The present disclosure relates to the field of tire performance and tire mounting. More particularly, the present disclosure relates to tires having a different characteristic when rotated in different directions or mounted in different orientation.
Tires of different tread patterns and construction are known in the art. Both symmetric and asymmetric tread patterns may be configured to optimize certain features, such as braking performance, wet handling, dry handling, snow handling, traction, wear, noise reduction, and rolling resistance. The position and orientation of carcass plies and other elements may also be configured to optimize such features. Tires can be categorized into symmetric tires, asymmetric tires and directional tires. Symmetric tires have no preferred mounting method while asymmetric tires have a preferred outboard face and directional tires have a preferred rolling direction.
Many vehicles have different performance needs for tires on a front axle versus tires on a rear axle. The front axle may support a greater portion of the weight of the vehicle. In some instances, the front axle may support 60% of the weight of the vehicle. Additionally, in front wheel drive tires, the rear tires only contribute to braking, and contribute no driving force. Similarly, in rear wheel drive tires, the front tires contribute only to braking and contribute no driving force.
Additionally, the radial and lateral forces may be distributed differently in the front and rear tires. Further, the camber of front tires may be different from that of rear tires in some vehicles. This causes different parts of a tread pattern to engage a rolling surface on a front tire versus a rear tire.
The illustrated example shows forces on two different cars. The x-axis represents a ratio of the fore-aft force to the static front load of a tire. The negative numbers on the axis represent a braking force and the positive numbers represent a driving force. The y-axis represents the percentage of each occurrence.
As can be seen from
By contrast,
Although the histogram of
While “directional tires” are known in the art, it was not generally known how such tires would perform in both a clockwise and counterclockwise direction. Therefore, a sample of existing directional tires were tested on a flat belt tire test machine, which closely controls and sweeps through a matrix of slip rates and loads while recording reaction forces and moments at the tire/wheel assembly center. Table 1 shows the Peak Fx metric relating to dry traction calculated from the resulting data.
In Table 1, Peak Fx is the greatest longitudinal force on the slip ratio versus a longitudinal force (N) curve. Peak Fx is known by those skilled in the arts to correlate with traction performance.
As can be seen in Table 1, although the directional tires are configured to be rotated in a specific direction, the differences in peak Fx due to changing the rolling direction were never greater than 3%. Some of the 3% difference is likely due to the error in the testing/measurement, because even the Non Directional Tire A showed differences. Accordingly, current directional tires do not display a significant difference in dry driving or braking traction to affect a significant change in on vehicle performance based on tire rolling direction.
In one embodiment, a tire having an equatorial plane includes a first side and a second side defining a first rotation direction and a second rotation direction of the tire. The first rotation direction of the tire is a rotation of the tire in a counterclockwise direction when the tire is viewed from the first side, and the second rotation direction of the tire is a rotation of the tire in a clockwise direction when the tire is viewed from the first side. The tire further includes a carcass ply extending from a first bead portion to a second bead portion, and a circumferential tread disposed above a belt. At least one of the circumferential tread and the carcass ply causes the tire to exhibit a first tire performance when the tire is rotated in the first rotation direction, and a second tire performance that is different from the first tire performance when the tire is rotated in the second rotation direction. The tire performance is selected from the group consisting of braking, dry driving traction, wear performance, and snow traction performance.
In another embodiment, a tire having an equatorial plane includes a first bead portion and a second bead portion. The tire further includes a first side and a second side defining a first mounting position and a second mounting position of the tire. In the first mounting position, the first side faces away from a longitudinal axis of a vehicle, and in the second mounting position, the second side faces away from a longitudinal axis of the vehicle. The tire further includes at least one carcass ply extending from the first bead portion to the second bead portion, and a circumferential belt disposed above the at least one carcass ply. The tire also includes a circumferential tread having a plurality of tread elements disposed above the circumferential belt. At least one of the at least one carcass ply and the plurality of tread elements causes the tire to exhibit a first on-vehicle lateral performance when in the first mounting position on a front axle of the vehicle and the second mounting position on a rear axle of the vehicle, and a second on-vehicle lateral performance when in the first mounting position on the rear axle of the vehicle and the second mounting position on the front axle of the vehicle.
