times, 1.8 times, 1.9 times, or 2 times) the tan δ at 60° C. value. In certain embodiments of the first-third embodiments, one of the foregoing values for tan δ at 60° C. (e.g., 0.3 to 0.35, 0.31 to 0.35, or 0.32 to 0.35) is combined with (c) a value for δ at 30° C. of between 1.1 and 1.6 times (e.g., 1.1 times, 1.2 times, 1.3 times, 1.4 times, 1.5 times, or 1.6 times) the tan δ at 60° C. value. In certain embodiments of the first-third embodiments, one of the foregoing values for tan δ at 60° C. (e.g., 0.3 to 0.35, 0.31 to 0.35, or 0.32 to 0.35) is combined with one of the foregoing values for tan δ at −30° C., one of the foregoing values for tan δ at 0° C., and one of the foregoing values for tan δ at 30° C.


In certain embodiments of the first-third embodiments, the rubber composition has a room temperature Eb of at least 380% (e.g., 380%, 385%, 390%, 395%, 400%, 405%, 410%, 415%, 420%, 425%, 430%, 435%, 440%, 445%, 450%, 455%, 460%, 465%, 470%, 475%, 480%, 485%, 490%, 495%, 500% or more) or within the range of 380 to 500% or a sub-range within that range, preferably at least 400% (e.g., 400%, 405%, 410%, 415%, 420%, 425%, 430%, 435%, 440%, 445%, 450%, 455%, 460%, 465%, 470%, 475%, 480%, 485%, 490%, 495%, 500% or more) or within the range of 400 to 480% or a sub-range within that range. The foregoing room temperature Eb values can be determined according to the procedure described below and refers to measurements made at 23° C.


In certain embodiments of the first-third embodiments, the rubber composition has a hot Eb of at least 350%, (e.g., 350%, 355%, 360%, 365%, 370%, 375%, 380%, 385%, 390%, 395%, 400%, 410%, 420%, 430%, 440%, 450%, 460%, 470%, 475%, or more) or within a range of 350 to 475%, preferably at least 375% (e.g., 375%, 380%, 385%, 390%, 395%, 400%, 410%, 420%, 430%, 440%, 450%, 460%, 470%, 475%, or more) or within a range of 375-475% or a sub-range within that range. The foregoing hot Eb values can be determined according to the procedure described below and refers to measurements made at 100° C.


In certain embodiments of the first-third embodiments, the rubber composition has a hot Eb×Tb (with both Eb and Tb measured at 100° C.) of at least 3000 (e.g., 3000, 3050, 3100, 3150, 3200, 3250, 3300, 3350, 3400, 3450, 3500, 3550, 3600, 3650, 3700, 3750, 3800, 3850, 3900, 3950, 4000, 4050, 4100, 4150 4200, 4250, 4300 or more), preferably at least 3300 (e.g., 3300, 3350, 3400, 3450, 3500, 3550, 3600, 3650, 3700, 3750, 3800, 3850, 3900, 3950, 4000, 4050, 4100, 4150 4200, 4250, 4300 or more). In certain such embodiments, the hot TbxEb is 3000-4300, preferably 3300-4300 or 3300 to 4000 or a sub-range within one of the foregoing ranges. The hot TbxEb is calculated by multiplying the hot Tb with the hot Eb value, which values can be determined according to the procedure described below and refers to measurements made at 100° C.


The room temperature Eb represents an elongation at break measurement (in terms of % elongation), providing an indication of a rubber composition's tear resistance. The abbreviation Tb refers to tensile at break, which measurement (made in units of MPa) provides an indication of a rubber composition's strength by measuring the maximum stress it can withstand before breaking. Eb and Tb can be measured following the guidelines, but not restricted to, the standard procedure described in ASTM D-412, with dumbbell-shaped samples having a cross-section dimension of 4 mm in width and 1.9 mm in thickness at the center. During measurement, specimens may be strained at a constant rate (20% per second) and the resulting force recorded as a function of extension (strain). Room temperature measurements refer to measurements taken at 23° C. and hot measurements refer to measurements taken at 100° C.


This application discloses several numerical range limitations that support any range within the disclosed numerical ranges, even though a precise range limitation is not stated verbatim in the specification, because the embodiments of the compositions and methods disclosed herein could be practiced throughout the disclosed numerical ranges. With respect to the use of substantially any plural or singular terms herein, those having skill in the art can translate from the plural to the singular or from the singular to the plural as is appropriate to the context or application. The various singular or plural permutations may be expressly set forth herein for sake of clarity.


It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims are generally intended as “open” terms. For example, the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to.” It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to inventions containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that virtually any disjunctive word or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms. For example, the phrase “A or B” will be understood to include the possibilities of “A” or “B” or “A and B.”


All references, including but not limited to patents, patent applications, and non-patent literature are hereby incorporated by reference herein in their entirety.


While various aspects and embodiments of the compositions and methods have been disclosed herein, other aspects and embodiments will be apparent to those skilled in the art. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the claims.

Claims
  • 1. A tire tread rubber composition made of ingredients comprising: a. 100 parts of an elastomer component comprising i. 15-35 parts of at least one non-functionalized styrene-butadiene rubber having a Tg of about −10 to about −20° C.,ii. 51-60 parts of polybutadiene having a cis 1,4-bond content of at least 95% and a Tg of less than −101° C., andiii. 20-35 parts of natural rubber, polyisoprene, or a combination thereof;b. 100-150 phr of at least one reinforcing silica filler having a surface area of about 100 to about 300 m2/g;c. no more than 15 phr of carbon black;d. 25-50 phr of at least two hydrocarbon resins including i. a first resin having a Tg of about 70 to about 110° C., andii. a second resin having a Tg of about 30 to about 50° C.,wherein the ratio of the first resin to the second resin is 1/1 to 5/1;e. 10-30 phr of at least one liquid oil plasticizer; andf. a cure package.
