The present invention relates to electrosurgical devices and related methods for rapid, controlled ablation of tissue. More particularly, the present invention relates to treating tissue with a radiofrequency current delivered through an electrically non-conductive gas which is ionized to capacitively couple to surrounding tissue through a thin dielectric layer surrounding the gas.
The treatment of diseased organs, such as the uterus and the gallbladder, by ablation of an endometrial or mucosal layer surrounding the interior of the organ has long been proposed. Such internal surface ablation can be achieved by heating the surface, treating the surface with microwave energy, treating the surface with cryoablation, and delivering radiofrequency energy to the surface. Of particular interest to the present invention, a variety of radiofrequency ablation structures have been proposed including solid electrodes, balloon electrodes, metalized fabric electrodes, and the like. While often effective, at least most of the prior electrode designs have suffered from one or more deficiencies, such as relatively slow treatment times, incomplete treatments, non-uniform ablation depths, and risk of injury to adjacent organs.
For these reasons, it would be desirable to provide methods and apparatus for the radiofrequency ablation of internal tissue surfaces which are rapid, provide for uniform ablation depths, which assure complete ablation over the entire targeted surface, and which reduce the risk of injury to adjacent organs. At least some of these objectives will be met by the inventions described hereinbelow.
U.S. Pat. No. 4,979,948, describes a balloon filled with an electrolyte solution for distributing radiofrequency current to a mucosal layer via capacitive coupling. US 2008/097425, having common inventorship with the present application, describes delivering a pressurized flow of a liquid medium which carries a radiofrequency current to tissue, where the liquid is ignited into a plasma as it passes through flow orifices. U.S. Pat. No. 5,891,134 describes a radiofrequency heater within an enclosed balloon. U.S. Pat. No. 6,041,260 describes radiofrequency electrodes distributed over the exterior surface of a balloon which is inflated in a body cavity to be treated. U.S. Pat. No. 7,371,231 and US 2009/054892 describe a conductive balloon having an exterior surface which acts as an electrode for performing endometrial ablation. U.S. Pat. No. 5,191,883 describes bipolar heating of a medium within a balloon for thermal ablation. U.S. Pat. Nos. 6,736,811 and 5,925,038 show an inflatable conductive electrode.
The present invention provides methods, apparatus, and systems for treating tissue of a patient. The treatment generally comprises delivering a radiofrequency current to the tissue in order to heat and usually ablate the tissue to a desired depth. Current is delivered to the tissue from a radiofrequency energy source through a first dielectric medium and a second dielectric medium in series with the first medium. The first dielectric medium will usually comprise an electrically non-conductive gas which may be ionized to form a plasma, typically by application of a high voltage radiofrequency voltage, but optionally by the direct application of heat to the gas, further optionally by the application of both the high radiofrequency voltage and heat to the gas. The second dielectric medium will separate the first medium from the target tissue, typically comprising a thin dielectric material, such as silicone or a silicone-based material, more typically comprising a thin dielectric wall which defines an interior chamber which contains the electrically non-conductive gas. The radiofrequency current is thus delivered to the tissue by applying a radiofrequency voltage across the first and second dielectric media so that the first dielectric becomes ionized, typically forming a gas plasma, and the second dielectric allows current flow to the tissue via capacitive coupling.
Methods for treating tissue of a patient in accordance with the present invention comprise containing an electrically non-conductive gas in an interior chamber of an applicator having a thin dielectric wall surrounding at least a portion of the interior chamber. An external surface of the thin dielectric wall is engaged against a target region of the tissue, and a radiofrequency voltage is applied across the gas and thin wall, where the voltage is sufficient to ionize the gas to initiate a plasma in the gas and to capacitively couple the current in the gas plasma across the dielectric wall and into the engaged tissue.
The electrically non-conductive gas may be held statically within the chamber, but will more often be actively flowing through the chamber of the applicator. The flow rate of the non-conductive gas will typically be in the range from about 1 ml/sec to 50 ml/sec, preferably from 10 ml/sec to 30 ml/sec. The interior chamber will have a volume in the range from 0.01 ml to 100 ml, typically from 2 ml to 10 ml. Usually, the electrically non-conductive gas will be argon or another noble gas or mixture of noble gases.
The dielectric wall of the applicator may assume a variety of configurations. In a first embodiment, the dielectric wall will have a generally fixed shape that will remain constant regardless of the internal pressurization of the contained gas. Alternatively, the dielectric wall may be elastic, conformable, slack, or otherwise having a changeable shape which can conform to the engaged tissue surface. In some examples, the thin dielectric wall will comprise a balloon or other inflatable structure which is expanded by increasing an internal pressure of the electrically non-conductive gas or other medium. Alternatively, a separate frame, cage, spring, or other mechanical deployment structure could be provided within an elastic or non-elastic conformable thin dielectric wall. In the latter case, the frame or other structure can be configured and reconfigured to shape the thin dielectric wall as desired in the method.
The voltage is applied to the tissue by providing a first electrode surface coupled to the non-conductive gas and a second electrode surface coupled to the patient tissue. A radiofrequency voltage is then applied across the first and second electrodes in order to both ionize the electrically non-conductive gas (forming a plasma) within the interior chamber and to capacitively couple the charged plasma with tissue across the thin dielectric wall.
The voltage applied to the first and second dielectric media will depend on the distance between the first electrode surface and the dielectric wall as well as the resistance between the dielectric wall and the second electrode which is in contact with the tissue, typically being in the range between 500V (rms) and 2500V (rms). In the exemplary embodiments, the first electrode surface will usually be in or on the interior chamber or a gas flow path leading to the interior chamber, and the second electrode surface will be in contact with the patient's tissue, often being disposed on a shaft or other external surface of the treatment device.
In a second aspect of the present invention, apparatus for delivering radiofrequency current to tissue comprises a body having a support end, a working end, and an interior chamber. A thin dielectric wall surrounds at least a portion of the interior chamber and has an external surface disposed at the working end of the body. A gas inlet will be provided to connect to the chamber for delivery of an electrically non-conductive gas, either in a continuously flowing mode or in a static mode. A first electrode structure is provided which has a surface exposed to either the interior chamber or the gas inlet. A second electrode structure is also provided and has a surface adapted to contact tissue, typically being somewhere on the body, more typically being on a handle or shaft portion of the device. The apparatus further includes a radiofrequency power supply connected to apply a radiofrequency voltage across the first and second electrode structures, wherein the voltage is sufficient to initiate ionization of the gas into a plasma within the chamber. The voltage will further be sufficient to capacitively couple the current in the plasma across the dielectric wall and into tissue adjacent the external surface.
The specific structure of the body may vary. In a first example, the dielectric wall may comprise a rigid material, typically selected from the group consisting of a ceramic, glass, and polymer. The rigid material may be formed into a variety of geometries, including a tube, sphere, or the like. Usually, the dielectric wall will have a thickness in the range from about 0.002 in to 0.1 in, usually from 0.005 in to 0.05 in.