In yet another embodiment, a method of mounting a plurality of tires on a vehicle having a front axle and a rear axle is disclosed. The method includes providing four tires, including a first tire, a second tire, a third tire, and a fourth tire. Each of the four tires has a first bead portion and a second bead portion, a first side, a second side, at least one carcass ply extending from the first bead portion to the second bead portion, a circumferential belt disposed above the at least one carcass ply, and a circumferential tread disposed above the circumferential belt. The first side of each of the four tires is substantially the same, and the second side of each of the four tires is substantially the same. Likewise, the circumferential tread of each of the four tires is substantially the same. The method further includes mounting the first tire on a first wheel, mounting the second tire on a second wheel, mounting the third tire on a third wheel, and mounting the fourth tire on a fourth wheel. The method also includes mounting the first wheel on a left end of a front axle of a vehicle, such that the first side of the first tire faces away from a longitudinal axis of the vehicle and such that the first tire exhibits a first performance. The method additionally includes mounting the second wheel on a right end of the front axle of the vehicle, such that the second side of the second tire faces away from the longitudinal axis of the vehicle and such that the second tire exhibits the first performance. The method further includes mounting the third wheel on a left end of a rear axle of the vehicle, such that the second side of the third tire faces away from the longitudinal axis of the vehicle and such that the third tire exhibits a second performance that is lower than the first performance. The method also includes mounting the fourth wheel on a right end of the rear axle of the vehicle, such that the first side of the fourth tire faces away from the longitudinal axis of the vehicle and such that the fourth tire exhibits the second performance.
In still another embodiment, a method of mounting a plurality of tires on a vehicle having a front axle and a rear axle is disclosed. The method includes providing four tires, including a first tire, a second tire, a third tire, and a fourth tire. Each of the four tires has a first bead portion and a second bead portion, a first side, a second side, a carcass ply extending from the first bead portion to the second bead portion, a belt disposed above the carcass ply, and a circumferential tread disposed above the belt, wherein at least one of the circumferential tread and the carcass ply causes the tire to be reflectively asymmetric about an equatorial plane. The first side of each of the four tires is substantially the same, and the second side of each of the four tires is substantially the same. Likewise, the circumferential tread of each of the four tires is substantially the same. The method further includes mounting the first tire on a first wheel, mounting the second tire on a second wheel, mounting the third tire on a third wheel, and mounting the fourth tire on a fourth wheel. The method also includes mounting the first wheel on a left end of a front axle of a vehicle, such that the first side of the first tire faces away from a longitudinal axis of the vehicle. The method additionally includes mounting the second wheel on a right end of the front axle of the vehicle, such that the first side of the second tire faces away from the longitudinal axis of the vehicle. The method further includes mounting the third wheel on a left end of a rear axle of the vehicle, such that the second side of the third tire faces away from the longitudinal axis of the vehicle, and mounting the fourth wheel on a right end of the rear axle of the vehicle, such that the second side of the fourth tire faces away from the longitudinal axis of the vehicle.
In yet another embodiment, a method of mounting a plurality of tires on a vehicle having a front axle and a rear axle is disclosed. The method includes providing four tires, including a first tire, a second tire, a third tire, and a fourth tire. Each of the four tires has a first bead portion and a second bead portion, a first side, a second side, at least one carcass ply extending from the first bead portion to the second bead portion, a circumferential belt disposed above the at least one carcass ply, and a circumferential tread disposed above the circumferential belt. Each of the four tires has a circumferential tire design with one of a tread pattern and a carcass ply with discrete rotational asymmetry of the second order. The first side of each of the four tires is substantially the same, and the second side of each of the four tires is substantially the same. Likewise, the circumferential tread of each of the four tires is substantially the same. The method further includes mounting the first tire on a first wheel, mounting the second tire on a second wheel, mounting the third tire on a third wheel, and mounting the fourth tire on a fourth wheel. The method also includes mounting the first wheel on a left end of a front axle of a vehicle, such that the first side of the first tire faces away from a longitudinal axis of the vehicle, and mounting the second wheel on a right end of the front axle of the vehicle, such that the second side of the second tire faces away from the longitudinal axis of the vehicle. The method additionally includes mounting the third wheel on a left end of a rear axle of the vehicle, such that the first side of the third tire faces away from the longitudinal axis of the vehicle, and mounting the fourth wheel on a right end of the rear axle of the vehicle, such that the second side of the fourth tire faces away from the longitudinal axis of the vehicle, thereby providing a first rotational direction on all tires that has a first performance on all tires.