  • 2. The tire tread rubber composition of claim 1, wherein the non-functionalized styrene-butadiene rubber of (i) has a Mw of 700,000 grams/mole to 1,200,000 grams/mole.
  • 3. The tire tread rubber composition of claim 1, wherein the first resin is a cycloaliphatic hydrocarbon resin and the second resin is an aromatic resin.
  • 4. The tire tread rubber composition of claim 1, wherein the second resin has a Tg that is at least 40° C. lower than the Tg of the first resin.
  • 5. The tire tread rubber composition of claim 1, wherein the hydrocarbon resin of (d) includes less than 5 phr of terpene resin.
  • 6. The tire tread rubber composition of claim 1, wherein the amount of carbon black is no more than 7 phr.
  • 7. The tire tread rubber composition of claim 1, wherein (a) (iii) consists of natural rubber.
  • 8. The tire tread rubber composition of claim 1, wherein the elastomer component has an average Tg of −65 to −90° C.
  • 9. The tire tread rubber composition of claim 1, wherein (i) comprises an oil-extended styrene-butadiene rubber extended with 30-40 parts of liquid plasticizer per 100 parts of styrene-butadiene rubber.
  • 10. The tire tread rubber composition of claim 9, wherein less than 50% by weight of the liquid oil plasticizer of (e) is provided by the oil-extended SBR.
  • 11. The tire tread rubber composition of claim 1, wherein the rubber composition has a value for tan δ at 60° C. of 0.3 to 0.35 and meets at least one of the following a. has a value for tan δ at −30° C. of at least 1.2 times the tan δ at 60° C. value; b. has a value for tan δ at 0° C. of at least 1.5 times the tan δ at 60° C. value; orc. has a value for tan δ at 30° C. of at least 1.1 times the tan δ at 60° C. value.
  • 12. The tire tread rubber composition of claim 11, wherein each of (a), (b), and (c) are met.
  • 13. The tire tread rubber composition of claim 1, wherein the rubber composition meets at least one of the following: (d) has an Eb at 23° C. of at least 380%,(e) has an Eb at 100° C. of at least 350%, or(f) has a Tb×Eb of at least 3000.
  • 14. The tire tread rubber composition of claim 13, wherein each of (d)-(f) is met.
  • 15. The tire tread rubber composition of claim 1 wherein the at least one non-functionalized styrene-butadiene rubber of (a) (i) has a Mw of 600,000 to 1,200,000 grams/mole and is present in an amount of about 20 to about 30 parts,the natural rubber, polyisoprene, or a combination thereof of (a) (iii) is present in an amount of about 20 to about 30 parts,the at least one reinforcing silica filler of (b) has a surface area of about 100 to about 200 m2/g and is present in an amount of about 120 to about 140 phr,the carbon black of (c) is present in an amount of about 5 to about 10 phr, andthe at least two hydrocarbon resins of (d) are present in a total amount of about 30 to about 40 phr.
  • 16. The tire tread rubber composition of claim 15, wherein the at least one non-functionalized styrene-butadiene rubber of (i) comprises an oil-extended styrene-butadiene rubber extended with 30-40 parts of liquid plasticizer per 100 parts of styrene-butadiene rubber, and less than 50% by weight of the liquid oil plasticizer of (e) is provided by the oil-extended SBR.
  • 17. The tire tread rubber composition of claim 15, wherein the first resin is a cycloaliphatic hydrocarbon resin and the second resin is an aromatic resin, and the second resin has a Tg that is at least 40° C. lower than the Tg of the first resin.
  • 18. The tire tread rubber composition of claim 15, wherein the amount of carbon black is no more than 7 phr and (a) (iii) consists of natural rubber.
  • 19. A method of providing a tire tread having improved dry handling and wet traction performance by utilizing a tire tread rubber composition comprising: a. 100 parts of an elastomer component comprising i. 15-35 parts of at least one non-functionalized styrene-butadiene rubber having a Tg of about −10 to about −20° C.,ii. 51-60 parts of polybutadiene having a cis 1,4-bond content of at least 95% and a Tg of less than −101° C., andiii. 20-35 parts of natural rubber, polyisoprene, or a combination thereof;b. 100-150 phr of at least one reinforcing silica filler having a surface area of about 100 to about 300 m2/g;c. no more than 15 phr of carbon black;d. 25-50 phr of at least two hydrocarbon resins including i. a first resin having a Tg of about 70 to about 110° C., andii. a second resin having a Tg of about 30 to about 50° C.,wherein the ratio of the first resin to the second resin is 1/1 to 5/1;e. 10-30 phr of at least one liquid oil plasticizer; andf. a cure package.
  • 20. A tire incorporating the tire tread rubber composition of claim 1.