In alternative embodiments, the dielectric wall may comprise a conformable material, typically a silicone. Such conformable dielectric walls will typically have a thickness in the range from about 0.004 in to 0.03 in, usually from 0.008 in to 0.015 in. The conformable wall may be non-distensible or may be elastic so that the wall structure may be inflated. For either non-distensible or elastic dielectric walls, the device may further comprise a frame which supports the conformable material, usually where the frame can be expanded and contracted to open and close the dielectric wall.
The apparatus of the present invention will typically also include a shaft or other handle structure connected to the support end of the body. Usually, the shaft will have a lumen which extends into the gas inlet of the body to deliver the electrically non-conductive gas to the chamber. The shaft or handle may also include at least a second lumen for removing the electrically non-conductive gas from the chamber so that the gas may be recirculated in a continuous flow. Often, the first electrode will be at least partly in the first lumen of the device, although it may also be within the chamber or within both the first lumen and the chamber. The second electrode will usually be disposed at least partly over an exterior surface of the device, typically over the shaft, although in certain systems the second electrode could be disposed on a separate dispersal pod.
Apparatus according to the present invention will have an interior chamber volume in the range from 0.01 ml to 20 ml, typically from 1 ml to 10 ml. The dielectric wall will have an area in the range from 1 mm2 to 100 mm2, typically from 5 mm2 to 50 mm2. The first electrode surface will have an area in contact with the electrically non-conductive gas in the range from 0.01 mm2 to 10 mm2, typically from 1 mm2 to 5 mm2. Additionally, the second electrode structure will have an area available to contact tissue in the range from 0.5 mm2 to 50 mm2, usually from 1 mm2 to 10 mm2.
The radiofrequency power supply may be of general construction as often used in electrosurgery. The power supply will typically be configured to deliver a voltage in the range from 500 V (rms) to 2500 V (rms), usually from 600 V (rms) to 1200V (rms), typically at a current in the range from 0.1 A to 1 A, typically from 0.2 A to 0.5 A, and at a frequency in the range from 450 kHz to 550 MHz, usually from 480 kHz to 500 MHz.
In order to better understand the invention and to see how it may be carried out in practice, some preferred embodiments are next described, by way of non-limiting examples only, with reference to the accompanying drawings, in which like reference characters denote corresponding features consistently throughout similar embodiments in the attached drawings.
Several embodiments of ablation systems useful for practicing ablation methods corresponding to the present invention are shown in the drawings. In general, each of these embodiments utilizes a neutral gas contained within a chamber that is at least partly enclosed by thin-wall dielectric enclosure, wherein the dielectric wall provides for capacitive coupling of RF current from the gas to through the dielectric to contacted tissue. A second electrode is in contact the tissue at an exterior of the dielectric enclosure. The system embodiments typically include an instrument with a working end including the thin-wall dielectric enclosure for containing an ionizable gas. Current flow to the tissue initiates when sufficient voltage is applied to ionize the contained gas into a plasma and the contemporaneous capacitive coupling through the surrounding dielectric structure occurs. The invention thus provides a voltage-based electrosurgical effect that is capable of ablating tissue to a controlled depth of 1 mm to 5 mm or more very rapidly, wherein the depth of ablation is very uniform about the entire surface of the dielectric enclosure. The instrument working end and dielectric enclosure can take a variety of forms, including but not limited to an elongated shaft portion of a needle ablation device, a dielectric expandable structure, an articulating member, a deflectable member, or at least one engagement surface of an electrosurgical jaw structure. The system embodiments and methods can be used for interstitial tissue ablation, intraluminal tissue ablation or topical tissue ablation.
The system embodiments described herein utilize a thin-wall dielectric structure or wall at an instrument working end that contains an electrically non-conductive gas as a dielectric. The thin-wall dielectric structure can be a polymer, ceramic or glass with a surface configured for contacting tissue. In one embodiment, an interior chamber within the interior of the thin-wall dielectric structure carries a circulating neutral gas or static neutral gas such as argon. An RF power source provides current that is coupled to the neutral gas flow or static gas volume by an electrode disposed within the interior of the working end. The gas flow or static gas contained within the dielectric enclosure is of the type that is non-conductive until it has been transformed to a conductive plasma by voltage breakdown. The threshold voltage for breakdown of the gas will vary with variations in several parameters, including the gas pressure, the gas flow rate, the type of gas, and the distance from the interior electrode across the interior chamber to the dielectric structure. As will be seen in some of the embodiments, the voltage and other operational parameters can be modulated during operation by feedback mechanisms.
The gas, which is ionized by contact with a conductive electrode in the instrument working end, functions as a switching mechanism that only permits current flow into targeted tissue when the voltage across the combination of the gas, the dielectric structure and the contacted tissue reaches a predetermined threshold potential that causes capacitive coupling across the dielectric structure. By this means of permitting current flow only at a high threshold voltage that capacitively couples current to the tissue, the invention allows a substantially uniform tissue effect within all tissue in contact with the dielectric structure. Further, the invention allows the ionized gas to be created contemporaneously with energy application to tissue by the conversion of a non-conductive gas to a plasma.
In one embodiment of the apparatus, the ionized gas functions as an electrode and comprises a gas flow that can conduct current across an internal contained volume of the gas within a dielectric structure, typically from an electrode at an interior of a working end in contact with the gas flow. The gas flow is configured for the purpose of coupling energy to the dielectric structure uniformly across the surface of the dielectric structure, but that will only conduct such energy when the non-conductive gas media has been transformed to a conductive plasma by having been raised to a threshold voltage.
Plasma. In general, this disclosure may use the terms “plasma” and “ionized gas” interchangeably. A plasma consists of a state of matter in which electrons in a neutral gas are stripped or “ionized” from their molecules or atoms. Such plasmas can be formed by application of an electric field or by high temperatures. In a neutral gas, electrical conductivity is non-existent or very low. Neutral gases act as a dielectric or insulator until the electric field reaches a breakdown value, freeing the electrons from the atoms in an avalanche process thus forming a plasma. Such a plasma provides mobile electrons and positive ions, an acts as a conductor which supports electric currents and can form spark or arc. Due to their lower mass, the electrons in a plasma accelerate more quickly in response to an electric field than the heavier positive ions, and hence carry the bulk of the current. A variety of terms are known in the literature to describe a transient plasma discharge across a gas such as plasma filament, plasma streamer, plasma microstreamer, plasma wire or plasma hair. In this disclosure, the terms plasma filament and plasma streamer are used interchangeably herein to describe visible plasma discharges within and across a gas volume. A plasma filament may also be called a dielectric barrier discharge herein when describing a plasma filament generated adjacent to, and as a function of, high voltage current coupling through a dielectric wall.
Dielectric and dielectric loss. The term dielectric is used in its ordinary sense meaning a material that resists the flow of electric current, that is, a non-conducting substance. An important property of a dielectric is its ability to support an electrostatic field while dissipating minimal energy in the form of heat. The lower the dielectric loss (the proportion of energy lost as heat), the more effective is a dielectric material.
