This disclosure relates to a tire, in particular, a tire having excellent drainage performance and steering stability.
Customarily in a tire, a drainage performance is ensured by disposing on its tread surface circumferential grooves extending along a tire equator. From the viewpoint of further improving the drainage performance, there are cases of disposing on land portions such as ribs, blocks and the like a plurality of so-called sipes, which are narrow grooves formed by cutting into the land portions.
For example, PTL1 describes a tire having a drainage performance on wet road surface improved by disposing, on land portions partitioned by a plurality of circumferential grooves on a tread surface of the tire, a plurality of narrow grooves of which both ends open to the circumferential grooves, and by devising a shape of the narrow grooves.
PTL1: JP2009-51453A
The tire as described in PTL1 achieves improvement of the drainage performance by disposing a plurality of sipes on the land portions of the tread, but causes deterioration of a rigidity of the land portions depending on the number of sipes because that the land portions are divided by the sipes. Such deterioration of the rigidity of the land portions particularly causes deterioration of a steering stability on dry road surface, and thus suppression of deterioration of the land portion rigidity in a tire applied with sipes is desired.
Then, this disclosure aims to provide a tire capable of achieving both the drainage performance on wet road surface and the steering stability on dry road surface at a high degree.
We intensively studied the means for improving the drainage performance on wet road surface and the steering stability on dry road surface. As a result, we discovered by differing the functions of the sipes on wet road surface and on dry road surface, i.e., by varying the mode of the sipes depending on the road surface environment, it is possible to achieve both the drainage performance on wet road surface and the steering stability on dry road surface.
This disclosure is made based on the aforementioned findings, and its primary structures is as described below.
(1) The tire of this disclosure is a tire comprising a tread surface partitioned into a plurality of land portions by a plurality of circumferential grooves along a tire equatorial surface and tread edges, wherein: among the plurality of land portions, one or both land portions adjacent to the tread edges have a plurality of sipes opening to at least one of either the tread edges or the circumferential grooves; a tackiness in a watery environment is 1.96 N or less; and a tackiness in a 90° C. environment is 2.16 N or more.
Note that the “tackiness” in this disclosure refers to a tackiness of a vulcanized rubber, which is a force at a peak time measured with a TACKINESS TESTER (manufactured by Rhesca Co., Ltd.), by respectively setting a cylindrical-shape probe (diameter: 3 mm, made of stainless steel) and a 2 mm thick vulcanized rubber plate fixed to a metallic plate in a watery environment or in a 90° C. environment, pressing the probe on the rubber until the speed becomes 30 mm/min and the load becomes 2.94 N, maintaining such load for 20 seconds, and raising the probe when the speed is 120 mm/min. Further, the “watery environment” refers to a state where a 1 mm thick water film exists directly under the probe when measuring the tackiness, and the “90° C. environment” refers to a state where the temperature of the cylindrical-shape probe and the vulcanized rubber plate is maintained at 90° C. in a dry state when measuring the tackiness.
According to this disclosure, it is possible to provide a tire capable of achieving both the drainage performance on wet road surface and the steering stability on dry road surface.
Hereinafter, the tire of this disclosure will be described in detail with reference to the drawings.
Note that an internal enforcing structure, etc. of the tire is the same as an ordinary radial tire, and thus is omitted in the drawings here.
As illustrated in
The sipes 5 enhance the drainage performance of the tire by repeating a procedure of containing therein moisture within a ground contact region of the tread and then discharging the moisture out of the ground contact region, when running on wet road surface.
The illustrated example has lateral grooves 6 extending from the tread edges TE to the vicinity of the widthwise centers of the land portions 3a and 3b, where the sipes 5 connect to the lateral grooves 6 in the vicinity of the widthwise centers of the land portions 3a and 3b.
Here, the reason for disposing the sipes on one or both land portions adjacent to the tread edge TE is as follows. This is because that when the tire rotates with a load applied, a ground contact pressure distribution in the tread width direction is higher in a region adjacent to the tread edges as compared to the central region, and thus improvement of the drainage performance in this region adjacent to the tread edges is effective for improving the so-called wet performance. Therefore, the effect can be achieved by disposing the sipes on at least one of the land portions adjacent to the tread edges TE, but it is preferable that the sipes are disposed on both land portions. Further, the sipes may be disposed on the land portions other than the land portions 3a and 3b, and as for the illustrated example, sipes 7 connecting the circumferential grooves 2a and 2b are disposed on the land portion 4 on the tread widthwise center.
Next, the cross section of the sipe 5 along the A-A line in
Moreover, the cross-sectional view of the lateral groove 6 along the B-B line in
The cross section of the circumferential grooves 2a, 2b along the C-C line in
In a tire having a plurality of sipes 5 on at least one among the land portions 3a and 3b adjacent to the aforementioned tread edges TE, regarding the land portion having the sipes 5 disposed thereon, it is important to define its tackiness according to (1) and (2).