Parent Case Info

This application is a national stage application of PCT/US2020/034926 filed on May 28, 2020, which claims the benefit of U.S. Provisional Application Ser. No. 62/854,084 filed on May 29, 2019, all of which are incorporated herein by reference in their entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2020/034926 5/28/2020 WO
Publishing Document Publishing Date Country Kind
WO2020/243304 12/3/2020 WO A
US Referenced Citations (558)
Number Name Date Kind
4020115 Hargis Apr 1977 A
5021522 Durairaj Jun 1991 A
5218038 Johnson Jun 1993 A
5266620 Shinoda Nov 1993 A
5684091 Maly Nov 1997 A
5717016 Fuchs Feb 1998 A
5723530 Zanzig Mar 1998 A
5901766 Sandstrom May 1999 A
6013737 Takagishi Jan 2000 A
6020455 Pretzer Feb 2000 A
6046266 Sandstrom Apr 2000 A
6077899 Yatsuyanagi Jun 2000 A
6099522 Knopp Aug 2000 A
6107389 Oishi Aug 2000 A
6191205 Micouin Feb 2001 B1
6201059 Wideman Mar 2001 B1
6214919 Schlademan Apr 2001 B1
6221990 Blok Apr 2001 B1
6228944 Blok May 2001 B1
6242550 Kralevich, Jr. Jun 2001 B1
6245873 Wideman Jun 2001 B1
6265478 Kralevich, Jr. Jul 2001 B1
6274685 Blok Aug 2001 B2
6281317 Kralevich, Jr. Aug 2001 B1
6291588 Nahmias Sep 2001 B1
6300448 Wideman Oct 2001 B2
6316567 Kralevich, Jr. Nov 2001 B1
6348539 Wideman Feb 2002 B1
6357499 Kralevich, Jr. Mar 2002 B1
6359045 Jeske Mar 2002 B1
6376593 Sasaka Apr 2002 B1
6410776 Roll Jun 2002 B1
6429245 Francik Aug 2002 B1
6444335 Wang Sep 2002 B1
6444759 Datta Sep 2002 B2
6455636 Sanada Sep 2002 B2
6465560 Zanzig Oct 2002 B1
6467520 Duddey Oct 2002 B2
6469101 Nahmias Oct 2002 B2
6469125 Fontana Oct 2002 B1
6518350 Kobayashi Feb 2003 B1
6521733 Karato Feb 2003 B1
6536495 Close Mar 2003 B1
6548594 Luginsland Apr 2003 B2
6579963 Vergopoulou-Markessini Jun 2003 B1
6581660 Meza Jun 2003 B2
6583533 Pelrine Jun 2003 B2
6605670 Durairaj Aug 2003 B1
6620875 Hong Sep 2003 B2
6624267 Favrot Sep 2003 B1
6649678 Sandstrom Nov 2003 B1
6667362 Robert Dec 2003 B2
6670416 Blok Dec 2003 B1
6712108 Koeune Mar 2004 B1
6740700 Kobayashi May 2004 B2
6747085 Sone Jun 2004 B2
6747099 Novits Jun 2004 B1
6753374 Hannon Jun 2004 B1
6759497 Gruen Jul 2004 B2
6763866 Nguyen Jul 2004 B1
6811917 Fitts Nov 2004 B2
6812288 Kobayashi Nov 2004 B2
6832637 Majumdar Dec 2004 B2
6838538 Toyoizumi Jan 2005 B2
6899951 Panz May 2005 B2
6972307 Zimmer Dec 2005 B2
6983775 Fuhrig Jan 2006 B2
6984706 Karato Jan 2006 B2
6988523 Blok Jan 2006 B2
7015271 Bice Mar 2006 B2
7028734 Özel et al. Apr 2006 B2
7045567 Yagi May 2006 B2
7073549 Mizuno Jul 2006 B2
7084228 Labauze Aug 2006 B2
7096903 Weydert Aug 2006 B2
7122586 Sandstrom Oct 2006 B2
7122592 Wentworth Oct 2006 B2
7138450 Wentworth Nov 2006 B2
7196129 Migliarini Mar 2007 B2
7199175 Vasseur Apr 2007 B2
7241843 Miyazaki Jul 2007 B2
7253225 Labauze Aug 2007 B2
7253235 Nishioka Aug 2007 B2
7259205 Pagliarini Aug 2007 B1
7262254 Zanzig Aug 2007 B2
7300970 Durel Nov 2007 B2
7304109 Nishioka Dec 2007 B2
7323582 Deschler Jan 2008 B2
7335692 Vasseur Feb 2008 B2
7342070 Tsukimawashi Mar 2008 B2
7351761 Hochi Apr 2008 B2
7365111 Buras Apr 2008 B2
7367369 Sandstrom May 2008 B2
7371791 Hattori May 2008 B2
7425602 Howard Sep 2008 B2
7427651 Shibata Sep 2008 B2
7431061 Mathieu Oct 2008 B2
7441572 Weydert Oct 2008 B2
7442733 Araujo Da Silva Oct 2008 B2
7448425 Vasseur Nov 2008 B2
7491767 Durel Feb 2009 B2
7498371 Durairaj Mar 2009 B2
7514494 Lechtenboehmer Apr 2009 B2
7528199 Taniguchi May 2009 B2
7531589 Mizuno May 2009 B2
7544729 Steger Jun 2009 B2
7579075 Furusawa Aug 2009 B2
7582688 Mabry Sep 2009 B2
7629408 Cambon Dec 2009 B2
7632886 Weng Dec 2009 B2
7635729 Nip Dec 2009 B2
7645820 Buras Jan 2010 B2
7649043 Bergman Jan 2010 B2
7659337 Jones Feb 2010 B2
7671132 Thielen Mar 2010 B1
7723412 Wermter May 2010 B2
7825183 Robert Nov 2010 B2
7834074 Brunelet Nov 2010 B2
7882874 Robert Feb 2011 B2
7902285 Dumke Mar 2011 B2
7915349 Yamada Mar 2011 B2
7981966 Kobayashi Jul 2011 B2
7985793 Tse Jul 2011 B2
8022121 Hattori Sep 2011 B2
8022129 Tadaki Sep 2011 B2
