Tissue anchors may be needed for various medical procedures. And these tissue anchors need to be easily accessible to facilitate handling of the tissue anchors during a medical procedure. There is a need for improved designs of tissue anchor holders and magazines and apparatuses that make the tissue anchors more easily accessible and usable.
This summary is meant to provide some examples and is not intended to be limiting of the scope of the invention in any way. For example, any feature included in an example of this summary is not required by the claims, unless the claims explicitly recite the features. Also, the features, components, steps, concepts, etc. described in examples in this summary and elsewhere in this disclosure can be combined in a variety of ways. The description herein relates to systems, assemblies, methods, devices, apparatuses, combinations, etc. that may be utilized to anchor something to tissue. Various features and steps as described elsewhere in this disclosure may be included in the examples summarized here. The methods, operations, steps, etc. described herein can be performed on a living animal or on a non-living cadaver, cadaver heart, simulator (e.g. with the body parts, tissue, etc. being simulated), etc.
An anchor-handling device is configured to facilitate handling of one or more tissue anchors. The tissue anchors herein can take a variety of different configurations, shapes, and/or sizes. The anchor-handling device retains the anchors within an anchor-storage zone of a channel and/or storage area or space defined by a housing until a tool such as an anchor driver is used to retrieve the anchor. The tool is advanced through the channel and/or storage area, coupled to the anchor, and removed proximally out of the channel and/or storage area with the anchor. The anchor-handling device can be, and in some implementations is, configured to release (e.g., dispense, etc.) the anchor only when a force (e.g., a proximally-directed force) applied by the tool to the anchor is greater than a pre-defined threshold force (i.e., is sufficient), so as to prevent inadvertent exit of the anchor.
In some implementations, a retaining member is configured to retain the tissue anchor in the anchor-storage zone. The sufficient force or sufficient proximally-directed force moves the retaining member out of the way of the anchor, e.g., by moving the anchor to move the retaining member.
A wearable article can be, and in some implementations is, coupled to a holder that is shaped so as to define a space for receiving the anchor-handling device. The holder is shaped so as to define a housing, e.g., a receptacle, and a coupling configured to reversibly couple the anchor-handling device to the holder. In some implementations, the wearable article is configured to temporarily affix the anchor-handling device to a body of an operating physician that is using anchor-handling device. For some applications, the wearable article comprises a band, e.g., a wrist band or a band configured to be worn around a central region of a hand or around an arm of the operating physician. For some applications, the wearable article comprises an adhesive to temporarily affix the anchor-handling device to a garment or glove of the physician.
An anchor driver used to drive a tissue anchor into tissue of a subject has a first flexible state and a second flexible state that is less flexible than the first flexible state. For some applications, the anchor driver comprises a tube that is reinforced and made rigid and less flexible by a rigid or semi-rigid shaft that advances within the tube of the anchor driver. For some applications, a mechanism is provided at the distal end portion of the anchor driver which enables an elongate element of the driver to pivot relative to an anchor-engaging head of the driver which engages the tissue anchor.
There is therefore provided, in accordance with some applications, a system and/or an apparatus for use with an anchor-handling device. The system and/or apparatus includes a holder, shaped to define a space for receiving the anchor-handling device, the holder including a coupling configured to reversibly couple the anchor-handling device to the holder; and a wearable article coupled to and/or integrated with the holder, the wearable article being configured to temporarily affix the anchor-handling device to a body of a user (e.g., an operating physician, etc.) that is using the anchor-handling device.
In an application, the system and/or apparatus includes the anchor-handling device, and the anchor-handling device includes a housing, shaped to define a channel having an anchor-storage zone and a proximal opening.
In an application, the wearable article includes an adhesive configured to temporarily affix the anchor-handling device to a garment of the operating physician.
In an application, the wearable article includes an adhesive configured to temporarily affix the anchor-handling device to a glove of the operating physician.
In an application, the wearable article includes a hook-and-loop fastener configured to temporarily affix the anchor-handling device to a garment of the operating physician.
In an application, the wearable article includes a hook-and-loop fastener configured to temporarily affix the anchor-handling device to a glove of the operating physician.
In an application, the wearable article includes a rigid material at at least a portion thereof in a vicinity of the holder.
In an application, the wearable article includes a thin metal sheet. In an application, the thin metal sheet is malleable.
In an application, the system and/or apparatus includes an articulatable coupling configured to couple the holder to the wearable article in a manner in which the holder is articulatable relative to the wearable article.
In an application, the articulatable coupling includes a swivel coupling. In an application, the band includes a shape-memory material.
In an application, the wearable article includes a band. In an application, the at least a portion of the band includes a stretchable and flexible material. In an application, the band includes a wristband.
In an application, the band includes a first portion including a stretchable and flexible material and a second portion including a material that is less stretchable and less flexible than the stretchable and flexible material of the first portion.
In an application, the second portion is in a vicinity of the holder.
In an application, the band is shaped to define first and second ends.