(1) In watery environment . . . 1.96 N or less
(2) In 90° C. environment . . . 2.16 N or more
As mentioned above, if the sipes 5 are disposed on at least one among the land portions 3a and 3b adjacent to the aforementioned tread edges TE, the drainage performance may be improved effectively, while on the other hand, on dry road surface, where the drainage performance is not a problem, there is a risk that the disposal of the sipes 5 on the land portions adjacent to the tread edges TE deteriorates the steering stability in contrary. As mentioned above, since the ground contact pressure distribution in the tread width direction when the tire rotates with a load applied is higher in the region adjacent to the tread edges as compared to the central region, from the viewpoint of the steering stability, deterioration of the land portion rigidity due to introduction of the sipes within this adjacent region is undesirable.
Then, as mentioned above, by defining the tackiness of the land portion at each predetermined temperature, both the drainage performance on wet road surface and the steering stability on dry road surface were achieved at a high degree.
First, it is important that the tackiness at 90° C. is 2.16 N or more. From an initial phase of running of a tire running on dry road surface, heat occurs unavoidably due to a hysteresis loss of the rubber. As a result, the temperature of the tread rubber ordinarily becomes around 90° C. immediately after the initiation of running. Moreover, in a high performance tire provided for circuit driving, it is common sense to consciously raise the tire temperature on purpose by running-in before formal running.
In a tire within a temperature range of around 90° C., if the tackiness of the land portion is within the range of 2.16 N or more, due to a procedure of repeated deformation of the sipes within a ground contact region accompanying an input of force when the tire rotates with a load applied, at the time when the sidewalls partitioning the sipes come into contact partially or entirely with each other, the sidewalls are likely to be adhered and fixed to each other. Accompanying the temperature rise of the tire when running on dry road surface, the sidewalls partitioning the sipes transfer from the state as illustrated in
In such case when running on dry road surface, by fixing to each other the sidewalls partitioning the sipes on the land portions having the aforementioned tackiness, it is possible to form an integrated land portion and to exhibit excellent steering stability. In particular, by fixing to each other the sipe sidewalls on the land portions having the aforementioned tackiness, in the case of lane change or cornering of the vehicle, a shear force is exerted along the extension direction of the sipe, and the sipe sidewalls are maintained in the fixed state. Therefore, excellent steering stability may be maintained without the risk of collapse of the integration of the land portions.
On the other hand, in the case where the tire is running in a watery environment, typically when running on wet road surface such as running in the rain, etc., it is necessary to open the sipes to thereby exhibit its drainage performance. The drainage performance may be ensured if the sipes keep open from the beginning, but in the case of transferring from running on dry road surface to running on wet road surface, etc. as mentioned above, it is necessary to open the sipe in a closed stated.
Here, if moisture is provided continuously on the running road surface when transferring from dry road surface to wet road surface, the openings of the sipes on the tread surface are exposed to the moisture on the road surface. As a result, moisture enters the openings and sequentially penetrates in the depth direction due to a capillary phenomenon, and is gradually absorbed into the fixed sipes, which leads to a state where the sidewalls portioning the sipes are exposed to the moisture. In this way, in a land portion of which the tackiness of the sidewalls in a watery environment is 1.96 N or less, the fixed state of the sipe sidewalls cannot be maintained and thus the sidewalls are separated from each other. Due to the separation of the sidewalls, the sipes return to the open state and their original functions are recovered, which, as a result, contributes to the improvement of the drainage performance.
The aforementioned separation of the sipe sidewalls is achieved by absorbing sufficient moisture between the sidewalls, and therefore, in an environment such as stop of rain or intermittent rain, the separation of the sidewalls is insufficient. Therefore, in an aforementioned environment in which moisture is not continuously provided on the road surface, the sidewalls are separated gently. In other words, the degree of opening/closing of the sipes is adjusted depending on the moisture amount on the road surface.
It is further preferable that the tackiness described in the aforementioned range is 1.72 N or less in a watery environment and 2.45 N or more at 90° C. Note that a lower limit of the tackiness in the watery environment and an upper limit of the tackiness in the 90° C. environment are not specifically limited.
Note that in the case where the land portions other than the land portions 3a and 3b have sipes, the tackiness is defined within the aforementioned range as well. In the illustrated example, since the land portion 4 on the tread widthwise center has sipes, the tackiness is beneficially defined within the aforementioned range.
The aforementioned tackiness may be adjusted by appropriately varying the compounding ratio of the rubber material, and the compound and its ratio may be appropriately designed in view of the correlation with other tire performances. In particular, by setting a resin amount to 10 parts by mass or more per 100 parts by mass of rubber components other than resin, it is easy to adjust the tackiness within the aforementioned range.