Dielectric constant or relative permittivity. The dielectric constant (k) or relative static permittivity of a material under given conditions is a measure of the extent to which it concentrates electrostatic lines of flux, or stated alternatively is a number relating the ability of the material to carry alternating current to the ability of vacuum to carry alternating current. The capacitance created by the presence of a material is directly related to its dielectric constant. In general, a material or media having a high dielectric constant breaks down more easily when subjected to an intense electric field than do materials with low dielectric constants. For example, air or another neutral gas can have a low dielectric constant and when it undergoes dielectric breakdown, a condition in which the dielectric begins to conduct current, the breakdown is not permanent. When the excessive electric field is removed, the gas returns to its normal dielectric state.
Dielectric breakdown. The phenomenon called dielectric breakdown occurs when an electrostatic field applied to a material reaches a critical threshold and is sufficiently intense so that the material will suddenly conduct current. In a gas or liquid dielectric medium, this condition reverses itself if the voltage decreases below the critical point. In solid dielectrics, such a dielectric breakdown also can occur and couple energy through the material. As used herein, the term dielectric breakdown media refers to both solid and gas dielectrics that allow current flow across the media at a critical voltage.
Degree of ionization. Degree of ionization describes a plasma's proportion of atoms which have lost (or gained) electrons, and is controlled mostly by temperature. For example, it is possible for an electrical current to create a degree of ionization ranging from less than 0.001% to more than 50.0%. Even a partially ionized gas in which as little as 0.1% or 1.0% of the particles are ionized can have the characteristics of a plasma, that is, it can strongly respond to magnetic fields and can be highly electrically conductive. For the purposes of this disclosure, a gas may begin to behave like conductive plasma when the degree of ionization reaches approximately 0.1%, 0.5% or 1.0%. The temperature of a plasma volume also relates to the degree of ionization. In particular, plasma ionization can be determined by the electron temperature relative to the ionization energy. A plasma is sometimes referred to as being “hot” if it is nearly fully ionized, or “cold” or a “technological plasma” if only a small fraction (for example, less than 5% or less than 1%) of the gas molecules are ionized. Even in such a cold plasma, the electron temperature can still be several thousand degrees Celsius. In the systems according to the present invention, the plasmas are cold in this sense because the percentage of ionized molecules is very low. Another phrase used herein to describe a “cold” plasma is “average mass temperature” of the plasma which relates to the degree of ionization versus non-ionized gas and which averages the temperatures of the two gas volume components. For example, if 1% of a gas volume is ionized with an electron temperature of 10,000° C., and the remaining 99% has a temperature of 150° C., then the mass average temperature will be 149.5° C. It has been found that measuring the plasma temperature can be used to determine an approximate degree of ionization which can be used for feedback control of applied power, and as a safety mechanism for preventing unwanted high temperatures within a thin-wall dielectric structure.
Referring to
In the embodiment of
Now turning to
Referring again to
Referring to
Still referring to
The box diagrams of
Now turning to
In one aspect of the invention,
Now turning to
In another aspect of the invention,
In another embodiment similar to
In general,
In general,
Now turning to
In the electrosurgical ablation working ends of
In one embodiment, the dielectric structure 522 was made from NuSil MED-6640 silicone material commercially available from NuSil Technology LLC, 1050 Cindy Lane, Carpinteria, Calif. 93013. The dielectric structure 522 was fabricated by dipping to provide a length of 6 cm and a uniform wall thickness of 0.008″ thereby providing a relative permittivity in the range of 3 to 4. The structure ends were bonded to a shaft having a diameter of approximately 4 mm with the expanded structure having an internal volume of 4.0 cc's. The gas used was argon, supplied in a pressurized cartridge available from Leland Limited, Inc., Post Office Box 466, South Plainfield, N.J. 07080. The argon was circulated at a flow rate ranging between 10 ml/sec and 30 ml/sec. Pressure in the dielectric structure was maintained between 14 psia and 15 psia with zero or negative differential pressure between gas inflow source 150 and negative pressure (outflow) source 160. The RF power source 200 had a frequency of 480 KHz, and electrical power was provided within the range of 600 Vrms to about 1200 Vrms and about 0.2 Amps to 0.4 Amps and an effective power of 40 W to 80 W.
While
In another aspect of the invention, depicted schematically in
In another aspect of the invention relating to the energy-delivery surface of
At some applied voltages, there is complete spatiotemporal chaos among the dielectric barrier discharges. By experimentation, it has been found that control of several system parameters can reduce the spatiotemporal disorder or chaos of the discharges, and control of certain parameters can substantially eliminate such spatiotemporal chaos and create spatially repetitive locations of plasma streamers 1210 and repetitive spacing between streamers when applying energy to tissue. Chart A below lists the several system parameters and ranges thereof that enable the energy delivery methods of the invention.
TABLE-US-00001 CHART A Actual Min-Max Dielectric constant 3.0-3.5 1-10,000 (Relative static permittivity) Gap (G) between 0-0.5 mm 0-5 mm interior chamber electrode and inner surface of dielectric wall Surface area of 5-17.5 cm2 0.1-30 cm2 dielectric (Energy-delivery surface) Dielectric wall 0.005″-0.010″ 0.001″-0.020″ thickness Gas flow (replacement 0.5-1 slpm 0.1-2 slpm volume/time) Frequency of 480 kHz 100 kHz-20 MHz alternating current Gas pressure 760 Torr 10 Torr-1000 Torr Field strength 0.3 MV/m-8 MV/m 50,000 V/m-1600 MV/m
In one aspect of the invention, a method of applying energy to tissue comprises contacting tissue with an energy-delivery surface and creating substantially stable patterns of plasma streamers adjacent a dielectric barrier that couple RF current to, and across, the energy-delivery surface to the engaged tissue. The pattern of plasma streamers is created in a gas-filled chamber that is at least partly bounded by the dielectric energy-delivery surface.
In another aspect of the invention, a method of reducing or substantially eliminating spatiotemporal chaos of plasma streamers comprises providing and controlling a plurality of system parameters listed in Chart A, consisting of (i) controlling the dielectric constant of the dielectric wall, (ii) controlling the “gap” or spacing G between electrode 1250 in plasma reaction chamber 1245 and dielectric wall 1244 (
In the embodiment schematically depicted in
Another aspect of the invention can be seen schematically in comparing
In another aspect of the invention, the plasma streamers 1210 can be created with a duty cycle in which voltage is applied to initiate the plasma in on/off intervals wherein each “on” interval is at least long enough to create a discharge across gap G which can be greater than 1 millisecond, 100 milliseconds or 500 milliseconds. In such a duty cycle, the “off” intervals can be at least 1 millisecond, 100 milliseconds or 500 milliseconds. In one system embodiment, the duty cycle can configured to cooperate with the thermal relaxation time of dielectric material of the thin-wall enclosure that interfaces with the plasma streamers. For example, referring to
In general, referring to
In another aspect of the invention, a method comprises causing the spatiotemporal switching of plasma streamers between first and second electrodes positioned respectively at an interior and exterior of dielectric wall 1244 and a surface 1262 in contact with tissue. Further, the temporal aspect of the switching step occurs within less than milliseconds. Also, the spatial aspect of the switching step moves the focal points 1280 apart from one another a minimum distance. The method of energy delivery can be utilized in an interstitial application or the energy-delivery surface can be deployed in a body lumen, space or cavity.