In an application, the band includes a clasp which reversibly fastens the first and second ends of the band. In an application, the band includes a magnet which reversibly fastens the first and second ends of the band.
In an application, the band includes at least one spring configured to expand and contract a portion of the band.
In an application, at least a portion of the band is rigid.
In an application, the at least the portion is in a vicinity of the holder.
In an application, the band is shaped to define a closed loop.
In an application, the at least the portion of the band includes a stretchable and flexible material.
In an application, the band includes a first portion including a stretchable and flexible material and a second portion including a material that is less stretchable and less flexible than the stretchable and flexible material of the first portion.
In an application, the second portion is in a vicinity of the holder.
In an application, the band includes at least one spring configured to expand and contract a portion of the band.
In an application, at least a portion of the band is rigid.
In an application, the coupling includes a male coupling configured to protrude into the space defined by the holder.
In an application, the coupling includes a detent.
In accordance with some applications, a system and/or an apparatus (e.g., the system and/or apparatus described above or another apparatus or system herein) includes an anchor-handling device (e.g., the anchor handling device described above or another anchor handling device herein).
The anchor-handling device includes a housing, shaped to define a channel and/or storage area/storage space having an anchor-storage zone and a proximal opening.
In an application, the anchor-handling device is shaped so as to define a female coupling, the female coupling being configured to receive the male coupling of the holder in order to facilitate reversible locking of the anchor-handling device to the holder.
In an application, the anchor-handling device includes a detent, the detent being movable responsively to force applied thereto by the male coupling of the holder in order to facilitate reversible locking of the anchor-handling device to the holder.
In an application, the anchor-handling device includes a depressible element coupled to the detent, and a depressible element is pushable by the operating physician in order to apply the force to the detent.
In an application, the apparatus further includes a tissue anchor stored in the anchor-storage zone.
In an application, the tissue anchor is configured such that, while stored in the anchor-storage zone, the tissue anchor is movable out of the anchor-storage zone toward the proximal opening only in response to a proximally-directed force being applied to the tissue anchor, the proximally-directed force being greater than a pre-determined threshold force.
In an application, the tissue anchor is dimensioned to fit snugly in the anchor-storage zone.
In some applications, the system and/or apparatus further includes a retaining member. The retaining member having a longitudinal axis and having a retaining state in which the retaining member is configured to retain the tissue anchor in the anchor-storage zone. In some applications, the retaining member is also configured, by moving in response to a force (e.g., a proximally-directed force, etc.) applied to the tissue anchor, to allow the tissue anchor to leave the anchor-storage zone in response to the force (e.g., to the proximally-directed force, etc.), the force being greater than a pre-determined threshold force.
In an application, the apparatus further includes a pivot coupled to the retaining member, the pivot including a support pillar couplable to the tissue anchor, and the pivot pivots the support pillar and the tissue anchor away from the longitudinal axis of the retaining member.
In an application, the anchor is shaped so as to define a lumen, and the support pillar is shaped so as to define a rod that fits within the lumen of the tissue anchor.
In an application, the retaining member is shaped to define a cradle at a proximal end thereof, the cradle defining first and second slanted surfaces, the first and second surfaces being configured to abut against the tissue anchor such that the anchor fits snugly in the anchor-storage zone.
In an application, the first and second slanted surfaces adjoin to form an apex of the cradle. In an application, the first and second slanted surfaces form a generally “V”-shape.
In some applications: the housing is configured to define a plurality of channels, each of the plurality of channels having a respective anchor-storage zone/area and a respective proximal opening. The system/apparatus can include a plurality of tissue anchors, slidable through a respective channel and configured to be stored in a respective anchor-storage zone/area.
In some applications, the system and/or apparatus includes a plurality of retaining members (e.g., in the housing), each retaining member configured to retain a respective tissue anchor in the respective anchor-storage zone, and to allow the respective tissue anchor to leave the respective anchor-storage zone in response to a force, such as a proximally-directed force, applied to the respective tissue anchor.
In an application, the apparatus further includes an anchor driver, and in the retaining state, the anchor driver is slidable through at least a part of the channel and reversibly lockable to the tissue anchor.
In some applications, the housing is shaped to define a chamber that is in fluid communication with the channel, the chamber having a longitudinal axis, and at least part of the retaining member is configured to slide within the chamber in response to the force or proximally-directed force applied to the tissue anchor.
In an application, the retaining member includes a pin, configured to slide through the chamber.
In some applications, the housing is shaped to define first and second cavities that are in fluid communication with the chamber. At least a portion of the retaining member can be resilient. The pin can be shaped so as to define first and second legs that are compressible toward each other and toward the longitudinal axis of the chamber, each of the first and second legs being shaped to define a respective detent.
In an application, the system/apparatus is dimensioned such that when the retaining member allows the tissue anchor to leave the anchor-storage zone, further proximal movement of the retaining member causes the respective detents of the first and second legs to move into the respective first and second cavities.