The sipes 5 may be any one as long as extending toward the tread edge TE sides from the circumferential direction 2a or 2b, but preferably extend at an inclination angle α (see
More preferably, the inclination angle α with respect to the equator CL of the sipes 5 is 40° or more and 50° or less. In this case, it is possible to obtain better drainage performance and edge effect.
Note that the sipes 5 may be arranged in a manner disposing a phase difference in the tire circumferential direction on both tire widthwise sides of the equator CL.
In
By disposing the aforementioned chamfer portions 5c and 5d, as illustrated in
Here, the chamfer portions 5c and 5d are desirably formed in a manner such that a chamfer width p in a direction perpendicular to the extension direction of the sipes 5 is 100% or more and 2000% or less of the opening width w of the sipes 5 on the tread surface, and a chamfer depth tin a radial direction is 10% or more and 40% or less of a depth h of the sipes. This is because that although a chamfer width and depth are necessary for forming a space capable of achieving a high drainage performance on wet road surface, if the depth t is excessively large, there is a risk of deterioration of the fixing function of the sipes 5 for suppressing the rigidity deterioration, and as well, if the width p is excessively large, there is a risk of deterioration of the drainage performance. Moreover, in the illustrated example, the aforementioned width and depth are identical in 5c and 5d, but the width and the depth may be different in 5c and 5d as long as within the range in the aforementioned configuration.
Moreover, the lateral grooves 6 may also be provided with the chamfer portions 6c and 6d.
As illustrated in
In such type of tire, as illustrated in
Here, the reason for disposing the sipes 12 on at least the land portion 9 adjacent to the tread edge TE on the tire mounting outer side is as follows. A ground contact pressure distribution on tread widthwise sides is higher as compared to a central region when the tire rotates with a load applied, and tends to be high particularly on the tire mounting outer side at the time of cornering, etc. during high speed running. Therefore, since the so-called wet performance may be effectively improved by enhancing the drainage performance of the land portion adjacent to the tread edge TE on the tire mounting outer side, the sipes 12 are formed on at least the land portion 9.
The aforementioned land portion 9 adjacent to the tread edge TE on the tire mounting outer side has a tackiness defined the same as the land portion with the sipes 5 disposed in
As mentioned above, by defining the tackiness of the land portion 9 at each predetermined temperature, the drainage performance on wet road surface and the steering stability on dry road surface may be achieved at a high degree.
The sipes 12 may be any one as long as extending from the circumferential groove 8a toward the tread edge TE side, but preferably extend at an inclination angle β (see
The sipes 12 may be provided with chamfer portions 12a and 12b as illustrated. Similarly as illustrated in
Note that the land portions 10a, 10b, 11 may respectively have circumferential grooves 8a, 8b, 8c, which partition each land portion, and lateral grooves 13, 14, 15, of which both ends open to the tread edge TE on the tire mounting inner side, formed thereon.
Hereinafter, examples for this disclosure are described without being limited thereto.
Tires with a size of 205/55R16 were experimentally produced respectively at the specs as shown in Table 1 according to the tread patterns as illustrated in
Note that the tackiness in a watery environment and the tackiness in a 90° C. environment in Table 1 are values measured according to the aforementioned test procedure.
[Evaluation of Steering Performance]
Each aforementioned tire was subjected to evaluation of steering performance via measurement of lap time at the time of running on a test course having a dry road surface and a test course having a wet road surface (water depth: 1 mm).
The result thereof was indexed with the evaluation result of the tire according to Sample Tire 1 (comparative example) as 100. Note that a larger index indicates better steering performance.
Further, the opening/closing state of the sipes in each example is shown for evaluating the steering performance. The opening/closing state of the sipes was evaluated by observing, and by judging whether a metallic plate thinner than the sipe width could be inserted. Note that the case where the sipes are observed as closed and the metallic plate cannot be inserted into the sipes were evaluated as fixed, the case where the sipes are observed as open and the metallic plate can be inserted into the sipes were evaluated as not fixed, and the case where the sipes is observed as partially not fixed in the extension direction or the metallic plate can be inserted only midway in the depth direction was evaluated as partially not fixed.
As shown in the test result, as compared to the comparative examples, our examples have better steering stability and lap time on the DRY steering evaluation road, and on the WET steering evaluation road, our examples have better lap time than the comparative examples as well. Therefore, in our examples, it is possible to improve the steering performance of the tire on dry road surface and wet road surface, and to achieve both the steering stability and the drainage performance at a high degree.
Number | Date | Country | Kind |
---|---|---|---|
2015-115910 | Jun 2015 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2016/002747 | 6/7/2016 | WO | 00 |