8022132 Kojima Sep 2011 B2
8022159 Rachita Sep 2011 B2
8030392 Ishida Oct 2011 B2
8080602 Pille-Wolf Dec 2011 B2
8119730 Edelmann Feb 2012 B2
8148486 Hogan Apr 2012 B2
8153719 Tse Apr 2012 B2
8227538 York Jul 2012 B2
8236882 Klockmann Aug 2012 B2
8258207 Gaudet Sep 2012 B2
8293833 Hochi Oct 2012 B2
8302643 Ryba Nov 2012 B2
8304480 Uchida Nov 2012 B2
8312905 Steiner Nov 2012 B2
8318861 Houjo Nov 2012 B2
8324310 Robert Dec 2012 B2
8334333 Hotaka Dec 2012 B2
8349940 Hahn Jan 2013 B2
8362118 Mihara Jan 2013 B2
8397775 Ishida Mar 2013 B2
8399562 Hogan Mar 2013 B2
8426508 Hattori Apr 2013 B2
8445572 Matsuda May 2013 B2
8450424 Koelle May 2013 B2
8453693 Skurich Jun 2013 B2
8470930 Howard Jun 2013 B2
8476352 Rodgers Jul 2013 B2
8501859 Sandstrom Aug 2013 B2
8507582 Takizawa Aug 2013 B2
8569431 Miyazaki Oct 2013 B2
8592515 Francik Nov 2013 B2
8598258 Sato Dec 2013 B2
8614276 Voge Dec 2013 B2
8637594 Pille-Wolf Jan 2014 B2
8637597 Lopitaux Jan 2014 B2
8637606 Pille-Wolf Jan 2014 B2
8658730 Ichikawa Feb 2014 B2
8669321 Hattori Mar 2014 B2
8674002 Nishikawa Mar 2014 B2
8701727 Muller Apr 2014 B2
8710140 Pialot Apr 2014 B2
8720507 Kameda May 2014 B2
8729169 Lee May 2014 B2
8754158 Hattori Jun 2014 B2
8759438 Lopez Jun 2014 B2
8772374 Agostini Jul 2014 B2
8813798 Tsumori Aug 2014 B2
8815995 Vest Aug 2014 B2
8857482 Taguchi Oct 2014 B2
8871832 Takizawa Oct 2014 B2
8871840 Wong Oct 2014 B2
8875764 Miyazaki Nov 2014 B2
8875765 Tsumori Nov 2014 B2
8946334 Mizuno Feb 2015 B2
8946339 Yoshida Feb 2015 B2
8952088 Mehlem Feb 2015 B2
8957132 Voge Feb 2015 B2
8962760 Yuasa Feb 2015 B2
8969450 Wang Mar 2015 B2
9006326 Ono Apr 2015 B2
9034980 Recker May 2015 B2
9056527 Miyazaki Jun 2015 B2
9061548 Miyazaki Jun 2015 B2
9062171 Ihara Jun 2015 B2
9062182 Cho Jun 2015 B2
9062189 Rodgers Jun 2015 B2
9074078 Miyazaki Jul 2015 B2
9090129 Horiuchi Jul 2015 B2
9096735 Morris Aug 2015 B2
9109102 Wada Aug 2015 B2
9120890 Ishino Sep 2015 B2
9126457 Kaes Sep 2015 B2
9132698 Kojima Sep 2015 B2
9133371 Sandstrom Sep 2015 B2
9139721 Sugiura Sep 2015 B2
9145494 Veyland Sep 2015 B2
9150712 Takizawa Oct 2015 B2
9150714 Kramer Oct 2015 B2
9169375 Ishino Oct 2015 B2
9175124 Chaboche Nov 2015 B2
9175154 Lopez Nov 2015 B2
9181355 Ichikawa Nov 2015 B2
9212275 Sandstrom Dec 2015 B2
9217077 Torbruegge Dec 2015 B2
9221964 Ono Dec 2015 B2
9233578 Recker Jan 2016 B2
9243133 Voge Jan 2016 B2
9249284 Miyazaki Feb 2016 B2
9260588 Darnaud Feb 2016 B2
9260600 Takeda Feb 2016 B2
9267014 Darnaud Feb 2016 B2
9273197 Miyazaki Mar 2016 B2
9284433 Tokimune Mar 2016 B2
9284438 Sato Mar 2016 B2
9290585 Lee Mar 2016 B2
9290644 Sato Mar 2016 B2
9296850 Feher Mar 2016 B2
9296873 Koyama Mar 2016 B2
9303148 Cambon Apr 2016 B2
9309387 Kushida Apr 2016 B2
9309388 Okada Apr 2016 B2
9321909 Park Apr 2016 B2
9328185 Lee May 2016 B2
9328212 Miyazaki May 2016 B2
9328226 Stollberg May 2016 B2
9328227 Jagst May 2016 B2
9333802 Thomasson May 2016 B2
9334393 Miyazaki May 2016 B2
9359491 Sato Jun 2016 B2
9365703 Miyazaki Jun 2016 B2
9365704 Shibata Jun 2016 B2
9387724 Hirayama Jul 2016 B2
9393837 Voge Jul 2016 B2
9394426 Bastioli Jul 2016 B2
9410033 Kagawa Aug 2016 B2
9416252 Naka Aug 2016 B2
9416259 Mathey Aug 2016 B2
9422417 Lee Aug 2016 B1
9428641 Sato Aug 2016 B2
9440496 Hidrot Sep 2016 B2
9441098 Isitman Sep 2016 B1
9446631 Kameda Sep 2016 B2
9447263 Feldhues Sep 2016 B2
9481783 Isobe Nov 2016 B2
9493629 Yamada Nov 2016 B2
9512305 Ishino Dec 2016 B2
9550850 Sato Jan 2017 B2
9567451 Satou Feb 2017 B2
9567456 Sato Feb 2017 B2
9580569 Kamahori Feb 2017 B2
9593181 Sato Mar 2017 B2
9593226 Cambon Mar 2017 B2
9598508 Chun Mar 2017 B2
9611380 Thomasson Apr 2017 B2
9617401 Wong Apr 2017 B2
9623705 Tanaka Apr 2017 B2
9624367 Nakajima Apr 2017 B2
9631074 Peters Apr 2017 B2
9631075 Sato Apr 2017 B2
9631076 Ito Apr 2017 B1
9644046 Sekikawa May 2017 B2
9650503 Sandstrom May 2017 B2
9657161 Saintigny May 2017 B2
9670303 Yunfeng Jun 2017 B2
9688846 Kim Jun 2017 B2
9713941 Bondu, Jr. Jul 2017 B2
9718313 Bondu, Jr. Aug 2017 B2