In the accompanying drawings, structures are illustrated that, together with the detailed description provided below, describe exemplary embodiments of the claimed invention. Like elements are identified with the same reference numerals. It should be understood that elements shown as a single component may be replaced with multiple components, and elements shown as multiple components may be replaced with a single component. The drawings are not to scale and the proportion of certain elements may be exaggerated for the purpose of illustration.
The following includes definitions of selected terms employed herein. The definitions include various examples or forms of components that fall within the scope of a term and that may be used for implementation. The examples are not intended to be limiting. Both singular and plural forms of terms may be within the definitions.
“Axial” or “axially” refer to a direction that is parallel to the axis of rotation of a tire.
“Bead” refers to the part of the tire that contacts the wheel and defines a boundary of the sidewall.
“Carcass ply” refers to a structural member that connects the bead to a tread, and may be continuous or discrete.
“Circumferential” and “circumferentially” refer to a direction extending along the perimeter of the surface of the tread perpendicular to the axial direction.
“Equatorial plane” refers to the plane that is perpendicular to the tire's axis of rotation and passes through the center of the tire.
“Radial” and “radially” refer to a direction perpendicular to the axis of rotation of a tire.
“Sidewall” refers to that portion of the tire between the tread and the bead.
“Tread” refers to that portion of the tire that comes into contact with the road under normal inflation and load.
Directions are stated in this disclosure with reference to a top view of a vehicle, with respect to a longitudinal axis of the vehicle. The terms “inward” and “inwardly” refer to a general direction towards the longitudinal axis of the vehicle, whereas “outward” and “outwardly” refer to a general direction away from the longitudinal axis of the vehicle. Thus, when relative directional terms such as “inner” and “outer” are used in connection with an element, the “inner” element is spaced closer to the longitudinal axis of the vehicle than the “outer” element. Similarly, the terms “left” and “right” are stated in reference to a top view of the vehicle on which tires are mounted, with respect to a longitudinal axis of the vehicle. The terms “front” and “rear” are also stated in reference to a vehicle on which tires are mounted.
The tire 100 includes a first and second bead portion (not shown), a first sidewall 120a, and a second sidewall 120b. The tire 100 has two rotation directions. When the tire is viewed from the second sidewall 120b (as shown in
The tire 100 further includes at least one carcass ply (not shown) extending from the first bead portion to the second bead portion, a circumferential belt disposed above the carcass ply (not shown), and a circumferential tread 130 disposed above the belt. The circumferential tread 130 has a tread pattern shown schematically at 140. In one embodiment, the tread pattern 140 has discrete rotational asymmetry of the second order, which causes the tire 100 to be directional. Therefore, when the tire 100 is in the first orientation 110a, the tread pattern 140 has a first appearance, and when the tire 100 is placed in the second orientation 110b, the reversed tread pattern 140 has a second appearance different from the first appearance.
The asymmetry of the tread pattern may cause the tread to exhibit different properties when the tire 100 is rotated in the first direction versus the second direction. The tread pattern and the position and orientation of the carcass ply may be selected such that desirable properties for a front tire are exhibited when the tire 100 is rotated in the first direction, and desirable properties for a rear tire are exhibited when the tire 100 is rotated in the second direction.
For example, the tread pattern may be selected such that when the tire is rotated in the first rotation direction, the circumferential tread exhibits a first braking performance and a first driving traction performance, and when the tire is rotated in the second direction, the circumferential tread exhibits a second braking performance that is lower than the first braking performance and a second driving traction performance that is higher than the first driving traction performance. In rear wheel drive vehicles, it may be more advantageous for the rear tires to exhibit higher driving traction performance. In front wheel drive vehicles, it may be more advantageous for the front tires to exhibit higher driving traction performance.