Another aspect of a method of the invention is shown in
In another aspect of the invention, as can be understood from
Although particular embodiments of the present invention have been described above in detail, it will be understood that this description is merely for purposes of illustration and the above description of the invention is not exhaustive. Specific features of the invention are shown in some drawings and not in others, and this is for convenience only and any feature may be combined with another in accordance with the invention. A number of variations and alternatives will be apparent to one having ordinary skills in the art. Such alternatives and variations are intended to be included within the scope of the claims. Particular features that are presented in dependent claims can be combined and fall within the scope of the invention. The invention also encompasses embodiments as if dependent claims were alternatively written in a multiple dependent claim format with reference to other independent claims.
The present application is a continuation of U.S. patent application Ser. No. 14/341,121, filed Jul. 25, 2014, now U.S. patent Ser. No. 10,213,246, which is a divisional of U.S. patent application Ser. No. 12/944,466 (now U.S. Pat. No. 8,821,486), filed Nov. 11, 2010, which is a non-provisional and claims the benefit of Provisional Application No. 61/307,362, filed on Feb. 23, 2010, and Provisional Application No. 61/261,246, filed on Nov. 13, 2009, the full disclosures of which are incorporated herein by reference. This application is also related to Ser. No. 12/541,043 (now U.S. Pat. No. 8,372,068) filed on Aug. 13, 2009 and to Ser. No. 12/541,050 (now U.S. Pat. No. 8,382,753) filed on Aug. 13, 2009, both of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3903891 | Brayshaw | Sep 1975 | A |
4428748 | Peyman et al. | Jan 1984 | A |
4949718 | Neuwirth et al. | Aug 1990 | A |
4979948 | Geddes et al. | Dec 1990 | A |
4989583 | Hood | Feb 1991 | A |
5045056 | Behl | Sep 1991 | A |
5078717 | Parins et al. | Jan 1992 | A |
5084044 | Quint | Jan 1992 | A |
5085659 | Rydell et al. | Feb 1992 | A |
5191883 | Lennox et al. | Mar 1993 | A |
5197963 | Parins | Mar 1993 | A |
5242390 | Goldrath | Sep 1993 | A |
5248312 | Langberg | Sep 1993 | A |
5269794 | Rexroth | Dec 1993 | A |
5277201 | Stern et al. | Jan 1994 | A |
5282799 | Rydell | Feb 1994 | A |
5324254 | Phillips | Jun 1994 | A |
5344435 | Turner et al. | Sep 1994 | A |
5374261 | Yoon | Dec 1994 | A |
5401272 | Perkins | Mar 1995 | A |
5401274 | Kusunoki | Mar 1995 | A |
5429136 | Milo et al. | Jul 1995 | A |
5441498 | Perkins | Aug 1995 | A |
5443470 | Stern et al. | Aug 1995 | A |
5456689 | Kresch et al. | Oct 1995 | A |
5483994 | Maurer | Jan 1996 | A |
5496314 | Eggers | Mar 1996 | A |
5501681 | Neuwirth et al. | Mar 1996 | A |
5505730 | Edwards | Apr 1996 | A |
5507725 | Savage et al. | Apr 1996 | A |
5558672 | Edwards et al. | Sep 1996 | A |
5562703 | Desai | Oct 1996 | A |
5562720 | Stern et al. | Oct 1996 | A |
5575788 | Baker et al. | Nov 1996 | A |
5584872 | Lafontaine et al. | Dec 1996 | A |
5592727 | Glowa et al. | Jan 1997 | A |
5622647 | Kerr et al. | Apr 1997 | A |
5647848 | Jorgensen | Jul 1997 | A |
5653684 | Laptewicz et al. | Aug 1997 | A |
5653692 | Masterson et al. | Aug 1997 | A |
5662647 | Crow et al. | Sep 1997 | A |
5672174 | Gough et al. | Sep 1997 | A |
5681308 | Edwards et al. | Oct 1997 | A |
5697281 | Eggers et al. | Dec 1997 | A |
5697882 | Eggers et al. | Dec 1997 | A |
5713942 | Stern et al. | Feb 1998 | A |
5733298 | Berman et al. | Mar 1998 | A |
5769846 | Edwards et al. | Jun 1998 | A |
5769880 | Truckai et al. | Jun 1998 | A |
5779662 | Berman | Jul 1998 | A |
5800493 | Stevens et al. | Sep 1998 | A |
5810802 | Panescu et al. | Sep 1998 | A |
5827273 | Edwards | Oct 1998 | A |
5833644 | Zadno-Azizi et al. | Nov 1998 | A |
5843020 | Tu et al. | Dec 1998 | A |
5846239 | Swanson et al. | Dec 1998 | A |
5860974 | Abele et al. | Jan 1999 | A |
5866082 | Hatton et al. | Feb 1999 | A |
5876340 | Tu et al. | Mar 1999 | A |
5879347 | Saadat et al. | Mar 1999 | A |
5891094 | Masterson et al. | Apr 1999 | A |
5891134 | Goble et al. | Apr 1999 | A |
5891136 | McGee et al. | Apr 1999 | A |
5902251 | Vanhooydonk | May 1999 | A |
5904651 | Swanson et al. | May 1999 | A |
5925038 | Panescu et al. | Jul 1999 | A |
5954714 | Saadat et al. | Sep 1999 | A |
5958782 | Bentsen et al. | Sep 1999 | A |
5964755 | Edwards | Oct 1999 | A |
5976129 | Desai | Nov 1999 | A |
5980515 | Tu | Nov 1999 | A |
5997534 | Tu et al. | Dec 1999 | A |
6024743 | Edwards | Feb 2000 | A |
6026331 | Feldberg et al. | Feb 2000 | A |
6041260 | Stern et al. | Mar 2000 | A |
6053909 | Shadduck | Apr 2000 | A |
6057689 | Saadat | May 2000 | A |
6086581 | Reynolds et al. | Jul 2000 | A |
6091993 | Bouchier et al. | Jul 2000 | A |
6113597 | Eggers et al. | Sep 2000 | A |
6136014 | Sirimanne et al. | Oct 2000 | A |
6139570 | Saadat et al. | Oct 2000 | A |
6146378 | Mikus et al. | Nov 2000 | A |
6149620 | Baker et al. | Nov 2000 | A |
6214003 | Morgan et al. | Apr 2001 | B1 |
6228078 | Eggers et al. | May 2001 | B1 |