9718911 Cho Aug 2017 B2
9725526 Chun Aug 2017 B2
9745454 Nakatani Aug 2017 B2
9757987 Jacoby Sep 2017 B2
9758652 Washizu Sep 2017 B2
9764594 Isitman Sep 2017 B2
9771469 Sandstrom Sep 2017 B2
9790306 Sato Oct 2017 B2
9790359 Imoto Oct 2017 B2
9796836 Kamada Oct 2017 B2
9803069 Kamada Oct 2017 B2
9834619 Chun Dec 2017 B2
9840569 Blok Dec 2017 B2
9846954 Stubblefiled Dec 2017 B2
9862814 Sakaki Jan 2018 B2
9868852 Nakajima Jan 2018 B2
9873780 Sandstrom Jan 2018 B1
9878580 Takeuchi Jan 2018 B2
9909004 Blok Mar 2018 B2
9920189 Sato Mar 2018 B2
9944741 Choi Apr 2018 B2
9944775 Voge Apr 2018 B2
9969865 Mihara May 2018 B2
9976014 Hennebert May 2018 B2
10030124 Colvin Jul 2018 B2
10059833 Sevignon Aug 2018 B2
10071598 Kojima Sep 2018 B2
10093750 Dire Oct 2018 B2
10099513 Navarro-Losada Oct 2018 B2
10160847 Lesage Dec 2018 B2
10174185 Otsuki Jan 2019 B2
10189978 Thuilliez Jan 2019 B2
10189987 Nishioka Jan 2019 B2
10214058 Hiraiwa Feb 2019 B2
10214638 Belin Feb 2019 B2
10227475 Darnaud Mar 2019 B2
10227481 Koda Mar 2019 B2
10246576 Peters Apr 2019 B2
10253158 Kim Apr 2019 B2
10273352 Amino Apr 2019 B2
10279626 Isitman May 2019 B2
10301459 Weber May 2019 B2
10336889 Isitman Jul 2019 B2
10344147 Hamann Jul 2019 B2
10357998 Thomasson Jul 2019 B2
10364335 Schnell Jul 2019 B2
10377883 Ambe Aug 2019 B2
10385192 Brace Aug 2019 B2
10434822 Maekawa Oct 2019 B2
10435541 Peters Oct 2019 B2
10450446 Salort Oct 2019 B2
10472503 Sekine Nov 2019 B2
10487197 Sekine Nov 2019 B2
10487198 Sekine Nov 2019 B2
10493800 Hamann Dec 2019 B2
10493801 Yokoyama Dec 2019 B2
10494511 Sekine Dec 2019 B2
10494512 Sekine Dec 2019 B2
10519254 Kyo Dec 2019 B2
10519299 Sevignon Dec 2019 B2
10519300 Brace Dec 2019 B2
10526472 Yamashiro Jan 2020 B2
10533083 Yamashiro Jan 2020 B2
10538129 Kunisawa Jan 2020 B2
10538600 Colvin Jan 2020 B2
10563050 Isitman Feb 2020 B2
RE47886 Mathey Mar 2020 E
10576785 Yang Mar 2020 B2
10584236 Hahn Mar 2020 B2
10611886 Thompson Apr 2020 B2
10669407 Sekine Jun 2020 B2
10669408 Sekine Jun 2020 B2
10676599 Sekine Jun 2020 B2
10689508 Sekine Jun 2020 B2
10710409 Yokoyama Jul 2020 B2
10752769 Pan Aug 2020 B2
10767599 Dudar Sep 2020 B2
10808105 Lesage Oct 2020 B2
11118036 Isitman Sep 2021 B2
11124634 Francois Sep 2021 B2
20030119995 Hong Jun 2003 A1
20040063859 Waddell Apr 2004 A1
20040092644 Labauze May 2004 A1
20040122157 Labauze Jun 2004 A1
20070037908 Pille-Wolf Feb 2007 A1
20080161452 York Jul 2008 A1
20080161460 York Jul 2008 A1
20080161462 York Jul 2008 A1
20080223494 Amino Sep 2008 A1
20090176910 Anbe Jul 2009 A1
20100132863 Miki Jun 2010 A1
20100144946 Costantini Jun 2010 A1
20100186868 Sandstrom Jul 2010 A1
20100186869 Sandstrom Jul 2010 A1
20100224301 Sakamoto Sep 2010 A1
20110003932 Steinhauser Jan 2011 A1
20110071245 De-Riva Perez Mar 2011 A1
20110230593 Kondo Sep 2011 A1
20110245398 Hama Oct 2011 A1
20110275751 Costantini Nov 2011 A1
20110290387 Pennequin Dec 2011 A1
20110306700 Belin Dec 2011 A1
20120016506 Yokogawa Jan 2012 A1
20120085473 Matsuo Apr 2012 A1
20120184658 Miyazaki Jul 2012 A1
20120208919 Kanz Aug 2012 A1
20120214903 Masumoto Aug 2012 A1
20120214933 Lopez Aug 2012 A1
20120234452 Miyazaki Sep 2012 A1
20120252929 Yang Oct 2012 A1
20120305159 Sakamoto Dec 2012 A1
20120305828 Gomi Dec 2012 A1
20120309865 Lopez Dec 2012 A1
20120318424 Lopitaux Dec 2012 A1
20130096248 Thompson Apr 2013 A1
20130123387 Kagawa May 2013 A1
20130139940 Ito Jun 2013 A1
20130153110 Miyazaki Jun 2013 A1
20130158185 Thompson Jun 2013 A1
20130160910 Hennebert Jun 2013 A1
20130165578 Francik Jun 2013 A1
20130196085 Voge Aug 2013 A1
20130267640 Lopez Oct 2013 A1
20130274404 Vasseur Oct 2013 A1
20130281609 Steinhauser Oct 2013 A1
20130289165 De Landtsheer Oct 2013 A1
20130292023 Bergman Nov 2013 A1
20130296471 Lesage Nov 2013 A1
20130310501 Junling Nov 2013 A1
20130325336 Dong Dec 2013 A1
20130338256 Steiner Dec 2013 A1
20130345335 Shibata Dec 2013 A1
20130345336 Lopitaux Dec 2013 A1
20140107261 Miyazaki Apr 2014 A1