In another example, the tread pattern may be selected such that the circumferential tread exhibits a first wear performance when rotated in the first direction, and a second wear performance different from the first wear performance when rotated in the second direction. For example, in front wheel drive vehicles, front tires tend to wear faster. In rear wheel drive tires, rear tires tend to wear faster. The tread pattern may be selected to reduce the discrepancy between the wear rates of front and rear tires.
In yet another example, the tread pattern may be selected such that the circumferential tread exhibits a first snow traction performance when rotated in the first direction, and a second snow traction performance that is different from the first snow traction performance when rotated in the second direction. The tread pattern may also be selected such that other properties are affected by a change in rotation direction.
Additionally, or in the alternative, the position and orientation of the carcass ply may be selected such that the carcass ply causes the tire to exhibit different properties according to the rotation direction. Such differences in carcass plies may not be readily observable from the exterior of the tire, but the tire would still exhibit asymmetric properties.
In one embodiment, the first rotation direction may be indicated as a Front Rotation Direction, and the second rotation direction may be indicated as a Rear Rotation Direction on one or more locations on the tire. As can be seen in the illustrated embodiment, a first indicia 150a is disposed on the first sidewall 120a and a second indicia 150b is disposed on the second sidewall 120b of the tire 100. Both the first indicia 150a and the second indicia 150b include an indicator designating the first rotation direction as a front tire rotation direction and the second rotation direction as a rear tire rotation direction. While the illustrated embodiment shows arrows with a written description, it should be understood that the indicia may take any form or size.
Such indicia may be used to aid a person in mounting axle specific tires on a vehicle. As shown in
In the illustrated embodiment, the first tire 1001 is mounted on a first wheel (not shown), the second tire 1002 is mounted on a second wheel (not shown), the third tire 1003 is mounted on a third wheel (not shown), and the fourth tire 1004 is mounted on a fourth wheel (not shown). The first wheel and tire are mounted on a left end of the front axle 210 of a vehicle 200, such that a first sidewall 120a1 of the first tire 1001 faces outwards, (i.e., away from a longitudinal axis A of the vehicle 200), and a second sidewall 120b1 of the first tire 1001 faces inwards (i.e., towards the longitudinal axis A of the vehicle 200). The second wheel and tire are mounted on a right end of the front axle 210 of the vehicle 200, such that a first sidewall 120a2 of the second tire 1002 faces inwards, and a second sidewall 120b2 of the second tire 1002 faces outwards. The third wheel and tire are mounted on a left end of the rear axle 220 of the vehicle 200, such that a first sidewall 120a3 of the third tire 1003 faces inwards, and a second sidewall 120b3 of the third tire 1003 faces outwards. The fourth wheel and tire are mounted on a right end of the rear axle 220 of the vehicle 200, such that a first sidewall 120a4 of the fourth tire 1004 faces outwards, and a second sidewall 120b4 of the fourth tire 1004 faces inwards.
It should be understood that the tires may be mounted on the vehicle in any order, and that certain steps described above may be performed concurrently or in a different order.
When servicing the vehicle, the tires may be rotated in the manner illustrated in
The second wheel and tire are removed from the front axle 210 of the vehicle 200 and the third wheel and tire are removed from the rear axle 220 of the vehicle 200. The second wheel and tire are mounted on the left end of the rear axle 220 of the vehicle 200, such that a first sidewall 120a2 of the second tire 1002 faces inwards, and a second sidewall 120b2 of the second tire 1002 faces outwards. The third wheel and tire are mounted on the right end of the front axle 210 of the vehicle 200, such that a first sidewall 120a3 of the third tire 1003 faces inwards, and a second sidewall 120b3 of the third tire 1003 faces outwards.
It should be understood that the steps of rotating tires may be performed in any order and that certain steps described above may be performed concurrently or in a different order. Additionally, it should also be understood that the tires may be dismounted from the wheels such that they may be remounted in any position.