6254599 | Lesh et al. | Jul 2001 | B1 |
6283962 | Tu et al. | Sep 2001 | B1 |
6296639 | Truckai et al. | Oct 2001 | B1 |
6302904 | Wallstén et al. | Oct 2001 | B1 |
6315776 | Edwards et al. | Nov 2001 | B1 |
6366818 | Bolmsjo | Apr 2002 | B1 |
6387088 | Shattuck et al. | May 2002 | B1 |
6395012 | Yoon et al. | May 2002 | B1 |
6409722 | Hoey et al. | Jun 2002 | B1 |
6416508 | Eggers et al. | Jul 2002 | B1 |
6416511 | Lesh et al. | Jul 2002 | B1 |
6443947 | Marko et al. | Sep 2002 | B1 |
6491690 | Goble et al. | Dec 2002 | B1 |
6508815 | Strul et al. | Jan 2003 | B1 |
6551310 | Ganz et al. | Apr 2003 | B1 |
6565561 | Goble et al. | May 2003 | B1 |
6589237 | Woloszko et al. | Jul 2003 | B2 |
6602248 | Sharps et al. | Aug 2003 | B1 |
6607545 | Kammerer et al. | Aug 2003 | B2 |
6622731 | Daniel et al. | Sep 2003 | B2 |
6635054 | Fjield et al. | Oct 2003 | B2 |
6635055 | Cronin | Oct 2003 | B1 |
6663626 | Truckai et al. | Dec 2003 | B2 |
6673071 | Vandusseldorp et al. | Jan 2004 | B2 |
6699241 | Rappaport et al. | Mar 2004 | B2 |
6726684 | Woloszko et al. | Apr 2004 | B1 |
6736811 | Panescu et al. | May 2004 | B2 |
6746447 | Davison et al. | Jun 2004 | B2 |
6758847 | Maguire | Jul 2004 | B2 |
6780178 | Palanker et al. | Aug 2004 | B2 |
6802839 | Behl | Oct 2004 | B2 |
6813520 | Truckai et al. | Nov 2004 | B2 |
6814730 | Li | Nov 2004 | B2 |
6832996 | Woloszko et al. | Dec 2004 | B2 |
6837887 | Woloszko et al. | Jan 2005 | B2 |
6837888 | Ciarrocca et al. | Jan 2005 | B2 |
6840935 | Lee | Jan 2005 | B2 |
6872205 | Lesh et al. | Mar 2005 | B2 |
6896674 | Woloszko et al. | May 2005 | B1 |
6905497 | Truckai et al. | Jun 2005 | B2 |
6923805 | Lafontaine et al. | Aug 2005 | B1 |
6929642 | Xiao et al. | Aug 2005 | B2 |
6949096 | Davison et al. | Sep 2005 | B2 |
6951569 | Nohilly et al. | Oct 2005 | B2 |
6954977 | Maguire et al. | Oct 2005 | B2 |
6960203 | Xiao et al. | Nov 2005 | B2 |
7074217 | Strul et al. | Jul 2006 | B2 |
7083614 | Fjield et al. | Aug 2006 | B2 |
7087052 | Sampson et al. | Aug 2006 | B2 |
7108696 | Daniel et al. | Sep 2006 | B2 |
7118590 | Cronin | Oct 2006 | B1 |
7150747 | McDonald et al. | Dec 2006 | B1 |
7175734 | Stewart et al. | Feb 2007 | B2 |
7179255 | Lettice et al. | Feb 2007 | B2 |
7186234 | Dahla et al. | Mar 2007 | B2 |
7192430 | Truckai et al. | Mar 2007 | B2 |
7238185 | Palanker et al. | Jul 2007 | B2 |
7270658 | Woloszko et al. | Sep 2007 | B2 |
7276063 | Davison et al. | Oct 2007 | B2 |
7278994 | Goble et al. | Oct 2007 | B2 |
7294126 | Sampson et al. | Nov 2007 | B2 |
7297143 | Woloszko et al. | Nov 2007 | B2 |
7326201 | Fjield et al. | Feb 2008 | B2 |
7331957 | Woloszko et al. | Feb 2008 | B2 |
RE40156 | Sharps et al. | Mar 2008 | E |
7371231 | Rioux et al. | May 2008 | B2 |
7371235 | Thompson et al. | May 2008 | B2 |
7381208 | Van Der Walt et al. | Jun 2008 | B2 |
7387628 | Behl et al. | Jun 2008 | B1 |
7390330 | Harp | Jun 2008 | B2 |
7407502 | Strul et al. | Aug 2008 | B2 |
7419500 | Marko et al. | Sep 2008 | B2 |
7452358 | Stern et al. | Nov 2008 | B2 |
7462178 | Woloszko et al. | Dec 2008 | B2 |
7500973 | Vancelette et al. | Mar 2009 | B2 |
7512445 | Truckai et al. | Mar 2009 | B2 |
7530979 | Ganz et al. | May 2009 | B2 |
7549987 | Shadduck | Jun 2009 | B2 |
7556628 | Utley et al. | Jul 2009 | B2 |
7566333 | Van Wyk et al. | Jul 2009 | B2 |
7572251 | Davison | Aug 2009 | B1 |
7604633 | Truckai et al. | Oct 2009 | B2 |
7625368 | Schechter et al. | Dec 2009 | B2 |
7674259 | Shadduck | Mar 2010 | B2 |
7678106 | Lee | Mar 2010 | B2 |
7708733 | Sanders et al. | May 2010 | B2 |
7717909 | Strul et al. | May 2010 | B2 |
7736362 | Eberl et al. | Jun 2010 | B2 |
7744595 | Truckai et al. | Jun 2010 | B2 |
7749159 | Crowley et al. | Jul 2010 | B2 |
7824398 | Woloszko et al. | Nov 2010 | B2 |
7824405 | Woloszko et al. | Nov 2010 | B2 |
7846160 | Payne et al. | Dec 2010 | B2 |
7879034 | Woloszko et al. | Feb 2011 | B2 |
7918795 | Grossman | Apr 2011 | B2 |
7985188 | Felts et al. | Jul 2011 | B2 |
8016843 | Escaf | Sep 2011 | B2 |
8197476 | Truckai | Jun 2012 | B2 |
8197477 | Truckai | Jun 2012 | B2 |
8323280 | Germain et al. | Dec 2012 | B2 |
8372068 | Truckai | Feb 2013 | B2 |
8382753 | Truckai | Feb 2013 | B2 |
8486096 | Robertson et al. | Jul 2013 | B2 |
8500732 | Truckai et al. | Aug 2013 | B2 |
8540708 | Truckai et al. | Sep 2013 | B2 |
8657174 | Yates et al. | Feb 2014 | B2 |
8690873 | Truckai et al. | Apr 2014 | B2 |
8728003 | Taylor et al. | May 2014 | B2 |
8821486 | Toth et al. | Sep 2014 | B2 |
8998901 | Truckai et al. | Apr 2015 | B2 |
9204918 | Germain et al. | Dec 2015 | B2 |
9277954 | Germain et al. | Mar 2016 | B2 |
9427249 | Robertson et al. | Aug 2016 | B2 |
9472382 | Jacofsky et al. | Oct 2016 | B2 |
9510850 | Robertson et al. | Dec 2016 | B2 |
9510897 | Truckai | Dec 2016 | B2 |
9585675 | Germain et al. | Mar 2017 | B1 |
9592085 | Germain et al. | Mar 2017 | B2 |
9603656 | Germain et al. | Mar 2017 | B1 |
9649125 | Truckai | May 2017 | B2 |
9651423 | Zhang | May 2017 | B1 |
9662163 | Toth et al. | May 2017 | B2 |
9855675 | Germain et al. | Jan 2018 | B1 |
9901394 | Shadduck et al. | Feb 2018 | B2 |
9999466 | Germain et al. | Jun 2018 | B2 |