20140135424 Sandstrom May 2014 A1
20140135437 Sandstrom May 2014 A1
20140155519 Ringot Jun 2014 A1
20140171557 Ringot Jun 2014 A1
20140213693 Mabuchi Jul 2014 A1
20140213706 Honda Jul 2014 A1
20140228480 Shiraishi Aug 2014 A1
20140235751 Lesage Aug 2014 A1
20140243448 Lesage Aug 2014 A1
20140256858 Bethea Sep 2014 A1
20140336330 Costantini Nov 2014 A1
20140371346 Saintigny Dec 2014 A1
20150005448 Longchambon Jan 2015 A1
20150018449 Hasegawa Jan 2015 A1
20150031790 Obrecht Jan 2015 A1
20150087745 Chekanov Mar 2015 A1
20150119491 Hirabayashi Apr 2015 A1
20150159001 Qu Jun 2015 A1
20150166773 Choi Jun 2015 A1
20150183953 Shiraishi Jul 2015 A1
20150183971 Kawashima Jul 2015 A1
20150191047 Kojima Jul 2015 A1
20150191585 Null Jul 2015 A1
20150218305 Washizu Aug 2015 A1
20150247027 Kojima Sep 2015 A1
20150251491 Zhao Sep 2015 A1
20150259516 Mathey Sep 2015 A1
20150267045 Huang Sep 2015 A1
20150283854 Saintigny Oct 2015 A1
20150306921 Hiraiwa Oct 2015 A1
20150314650 Navarro-Losada Nov 2015 A1
20150315356 Schnell Nov 2015 A1
20150322241 Darnaud Nov 2015 A1
20150329696 Miyazaki Nov 2015 A1
20150329704 Miyazaki Nov 2015 A1
20150343843 Cato Dec 2015 A1
20150353716 Thuilliez Dec 2015 A1
20150360514 Miyazaki Dec 2015 A1
20150368428 Guy Dec 2015 A1
20150368438 Schwartz Dec 2015 A1
20150376380 Colvin Dec 2015 A1
20160053094 Takeuchi Feb 2016 A1
20160053097 Koda Feb 2016 A1
20160068666 Nagase Mar 2016 A1
20160082787 Boen Mar 2016 A1
20160090475 Nakatani Mar 2016 A1
20160108201 Nakashima Apr 2016 A1
20160108213 Inoue Apr 2016 A1
20160115304 Shafie Apr 2016 A1
20160130427 Saintigny May 2016 A1
20160159147 Isitman Jun 2016 A1
20160229992 Peters Aug 2016 A1
20160237225 Bian Aug 2016 A1
20160237255 Qu Aug 2016 A1
20160272796 Washizu Sep 2016 A1
20160280007 Cato Sep 2016 A1
20160312015 McDowell Oct 2016 A1
20160319116 Labrunie Nov 2016 A1
20160339744 Boley Nov 2016 A1
20170029605 Masumoto Feb 2017 A1
20170037225 Isitman Feb 2017 A1
20170088690 Feldhues et al. Mar 2017 A1
20170107358 Ambe Apr 2017 A1
20170114212 Pompei Apr 2017 A1
20170121509 Belin May 2017 A1
20170145194 Hattori et al. May 2017 A1
20170145195 Isitman May 2017 A1
20170158845 Nakajima Jun 2017 A1
20170166732 Isitman Jun 2017 A1
20170190888 Pille-Wolf Jul 2017 A1
20170204256 Labrunie Jul 2017 A1
20170204257 Labrunie Jul 2017 A1
20170218187 Ringot Aug 2017 A1
20170226331 Ishino Aug 2017 A1
20170232795 Isitman Aug 2017 A1
20170240722 Randall Aug 2017 A1
20170240724 Yamashiro Aug 2017 A1
20170240731 Yamashiro Aug 2017 A1
20170247531 Reuvekamp Aug 2017 A1
20170267027 Kunisawa Sep 2017 A1
20170291450 Izumo Oct 2017 A1
20170313860 Takenaka Nov 2017 A1
20170327671 Yokoyama Nov 2017 A1
20170334244 Isitman Nov 2017 A1
20170341468 Miyazaki Nov 2017 A1
20170342252 Galizio Nov 2017 A1
20170349733 Isitman et al. Dec 2017 A1
20170355836 Yokoyama Dec 2017 A1
20170369682 Srinivasan Dec 2017 A1
20170369685 Yamashiro Dec 2017 A1
20180022904 Weber Jan 2018 A1
20180030159 Nakatani Feb 2018 A1
20180051163 Kato Feb 2018 A1
20180056717 Yang Mar 2018 A1
20180057669 Nagase Mar 2018 A1
20180065413 Sekine Mar 2018 A1
20180072100 Sekine Mar 2018 A1
20180118896 Tomisaki May 2018 A1
20180134078 Sakai May 2018 A1
20180148566 Rodewald May 2018 A1
20180179364 Sekine Jun 2018 A1
20180186979 Labrunie Jul 2018 A1
20180223082 Lesage Aug 2018 A1
20180223083 Lesage Aug 2018 A1
20180244808 Uchiyama Aug 2018 A1
20180250985 Maekawa Sep 2018 A1
20180258263 Oshimo Sep 2018 A1
20180264882 McDowell Sep 2018 A1
20180264884 Sato Sep 2018 A1
20180265601 Colvin Sep 2018 A1
20180282531 Belin Oct 2018 A1
20180282588 Arigo Oct 2018 A1
20180291190 Kato Oct 2018 A1
20180304685 Sakurai Oct 2018 A1
20180305469 Matsumoto Oct 2018 A1
20180340055 De Gaudemaris Nov 2018 A1
20190002671 Sato Jan 2019 A1
20190031864 Kato Jan 2019 A1
20190055380 Sekine Feb 2019 A1
20190061426 Sekine Feb 2019 A1
20190061427 Sekine Feb 2019 A1
20190062531 Pille-Wolf Feb 2019 A1
20190062538 Miyazaki Feb 2019 A1
20190071560 Sekine Mar 2019 A1
20190085158 Sekine Mar 2019 A1