While
The tire 300 includes a first and second bead portion (not shown), a first sidewall 320a, and a second sidewall 320b. The tire 300 has two rotation directions. When the tire is viewed from the second sidewall 320b (as shown in
The tire 300 further includes at least one carcass ply (not shown) extending from the first bead portion to the second bead portion, a circumferential belt disposed above the carcass ply (not shown), and a circumferential tread 330 disposed above the belt. The circumferential tread 330 has a tread pattern shown schematically at 340. In one embodiment, the tread pattern 340 has discrete rotational asymmetry of the second order, which causes the tire 300 to be directional. Therefore, when the tire 300 is in the first orientation 310a, the tread pattern 340 has a first appearance, and when the tire 300 is placed in the second orientation 310b, the reversed tread pattern 340 has a second appearance different from the first appearance.
The asymmetry of the tread pattern may cause the tread to exhibit different properties when the tire 300 is rotated in the first direction versus the second direction. The tread pattern and the position and orientation of the carcass ply may be selected such that desirable properties for summer performance are exhibited when the tire 300 is rotated in the first direction, and desirable properties for winter performance are exhibited when the tire 300 is rotated in the second direction.
For example, the tread pattern may be selected such that the circumferential tread exhibits a first snow traction performance when rotated in the first direction, and a second snow traction performance that is different from the first snow traction performance when rotated in the second direction. The tread pattern may also be selected such that other properties are affected by a change in rotation direction.
In another example, the tread pattern may be selected such that when the tire is rotated in the first rotation direction, the circumferential tread exhibits a first stopping distance performance, and when the tire is rotated in the second direction, the circumferential tread exhibits a second stopping distance performance that is lower than the first stopping performance. Stopping distance performance may be more important in summer, when vehicles tend to be driven at higher speeds.
In yet another example, the tread pattern may be selected such that the circumferential tread exhibits a first wear performance when rotated in the first direction, and a second wear performance different from the first wear performance when rotated in the second direction. For example, tires tend to wear slower in the winter when they are driven over snow. The tread pattern may be selected to reduce the discrepancy between the wear rates in summer and winter.
In still another example, the tread pattern may be selected such that the circumferential tread exhibits a first noise performance when rotated in the first direction, and a second noise performance different from the first noise performance when rotated in the second direction. For example, tires tend to be quieter in the winter when they are driven over snow. The tread pattern may be selected to reduce the discrepancy between the tire noise in summer and winter.
Additionally, or in the alternative, the position and orientation of the carcass ply may be selected such that the carcass ply causes the tire to exhibit different properties according to the rotation direction. Such differences in carcass plies may not be readily observable from the exterior of the tire, but the tire would still exhibit asymmetric properties.
In one embodiment, the first rotation direction may be indicated as a Summer Rotation Direction, and the second rotation direction may be indicated as a Winter Rotation Direction on one or more locations on the tire. As can be seen in the illustrated embodiment, a first indicia 350a is disposed on the first sidewall 320a and a second indicia 350b is disposed on the second sidewall 320b of the tire 300. Both the first indicia 350a and the second indicia 350b include an indicator designating the first rotation direction as a summer rotation direction and the second rotation direction as a winter rotation direction. While the illustrated embodiment shows arrows with a written description, it should be understood that the indicia may take any form or size.
Such indicia may be used to aid a person in mounting season specific tires on a vehicle. As shown in
In the illustrated embodiment, the first tire 3001 is mounted on a first wheel (not shown), the second tire 3002 is mounted on a second wheel (not shown), the third tire 3003 is mounted on a third wheel (not shown), and the fourth tire 3004 is mounted on a fourth wheel (not shown). The first wheel and tire are mounted on a left end of the front axle 410 of a vehicle 400, such that a first sidewall 320a1 of the first tire 3001 faces outwards, (i.e., away from a longitudinal axis A of the vehicle 400), and a second sidewall 320b1 of the first tire 3001 faces inwards (i.e., towards the longitudinal axis A of the vehicle 400). The second wheel and tire are mounted on a right end of the front axle 410 of the vehicle 400, such that a first sidewall 320a2 of the second tire 3002 faces inwards, and a second sidewall 320b2 of the second tire 3002 faces outwards. The third wheel and tire are mounted on a left end of the rear axle 420 of the vehicle 400, such that a first sidewall 320a3 of the third tire 3003 faces outwards, and a second sidewall 320b3 of the third tire 3003 faces inwards. The fourth wheel and tire are mounted on a right end of the rear axle 420 of the vehicle 400, such that a first sidewall 320a4 of the fourth tire 3004 faces inwards, and a second sidewall 320b4 of the fourth tire 1004 faces outwards.