10004556 | Orczy-Timko et al. | Jun 2018 | B2 |
10022140 | Germain et al. | Jul 2018 | B2 |
10052149 | Germain et al. | Aug 2018 | B2 |
10213246 | Toth et al. | Feb 2019 | B2 |
10492856 | Orczy-Timko | Dec 2019 | B2 |
10517578 | Truckai | Dec 2019 | B2 |
10595889 | Germain et al. | Mar 2020 | B2 |
10617461 | Toth et al. | Apr 2020 | B2 |
10662939 | Orczy-Timko et al. | May 2020 | B2 |
10912606 | Truckai et al. | Feb 2021 | B2 |
11259787 | Truckai | Mar 2022 | B2 |
20010004444 | Haser et al. | Jun 2001 | A1 |
20020058933 | Christopherson et al. | May 2002 | A1 |
20020062142 | Knowlton | May 2002 | A1 |
20020068934 | Edwards et al. | Jun 2002 | A1 |
20020082635 | Kammerer et al. | Jun 2002 | A1 |
20020183742 | Carmel et al. | Dec 2002 | A1 |
20030060813 | Loeb et al. | Mar 2003 | A1 |
20030065321 | Carmel et al. | Apr 2003 | A1 |
20030153905 | Edwards et al. | Aug 2003 | A1 |
20030153908 | Goble et al. | Aug 2003 | A1 |
20030171743 | Tasto et al. | Sep 2003 | A1 |
20030176816 | Maguire et al. | Sep 2003 | A1 |
20030216725 | Woloszko et al. | Nov 2003 | A1 |
20030236487 | Knowlton et al. | Dec 2003 | A1 |
20040002702 | Xiao et al. | Jan 2004 | A1 |
20040010249 | Truckai et al. | Jan 2004 | A1 |
20040087936 | Stern et al. | May 2004 | A1 |
20040092980 | Cesarini et al. | May 2004 | A1 |
20040215180 | Starkebaum et al. | Oct 2004 | A1 |
20040215182 | Lee | Oct 2004 | A1 |
20040215296 | Ganz et al. | Oct 2004 | A1 |
20040230190 | Dahla et al. | Nov 2004 | A1 |
20050075630 | Truckai et al. | Apr 2005 | A1 |
20050145009 | Vanderveen et al. | Jul 2005 | A1 |
20050165389 | Swain et al. | Jul 2005 | A1 |
20050182397 | Ryan | Aug 2005 | A1 |
20050187546 | Bek et al. | Aug 2005 | A1 |
20050192652 | Cioanta et al. | Sep 2005 | A1 |
20050228372 | Truckai et al. | Oct 2005 | A1 |
20050240176 | Oral et al. | Oct 2005 | A1 |
20050251131 | Lesh | Nov 2005 | A1 |
20060009756 | Francischelli et al. | Jan 2006 | A1 |
20060052771 | Sartor et al. | Mar 2006 | A1 |
20060084158 | Viol et al. | Apr 2006 | A1 |
20060084969 | Truckai et al. | Apr 2006 | A1 |
20060089637 | Werneth et al. | Apr 2006 | A1 |
20060178670 | Woloszko et al. | Aug 2006 | A1 |
20060189971 | Tasto et al. | Aug 2006 | A1 |
20060189976 | Karni et al. | Aug 2006 | A1 |
20060200040 | Weikel, Jr. et al. | Sep 2006 | A1 |
20060224154 | Shadduck et al. | Oct 2006 | A1 |
20060259025 | Dahla | Nov 2006 | A1 |
20070021743 | Rioux et al. | Jan 2007 | A1 |
20070027447 | Theroux et al. | Feb 2007 | A1 |
20070083192 | Welch | Apr 2007 | A1 |
20070161981 | Sanders et al. | Jul 2007 | A1 |
20070213704 | Truckai et al. | Sep 2007 | A1 |
20070276430 | Lee et al. | Nov 2007 | A1 |
20070282323 | Woloszko et al. | Dec 2007 | A1 |
20070287996 | Rioux | Dec 2007 | A1 |
20070288075 | Dowlatshahi | Dec 2007 | A1 |
20070293853 | Truckai et al. | Dec 2007 | A1 |
20080045859 | Fritsch et al. | Feb 2008 | A1 |
20080058797 | Rioux | Mar 2008 | A1 |
20080091061 | Kumar et al. | Apr 2008 | A1 |
20080097242 | Cai | Apr 2008 | A1 |
20080097425 | Truckai | Apr 2008 | A1 |
20080125765 | Berenshteyn et al. | May 2008 | A1 |
20080125770 | Kleyman | May 2008 | A1 |
20080154238 | McGuckin | Jun 2008 | A1 |
20080183132 | Davies et al. | Jul 2008 | A1 |
20080208189 | Van Wyk et al. | Aug 2008 | A1 |
20080221567 | Sixto et al. | Sep 2008 | A1 |
20080249518 | Warnking et al. | Oct 2008 | A1 |
20080249533 | Godin | Oct 2008 | A1 |
20080281317 | Gobel et al. | Nov 2008 | A1 |
20090048593 | Ganz et al. | Feb 2009 | A1 |
20090054888 | Cronin | Feb 2009 | A1 |
20090054892 | Rioux et al. | Feb 2009 | A1 |
20090076494 | Azure | Mar 2009 | A1 |
20090105703 | Shadduck | Apr 2009 | A1 |
20090131927 | Kastelein et al. | May 2009 | A1 |
20090149846 | Hoey et al. | Jun 2009 | A1 |
20090163908 | MacLean et al. | Jun 2009 | A1 |
20090209956 | Marion | Aug 2009 | A1 |
20090234348 | Bruszewski et al. | Sep 2009 | A1 |
20090259150 | Ostrovsky et al. | Oct 2009 | A1 |
20090270899 | Carusillo et al. | Oct 2009 | A1 |
20090306654 | Garbagnati | Dec 2009 | A1 |
20100004595 | Nguyen et al. | Jan 2010 | A1 |
20100036372 | Truckai et al. | Feb 2010 | A1 |
20100036488 | De, Jr. et al. | Feb 2010 | A1 |
20100042095 | Bigley et al. | Feb 2010 | A1 |
20100042097 | Newton et al. | Feb 2010 | A1 |
20100049190 | Long et al. | Feb 2010 | A1 |
20100094289 | Taylor et al. | Apr 2010 | A1 |
20100121319 | Chu et al. | May 2010 | A1 |
20100125269 | Emmons et al. | May 2010 | A1 |
20100137855 | Berjano et al. | Jun 2010 | A1 |
20100137857 | Shroff et al. | Jun 2010 | A1 |
20100152725 | Pearson et al. | Jun 2010 | A1 |
20100185191 | Carr et al. | Jul 2010 | A1 |
20100198214 | Layton, Jr. et al. | Aug 2010 | A1 |
20100204688 | Hoey et al. | Aug 2010 | A1 |
20100217245 | Prescott | Aug 2010 | A1 |
20100217256 | Strul et al. | Aug 2010 | A1 |
20100228239 | Freed | Sep 2010 | A1 |
20100228245 | Sampson et al. | Sep 2010 | A1 |
20100234867 | Himes | Sep 2010 | A1 |
20100286680 | Kleyman | Nov 2010 | A1 |
20100286688 | Hughett, Sr. et al. | Nov 2010 | A1 |
20110004205 | Chu et al. | Jan 2011 | A1 |
20110046513 | Hibner | Feb 2011 | A1 |
20110060391 | Unetich et al. | Mar 2011 | A1 |
20110112524 | Stern et al. | May 2011 | A1 |