20190092937 Pan Mar 2019 A1
20190134930 Randall et al. May 2019 A1
20190144654 Nair May 2019 A1
20190169407 Recker Jun 2019 A1
20190184745 Oshimo Jun 2019 A1
20190184746 Oshimo Jun 2019 A1
20190185644 Watanabe Jun 2019 A1
20190185645 Oshimo Jun 2019 A1
20190185646 Recker Jun 2019 A1
20190193464 Hamamura Jun 2019 A1
20190194428 Recker Jun 2019 A1
20190194430 Morishita Jun 2019 A1
20190203021 Kyo Jul 2019 A1
20190225776 Iwakuni Jul 2019 A1
20190241017 Jung Aug 2019 A1
20190256691 Castanon Aug 2019 A1
20200123351 Francois Apr 2020 A1
20200181369 Yoshizawa Jun 2020 A1
20200317890 Hatanaka Oct 2020 A1
20210032389 Blok Feb 2021 A1
20210229494 Whyte Jul 2021 A1
20210277212 Takagi et al. Sep 2021 A1
20210300115 Whyte Sep 2021 A1
20210300117 Coffman Sep 2021 A1
20210300118 Unger Sep 2021 A1
20220235207 Placke Jul 2022 A1
20230130953 Pan et al. Apr 2023 A1
Foreign Referenced Citations (103)
Number Date Country
102634085 Aug 2012 CN
102869715 Apr 2015 CN
107207795 Sep 2017 CN
105189145 Apr 2018 CN
2141029 Jan 2010 EP
2213477 Aug 2010 EP
2412731 Feb 2012 EP
2643400 Oct 2013 EP
2489698 Jul 2014 EP
3031620 Jun 2016 EP
2194090 Aug 2016 EP
2440611 Sep 2016 EP
2585525 Oct 2016 EP
3083769 Oct 2016 EP
3109065 Dec 2016 EP
3135500 Mar 2017 EP
3159181 Apr 2017 EP
3255089 Dec 2017 EP
3299413 Mar 2018 EP
3511179 Jul 2019 EP
3608126 Feb 2020 EP
2643401 Oct 2020 EP
3915807 Dec 2021 EP
2940302 Jun 2010 FR
2969629 Jun 2012 FR
2974808 Nov 2012 FR
3015495 Jun 2015 FR
3039557 Feb 2017 FR
2007-326942 Feb 2007 JP
2009263587 Nov 2009 JP
2010514860 May 2010 JP
4849176 Jan 2012 JP
2012-531486 Dec 2012 JP
2013510939 Mar 2013 JP
2013136746 Jul 2013 JP
5670558 Sep 2013 JP
2013-544935 Dec 2013 JP
2013-544936 Dec 2013 JP
2014503619 Feb 2014 JP
2014518913 Aug 2014 JP
5719878 Dec 2014 JP
5719879 Dec 2014 JP
5719880 Dec 2014 JP
5719881 Dec 2014 JP
2015000924 Jan 2015 JP
2015007227 Jan 2015 JP
2015507054 Mar 2015 JP
5719875 May 2015 JP
5719876 May 2015 JP
5719877 May 2015 JP
2015528844 Oct 2015 JP
2015196824 Nov 2015 JP
2016-504466 Feb 2016 JP
2016089118 May 2016 JP
6211025 Aug 2016 JP
2017-031432 Feb 2017 JP
2017-132984 Aug 2017 JP
2018-502980 Feb 2018 JP
2018-030993 Mar 2018 JP
2018083944 May 2018 JP
2018123260 Aug 2018 JP
20120277189 Jan 2019 JP
2021521292 Aug 2021 JP
2021523260 Sep 2021 JP
2021523959 Sep 2021 JP
20150087507 Jul 2015 KR
101817435 Jan 2018 KR
9909036 Feb 1999 WO
2011114990 Sep 2011 WO
2013077019 May 2013 WO
2013-099324 Jul 2013 WO
2015174229 Nov 2015 WO
2016002506 Jan 2016 WO
2016031476 Mar 2016 WO
2016084984 Jun 2016 WO
2016115132 Jul 2016 WO
2016195050 Dec 2016 WO
2017038001 Mar 2017 WO
2017083082 May 2017 WO
2017-095377 Jun 2017 WO
2017104781 Jun 2017 WO
2017109400 Jun 2017 WO
2017-199688 Nov 2017 WO
2017189718 Nov 2017 WO
2018002537 Jan 2018 WO
2018004579 Jan 2018 WO
2018056382 Mar 2018 WO
2018079801 May 2018 WO
2018079803 May 2018 WO
2018203533 Nov 2018 WO
2019-213185 Nov 2019 WO
2019-213186 Nov 2019 WO
2019-213226 Nov 2019 WO
2019-213229 Nov 2019 WO
2019-213233 Nov 2019 WO
2020-032053 Feb 2020 WO
2020-243304 Dec 2020 WO
2020-243308 Dec 2020 WO
2020-243311 Dec 2020 WO
2022-076391 Apr 2022 WO
2024-182408 Sep 2024 WO
2024-182417 Sep 2024 WO
2025-038688 Feb 2025 WO
Non-Patent Literature Citations (47)
Entry
Baekelmans, Didier, International Search Report with Written Opinion from PCT/US2021/053545, 3 pp. (Jan. 21, 2022).
International Preliminary Report On Patentability; Corresponding PCT Application No. PCT/US2021/053545; Authorized Officer Cecile Chatel; Issue Date of Report 2023-28-23; 5 pp.
Escorez 5340 Tackifying Resin Data Sheet, by ExxonMobil, effective date Apr. 20, 2020 (2 pages).
Third Party Submission with English translation submitted in Japanese Application No. 2021-570149, Feb. 6, 2024, 49 pp.
Baekelmans, Didier, International Search Report with Written Opinion from PCT/US2020/034926, 10 pp. (Oct. 9, 2020).
Baekelmans, Didier, International Search Report with Written Opinion from PCT/US2020/034930, 10 pp. (Oct. 9, 2020).