It should be understood that the tires may be mounted on the vehicle in any order, and that certain steps described above may be performed concurrently or in a different order.
To change direction of the tires when the season changes, the tires may be rotated in the manner illustrated in
The second wheel and tire are removed from the front axle 410 of the vehicle 400 and the third wheel and tire are removed from the rear axle 420 of the vehicle 400. The second wheel and tire are mounted on the left end of the rear axle 420 of the vehicle 400, such that a first sidewall 320a2 of the second tire 3002 faces inwards, and a second sidewall 320b2 of the second tire 3002 faces outwards. The third wheel and tire are mounted on the right end of the front axle 410 of the vehicle 400, such that a first sidewall 320a3 of the third tire 3003 faces outwards, and a second sidewall 320b3 of the third tire 3003 faces inwards.
It should be understood that the steps of rotating tires may be performed in any order and that certain steps described above may be performed concurrently or in a different order. Additionally, it should also be understood that the tires may be dismounted from the wheels such that they may be remounted in any position.
The tire 500 further includes at least one carcass ply (not shown) extending from the first bead portion to the second bead portion, a circumferential belt disposed above the carcass ply (not shown), and a circumferential tread 530 disposed above the belt. The circumferential tread 530 has a tread pattern shown schematically at 540. The tread pattern 540 is asymmetric about the equatorial plane of the tire 500. Therefore, when the tire 500 is in the first orientation shown in
The asymmetry of the tread pattern may cause the tread to exhibit different properties when the tire 100 is mounted in the first mounting position versus the second mounting position. For example, the tread pattern may be selected to account for first wear characteristics when a tire is mounted in the first position, and to account for second wear characteristics different from the first wear characteristics when the tire is mounted in the second position. As one of ordinary skill in the art would understand, the front and rear tires may have different cambers. Additionally, the weight of the vehicle may be distributed different on the front and rear axles. These differences may cause the front tires to have different footprints from the rear tires. The tread patterns in the first and second mounting positions of the tires may be selected to account for these different footprints.
In another example, the tread pattern may be selected such that the circumferential tread exhibits a first snow traction performance when mounted in the first position, and a second snow traction performance different from the first snow traction performance when mounted in the second position.
The tread pattern may also be selected such that other properties are affected by a change in mounting position. For example, the front and rear tires of a vehicle may experience different lateral forces. The tread pattern may be selected to effectively manage these different lateral forces.
Additionally, or in the alternative, the position and orientation of the carcass ply may be selected such that the carcass ply causes the tire to exhibit different properties according to the mounting position. Such differences in carcass plies may not be readily observable from the exterior of the tire, but the tire would still exhibit asymmetric properties.
The tread pattern and the position and orientation of the carcass ply may be designed to account for the different forces that are exhibited on the front and rear tires. Such different forces may cause the front and rear tires to wear differently.
In such an embodiment, the first mounting direction may be indicated as a Front Mounting Position, and the second rotation direction may be indicated as a Rear Mounting Position on one or more locations on the tire. As can be seen in the illustrated embodiment, a first indicia 550a is disposed on the first sidewall 520a and a second indicia 550b is disposed on the second sidewall 520b of the tire 500. While the illustrated embodiment shows indicia that includes a written description, it should be understood that the indicia may take any form or size.