20110196401 | Robertson et al. | Aug 2011 | A1 |
20110196403 | Robertson et al. | Aug 2011 | A1 |
20110282340 | Toth | Nov 2011 | A1 |
20110306968 | Beckman et al. | Dec 2011 | A1 |
20120041434 | Truckai | Feb 2012 | A1 |
20120330292 | Shadduck et al. | Dec 2012 | A1 |
20130090642 | Shadduck et al. | Apr 2013 | A1 |
20130103021 | Germain et al. | Apr 2013 | A1 |
20130172870 | Germain et al. | Jul 2013 | A1 |
20130231652 | Germain et al. | Sep 2013 | A1 |
20130237780 | Beasley et al. | Sep 2013 | A1 |
20130267937 | Shadduck et al. | Oct 2013 | A1 |
20130289558 | Reid, Jr. et al. | Oct 2013 | A1 |
20130296847 | Germain et al. | Nov 2013 | A1 |
20130331833 | Bloom | Dec 2013 | A1 |
20140336632 | Toth | Nov 2014 | A1 |
20140336643 | Orczy-Timko et al. | Nov 2014 | A1 |
20140358077 | Oruklu et al. | Dec 2014 | A1 |
20150119795 | Germain et al. | Apr 2015 | A1 |
20150119916 | Dietz et al. | Apr 2015 | A1 |
20150173827 | Bloom et al. | Jun 2015 | A1 |
20150182281 | Truckai et al. | Jul 2015 | A1 |
20160066982 | Marczyk et al. | Mar 2016 | A1 |
20160095615 | Orczy-Timko et al. | Apr 2016 | A1 |
20160113706 | Truckai et al. | Apr 2016 | A1 |
20160120443 | Margalit | May 2016 | A1 |
20160157916 | Germain et al. | Jun 2016 | A1 |
20160287779 | Orczy-Timko et al. | Oct 2016 | A1 |
20160346036 | Orczy-Timko et al. | Dec 2016 | A1 |
20160346037 | Truckai et al. | Dec 2016 | A1 |
20170202612 | Germain et al. | Jul 2017 | A1 |
20170231681 | Toth et al. | Aug 2017 | A1 |
20170258519 | Germain et al. | Sep 2017 | A1 |
20170290602 | Germain et al. | Oct 2017 | A1 |
20170303990 | Benamou et al. | Oct 2017 | A1 |
20170348493 | Wells et al. | Dec 2017 | A1 |
20180000534 | Germain et al. | Jan 2018 | A1 |
20180001009 | Crawford et al. | Jan 2018 | A1 |
20180010599 | Hernandez et al. | Jan 2018 | A1 |
20180147003 | Shadduck et al. | May 2018 | A1 |
20180326144 | Truckai | Nov 2018 | A1 |
20180369477 | Ding et al. | Dec 2018 | A1 |
20190030235 | Orczy-Timko et al. | Jan 2019 | A1 |
20190192218 | Orczy-Timko et al. | Jun 2019 | A1 |
20200030527 | Toth et al. | Jan 2020 | A1 |
20200330085 | Truckai | Oct 2020 | A1 |
20200405953 | Toth | Dec 2020 | A1 |
20210038279 | Toth et al. | Feb 2021 | A1 |
20210346087 | Truckai et al. | Nov 2021 | A1 |
20220151674 | Sharma | May 2022 | A1 |
Number | Date | Country |
---|---|---|
1977194 | Jun 2007 | CN |
101015474 | Aug 2007 | CN |
101198288 | Jun 2008 | CN |
1236440 | Sep 2002 | EP |
1595507 | Nov 2005 | EP |
2349044 | Aug 2011 | EP |
2493407 | Sep 2012 | EP |
2981222 | Feb 2016 | EP |
2005501597 | Jan 2005 | JP |
WO-0053112 | Sep 2000 | WO |
WO-2005122938 | Dec 2005 | WO |
WO-2006001455 | Jan 2006 | WO |
WO-2008083407 | Jul 2008 | WO |
WO-2010048007 | Apr 2010 | WO |
WO-2011053599 | May 2011 | WO |
WO-2011060301 | May 2011 | WO |
WO-2014165715 | Oct 2014 | WO |
WO-2017127760 | Jul 2017 | WO |
WO-2017185097 | Oct 2017 | WO |
Entry |
---|
Allen-Bradley. AC Braking Basics. Rockwell Automation. Feb. 2001. 4 pages. URL: http://literature.rockwellautomation.com/idc/groups/literature/documents/wp/drives-wp004 _-en-p.pdf. |
Allen-Bradley. What Is Regeneration? Braking / Regeneration Manual: Regeneration Overview. Revision 1.0. Rockwell Automation. Accessed Apr. 24, 2017. 6 pages. URL: https://www.ab.com/support/abdrives/documentation/techpapers/RegenOverview01.pdf. |
Co-pending U.S. Appl. No. 16/706,179, filed Dec. 6, 2019. |
Co-pending U.S. Appl. No. 16/819,386, filed Mar. 16, 2020. |
European search report and opinion dated Nov. 18, 2016 for EP Application No. 14778196.7. |
European search report and search opinion dated Apr. 16, 2013 for EP Application No. 09822443. |
European search report and search opinion dated Jul. 10, 2013 for EP Application No. 10827399. |
International search report and written opinion dated Feb. 2, 2011 for PCT/US2010/056591. |
International Search Report and Written Opinion dated May 31, 2017 for International PCT Patent Application No. PCT/US2017/014456. |
International Search Report and Written Opinion dated Jul. 7, 2017 for International PCT Patent Application No. PCT/US2017/029201. |
International Search Report and Written Opinion dated Nov. 3, 2017 for International PCT Patent Application No. PCT/US2017/039326. |
International search report and written opinion dated Dec. 10, 2009 for PCT/US2009/060703. |
International search report and written opinion dated Dec. 14, 2010 for PCT/US2010/054150. |
International Search Report dated Jul. 6, 2016 for PCT/US16/25509. |
International Search Report dated Sep. 10, 2014 for PCT/US2014/032895. |
Notice of allowance dated Jan. 9, 2014 for U.S. Appl. No. 13/938,032. |
Notice of Allowance dated Jan. 27, 2017 for U.S. Appl. No. 13/236,471. |
Notice of Allowance dated Jan. 27, 2017 for U.S. Appl. No. 14/508,856. |
Notice of allowance dated Feb. 25, 2015 for U.S. Appl. No. 13/975,139. |
Notice of allowance dated Mar. 5, 2012 for U.S. Appl. No. 13/281,846. |
Notice of allowance dated Mar. 5, 2012 for U.S. Appl. No. 13/281,856. |
Notice of allowance dated Mar. 29, 2013 for U.S. Appl. No. 12/605,546. |
Notice of Allowance dated Apr. 24, 18 for U.S. Appl. No. 15/410,723. |
Notice of allowance dated May 9, 2014 for U.S. Appl. No. 12/944,466. |