Baekelmans, Didier, International Search Report with Written Opinion from PCT/US2020/034934, 9 pp. (Oct. 9, 2020).
Basak, Ganesh C. et al., “The role of tackifiers on the auto-adhesion behavior of EPDM rubber,” Journal of Materials Science, Apr. 2012, pp. 3166-3176, vol. 47, Issue 7.
BUDENE 1207/1208 Technical Data Sheet, Goodyear Chemical, Sep. 17, 2019, 1 pg.
European Search Report; Corresponding European U.S. Appl. No. 19/795,849; Dec. 3, 2021; 9 pp.
European Search Report; Corresponding European U.S. Appl. No. 19/796,674; Dec. 1, 2021; 11 pp.
European Search Report; Corresponding European U.S. Appl. No. 19/797,076; Nov. 29, 2021; 9 pp.
European Search Report; Corresponding European U.S. Appl. No. 19/797,092; Nov. 29, 2021; 6 pp.
International Preliminary Report on Patentability; Corresponding PCT Application No. PCT/US2019/030094; Authorized Officer Sun Hwa Lee; Issue Date of Report Nov. 10, 2020. 8 pp.
International Preliminary Report on Patentability; Corresponding PCT Application No. PCT/US2019/030095; Authorized Officer Sun Hwa Lee; Issue Date of Report Nov. 10, 2020; 9 pp.
International Preliminary Report on Patentability; Corresponding PCT Application No. PCT/US2019/030155; Authorized Officer Yukari Nakamura; Issue Date of Report Nov. 10, 2020; 9 pp.
International Preliminary Report on Patentability; Corresponding PCT Application No. PCT/US2019/030162; Authorized Officer Miki Kobayashi; Issue Date of Report Nov. 10, 2020; 8 pp.
International Preliminary Report on Patentability; Corresponding PCT Application No. PCT/US2019/030170; Authorized Officer Simin Baharlou; Issue Date of Report Nov. 10, 2020; 9 pp.
International Preliminary Report on Patentability; Corresponding PCT Application No. PCT/US2020/034926; Authorized Officer Nora Lindner; Issue Date of Report Nov. 16, 2021; 6 pp.
International Preliminary Report on Patentability; Corresponding PCT Application No. PCT/US2020/034930; Authorized Officer Nora Lindner; Issue Date of Report Nov. 16, 2021; 6 pp.
International Preliminary Report on Patentability; Corresponding PCT Application No. PCT/US2020/034934; Authorized Officer Agnes Wittmann-Regis; Issue Date of Report Nov. 16, 2021; 5 pp.
Kwon, Yongkyong, International Search Report with Written Opinion from PCT/US2019/030094, 13 pp. (Aug. 9, 2019).
Kwon, Yongkyong, International Search Report with Written Opinion from PCT/US2019/030095, 14 pp. (Aug. 12, 2019).
Kwon, Yongkyong, International Search Report with Written Opinion from PCT/US2019/030155, 14 pp. (Aug. 14, 2019).
Kwon, Yongkyong, International Search Report with Written Opinion from PCT/US2019/030162, 13 pp. (Aug. 12, 2019).
Kwon, Yongkyong, International Search Report with Written Opinion from PCT/US2019/030170, 14 pp. (Aug. 14, 2019).
Third Party Submission with English translation submitted in Japanese Application No. 2020-561702, Feb. 20, 2023, 21 pp.
Third Party Submission with English translation submitted in Japanese Application No. 2020-561702, Jun. 2, 2022, 43 pp.
Third Party Submission with English translation submitted in Japanese Application No. 2020-561864, Apr. 28, 2022, 58 pp.
Third Party Submission with English translation submitted in Japanese Application No. 2020-561864, Feb. 20, 2023, 15 pp.
Third Party Submission with English translation submitted in Japanese Application No. 2020-561874, Feb. 20, 2023, 14 pp.
Third Party Submission with English translation submitted in Japanese Application No. 2020-561874, Jun. 2, 2022, 51 pp.
Third Party Submission with English translation submitted in Japanese Application No. 2020-561915, Mar. 29, 2023, 35 pp.
Third Party Submission with English translation submitted in Japanese Application No. 2020-561915, Sep. 5, 2022, 46 pp.
Third Party Submission with English translation submitted in Japanese Application No. 2021-570145, May 23, 2023, 55 pp.
Third Party Submission with English translation submitted in Japanese Application No. 2021-570149, Mar. 13, 2023, 15 pp.
Third Party Submission with English translation submitted in Japanese Application No. 2021-570839, Mar. 7, 2023, 10 pp.
Third Party Submission with English translation submitted in Japanese Application No. 2020-561702, Oct. 3, 2023, 20 pp.
Third Party Submission with English translation submitted in Japanese Application No. 2020-561915, Oct. 19, 2023, 18 pp.
Third Party Submission with English translation submitted in Japanese Application No. 2020-570839, Nov. 7, 2023, 14 pp.
Third Party Submission with English translation submitted in Japanese Application No. 2021-570149, Nov. 1, 2023, 14 pp.
Third Party Submission with English translation submitted in Japanese Application No. 2022-136348, Dec. 15, 2023, 24 pp.
Kuraray “Liquid Rubber” brochure, copyright 2023, dated Feb. 2023, 16 pages.
Third Party Submission with English translation submitted in Japanese Application No. 2022-136348, Dec. 15, 2023, 14 pp.
International Search Report and Written Opinion for PCT application No. PCT/US2024/017504, mailed Jun. 3, 2024, 9 pages.
International Search Report and Written Opinion for PCT application No. PCT/US2024/017514, mailed Jun. 4, 2024, 10 pages.
International Search Report and Written Opinion for PCT application No. PCT/US2024/042198, mailed Dec. 10, 2024, 11 pages.
Related Publications (1)
Number Date Country
20220235207 A1 Jul 2022 US
Provisional Applications (1)
Number Date Country
62854084 May 2019 US