Such indicia may be used to aid a person in mounting axle specific tires on a vehicle. As shown in
In the illustrated embodiment, the first tire 5001 is mounted on a first wheel (not shown), the second tire 5002 is mounted on a second wheel (not shown), the third tire 5003 is mounted on a third wheel (not shown), and the fourth tire 5004 is mounted on a fourth wheel (not shown). The first wheel and tire are mounted on a left end of the front axle 610 of a vehicle 600, such that a first sidewall 520a1 of the first tire 5001 faces outwards, and a second sidewall 520b1 of the first tire 5001 faces inwards. The second wheel and tire are mounted on a right end of the front axle 610 of the vehicle 600, such that a first sidewall 520a2 of the second tire 5002 faces outwards, and a second sidewall 520b2 of the second tire 5002 faces inwards. The third wheel and tire are mounted on a left end of the rear axle 620 of the vehicle 600, such that a first sidewall 520a3 of the third tire 5003 faces inwards, and a second sidewall 520b3 of the third tire 5003 faces outwards. The fourth wheel and tire are mounted on a right end of the rear axle 620 of the vehicle 600, such that a first sidewall 520a4 of the fourth tire 5004 faces inwards, and a second sidewall 520b4 of the fourth tire 5004 faces outwards.
It should be understood that the tires may be mounted on the vehicle in any order, and that certain steps described above may be performed concurrently or in a different order.
When servicing the vehicle, the tires may be rotated in the manner illustrated in
The third wheel and tire, and fourth wheel and tire are removed from the rear axle 620 of the vehicle 600. The third wheel and tire are mounted on the right end of the rear axle 620 of the vehicle 600, such that a first sidewall 520a3 of the third tire 5003 faces inwards, and a second sidewall 520b3 of the third tire 5003 faces outwards. The fourth wheel and tire are mounted on the left end of the rear axle 620 of the vehicle 600, such that a first sidewall 520a4 of the fourth tire 5004 faces inwards, and a second sidewall 520b4 of the fourth tire 5004 faces outwards.
It should be understood that the steps of rotating tires may be performed in any order and that certain steps described above may be performed concurrently or in a different order. Additionally, it should also be understood that the tires may be dismounted from the wheels such that they may be remounted in any position.
In each of the embodiments described above, and illustrated in
When the tire is rotated in the first direction D1, the top of the tread element 800 and the first wall 810 form a leading edge. When the tire is rotated in the second direction D2, the top of the tread element 800 and the second wall 820 form a leading edge, and the sipes 830 provide additional edges adjacent the leading edge. This effect is utilized to achieve directional performance of the lug related to traction, wear, noise and other tire performance characteristics.
It should be understood that the tread element 1100 may be a lug, bounded by a pair of grooves. Alternatively, the tread element 1100 may represent a portion of a lug, bounded by a pair of sipes.
In the illustrated embodiment, the rounded chamfer 1130 has a length that is substantially greater than its height. In one particular embodiment, the length is four times greater than the height. In another known embodiment, the length is two times greater than the height. In an alternative embodiment (not shown), the height is greater than or equal to the length.
To the extent that the term “includes” or “including” is used in the specification or the claims, it is intended to be inclusive in a manner similar to the term “comprising” as that term is interpreted when employed as a transitional word in a claim. Furthermore, to the extent that the term “or” is employed (e.g., A or B) it is intended to mean “A or B or both.” When the applicants intend to indicate “only A or B but not both” then the term “only A or B but not both” will be employed. Thus, use of the term “or” herein is the inclusive, and not the exclusive use. See, Bryan A. Gamer, A Dictionary of Modem Legal Usage 624 (2d. Ed. 1995). Also, to the extent that the terms “in” or “into” are used in the specification or the claims, it is intended to additionally mean “on” or “onto.” Furthermore, to the extent the term “connect” is used in the specification or claims, it is intended to mean not only “directly connected to,” but also “indirectly connected to” such as connected through another component or components.
While the present disclosure has been illustrated by the description of embodiments thereof, and while the embodiments have been described in considerable detail, it is not the intention of the applicants to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the disclosure, in its broader aspects, is not limited to the specific details, the representative apparatus and method, and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of the applicant's general inventive concept.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/074038 | 12/10/2013 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61739320 | Dec 2012 | US |