Notice of allowance dated May 24, 2013 for U.S. Appl. No. 12/605,929. |
Notice of Allowance dated Aug. 2, 2016 for U.S. Appl. No. 13/281,805. |
Notice of Allowance dated Aug. 6, 2019 for U.S. Appl. No. 15/008,341. |
Notice of allowance dated Aug. 17, 2016 for U.S. Appl. No. 13/281,805. |
Notice of allowance dated Sep. 10, 2019 for U.S. Appl. No. 15/488,270. |
Notice of allowance dated Oct. 19, 2018 for U.S. Appl. No. 14/341,121. |
Notice of allowance dated Nov. 15, 2012 for U.S. Appl. No. 12/541,043. |
Notice of allowance dated Nov. 15, 2012 for U.S. Appl. No. 12/541,050. |
Notice of allowance dated Nov. 15, 2018 for U.S. Appl. No. 14/341,121. |
Notice of allowance dated Dec. 2, 2014 for U.S. Appl. No. 13/975,139. |
Notice of Allowance dated Dec. 11, 2019 for U.S. Appl. No. 15/583,712. |
Notice of allowance dated Dec. 14, 2017 for U.S. Appl. No. 13/857,068. |
Office action dated Jan. 2, 2019 for U.S. Appl. No. 15/008,341. |
Office action dated Jan. 28, 2013 for U.S. Appl. No. 12/605,546. |
Office action dated Feb. 4, 2016 for U.S. Appl. No. 13/857,068. |
Office action dated Feb. 19, 2019 for U.S. Appl. No. 15/488,270. |
Office Action dated Mar. 9, 2017 for U.S. Appl. No. 15/091,402. |
Office action dated Mar. 12, 2012 for U.S. Appl. No. 12/541,043. |
Office action dated Mar. 12, 2012 for U.S. Appl. No. 12/541,050. |
Office Action dated Mar. 14, 2017 for U.S. Appl. No. 15/410,723. |
Office action dated Mar. 14, 2018 for U.S. Appl. No. 15/091,402. |
Office Action dated Mar. 31, 2016 for U.S. Appl. No. 13/281,805. |
Office Action dated Apr. 5, 2017 for U.S. Appl. No. 13/857,068. |
Office action dated Apr. 16, 2020 for U.S. Appl. No. 14/657,684. |
Office Action dated Apr. 18, 2017 for U.S. Appl. No. 14/657,684. |
Office Action dated Apr. 22, 2016 for U.S. Appl. No. 14/657,684. |
Office action dated Apr. 24, 2014 for U.S. Appl. No. 13/975,139. |
Office action dated May 2, 2019 for U.S. Appl. No. 14/657,684. |
Office Action dated May 9, 2017 for U.S. Appl. No. 15/410,723. |
Office action dated May 22, 2015 for U.S. Appl. No. 14/657,684. |
Office action dated May 29, 2019 for U.S. Appl. No. 15/583,712. |
Office action dated Jun. 5, 2015 for U.S. Appl. No. 13/857,068. |
Office action dated Jun. 15, 2018 for U.S. Appl. No. 14/864,379. |
Office action dated Jun. 18, 2012 for U.S. Appl. No. 12/605,546. |
Office action dated Jun. 28, 2018 for U.S. Appl. No. 14/341,121. |
Office Action dated Jun. 29, 2016 for U.S. Appl. No. 14/508,856. |
Office Action dated Jul. 5, 2016 for U.S. Appl. No. 13/236,471. |
Office action dated Jul. 12, 2018 for U.S. Appl. No. 14/657,684. |
Office action dated Jul. 23, 2015 for U.S. Appl. No. 13/281,805. |
Office Action dated Jul. 28, 2017 for U.S. Appl. No. 15/091,402. |
Office Action dated Sep. 7, 2016 for U.S. Appl. No. 13/857,068. |
Office action dated Sep. 22, 2014 for U.S. Appl. No. 13/281,805. |
Office action dated Sep. 24, 2015 for U.S. Appl. No. 13/236,471. |
Office action dated Sep. 28, 2012 for U.S. Appl. No. 12/541,043. |
Office action dated Sep. 28, 2012 for U.S. Appl. No. 12/541,050. |
Office action dated Sep. 28, 2012 for U.S. Appl. No. 12/605,929. |
Office Action dated Sep. 30, 2016 for U.S. Appl. No. 15/091,402. |
Office action dated Oct. 9, 2014 for U.S. Appl. No. 13/857,068. |
Office action dated Oct. 24, 2014 for U.S. Appl. No. 13/975,139. |
Office action dated Nov. 1, 2018 for U.S. Appl. No. 15/583,712. |
Office Action dated Nov. 2, 2016 for U.S. Appl. No. 14/657,684. |
Office action dated Nov. 6, 2013 for U.S. Appl. No. 13/938,032. |
Office action dated Nov. 27, 2017 for U.S. Appl. No. 14/341,121. |
Office action dated Dec. 4, 2014 for U.S. Appl. No. 13/236,471. |
Office action dated Dec. 5, 2017 for U.S. Appl. No. 14/864,379. |
Office action dated Dec. 6, 2011 for U.S. Appl. No. 13/281,846. |
Office action dated Dec. 16, 2014 for U.S. Appl. No. 13/281,805. |
Office action dated Dec. 22, 2011 for U.S. Appl. No. 13/281,856. |
Notice of Allowance dated Oct. 19, 2020 for U.S. Appl. No. 14/657,684. |
Notice of Allowance dated Oct. 20, 2021 for U.S. Appl. No. 16/706,179. |
Notice of Allowance dated Nov. 27, 2020 for U.S. Appl. No. 14/657,684. |
Office action dated Jan. 29, 2021 for U.S. Appl. No. 15/880,958. |
Office action dated Jun. 8, 2020 for U.S. Appl. No. 15/880,958. |
Notice of Allowance dated Jan. 26, 2022 for U.S. Appl. No. 16/706,179. |
Office action dated Jan. 25, 2022 for U.S. Appl. No. 16/222,757. |
Office action dated Apr. 14, 2022 for U.S. Appl. No. 16/909,599. |
Office action dated Apr. 28, 2022 for U.S. Appl. No. 16/435,323. |
Office Action dated Jun. 10, 2022 for U.S. Appl. No. 16/819,386. |
Office action dated Jul. 25, 2022 for U.S. Appl. No. 16/222,757. |
U.S. Appl. No. 16/909,599 Notice of Allowance dated Sep. 28, 2022. |
Number | Date | Country | |
---|---|---|---|
20200222104 A1 | Jul 2020 | US | |
20220142697 A9 | May 2022 | US |
Number | Date | Country | |
---|---|---|---|
61307362 | Feb 2010 | US | |
61261246 | Nov 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12944466 | Nov 2010 | US |
Child | 14341121 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14341121 | Jul 2014 | US |
Child | 16247404 | US |