In an application, the first and second cavities and the respective detents of the first and second legs are dimensioned such that when each detent is disposed within the respective first and second cavities, a distally-directed force required to return the apparatus to the retaining state is more than twice as great as the threshold force.
In some applications, the housing is shaped to define first and second cavities that are in fluid communication with the chamber. At least a portion of the retaining member can be resilient. In an application, the pin is shaped so as to define first and second legs that are compressible toward each other and toward the longitudinal axis of the chamber, each of the first and second legs being shaped to define a respective detent. In the retaining state, the resilience of at least the portion of the retaining member can be configured to hold the detents of the first and second legs within the respective first and second cavities. In an application, the retaining member is configured to deform in response to the force or proximally-directed force applied to the tissue anchor, such that the first and second legs compress toward each other and the respective detents of the first and second legs exit the respective first and second cavities.
In some applications the housing is shaped to define third and fourth cavities that are in fluid communication with the chamber. The apparatus can be dimensioned such that when the retaining member allows the tissue anchor to leave the anchor-storage zone, further proximal movement of the retaining member causes the respective detents of the first and second legs to move into the respective third and fourth cavities.
In some applications, the third and fourth cavities and the respective detents of the first and second legs are dimensioned such that when each detent is disposed within the respective third and fourth cavities, a distally-directed force required to return the apparatus to the retaining state is more than twice as great as the threshold force.
In some applications, the anchor driver includes, at a distal end thereof, an anchor-engaging head introducible through the opening of the housing and actuatable to be reversibly coupled to the tissue anchor. The anchor driver includes, at a proximal end thereof, a handle including an adjuster configured to actuate the anchor-engaging head. In an application, the anchor driver can also include an elongate advanceable element disposed between the distal end of the anchor driver and the proximal end of the anchor driver, and configured to be transcatheterally advanced through vasculature of a subject. In an application, the elongate advanceable element is flexible.
In an application, the anchor-engaging head has a longitudinal axis, and the head is shaped so as to define a tissue-anchor engaging slot configured to engage a proximal end of the tissue anchor, the slot being angled at a nonzero angle with respect to the longitudinal axis.
In an application, the anchor-engaging head is articulatable with respect to the elongate advanceable element.
In an application, the apparatus further includes a coupling pin coupled to a distal end of the elongate advanceable element, and the anchor-engaging head is shaped so as to define at least one slotted opening, and the coupling pin is moveable within the slotted opening to facilitate articulating between the anchor-engaging head and the elongate advanceable element.
In an application, the slotted opening is shaped so as to define an extreme section and a main section that is wider than the extreme section, and when the coupling pin is disposed within the extreme section, movement of the anchor-engaging head with respect to the elongate advanceable element is restricted, and when the coupling pin is disposed within the main section, movement of the anchor-engaging head with respect to the elongate advanceable element is facilitated.
In an application, the elongate advanceable element includes a flexible tube shaped so as to define a lumen, and the apparatus further includes a shaft slidable with respect to the flexible tube in order to control a flexibility of the flexible tube.
In an application, the shaft is more rigid than the flexible tube.
In an application, the elongate advanceable element has a first flexible state and a second flexible state that is less flexible than the first flexible state, and the elongate advanceable element assumes the second flexible state when the shaft is positioned within the lumen of the flexible tube.
There is further provided, in accordance with some applications, a method, including temporarily affixing to a body of an operating physician a wearable article coupled to a holder shaped to define a space for receiving an anchor-handling device, the holder including a coupling configured to reversibly couple the anchor-handling device to the holder; and reversibly coupling the anchor-handling device to the holder.
In an application, the wearable article includes an adhesive, and temporarily affixing includes temporarily affixing the anchor-handling device to a garment of the operating physician.
In an application, the wearable article includes an adhesive, and temporarily affixing includes temporarily affixing the anchor-handling device to a glove of the operating physician.
In an application, the wearable article includes a hook-and-loop fastener, and temporarily affixing includes temporarily affixing the anchor-handling device to a garment of the operating physician.
In an application, the wearable article includes a hook-and-loop fastener, and temporarily affixing includes temporarily affixing the anchor-handling device to a glove of the operating physician.
In an application, the wearable article includes a thin metal sheet, and temporarily affixing includes shaping the thin metal sheet to conform to a portion of the body of the operating physician.
In an application, the method further includes articulating the holder with respect to the wearable article.
In an application, the method further includes swiveling the holder with respect to the wearable article.
In an application, the wearable article includes a band, and temporarily affixing includes positioning at least a portion of the band around a portion of the body of the operating physician.
In an application, positioning includes positioning the at least the portion of the band around a central region of a hand of the operating physician. In an application, positioning includes positioning the at least the portion of the band around a wrist of the operating physician.
In an application, positioning the at least the portion includes sliding the band around a central region of a hand of the operating physician.
This method, including its individual steps, can be performed as part of a training or simulation.
There is further provided, in accordance with some applications, a system and/or an apparatus for use with a tissue anchor. The system/apparatus including an anchor driver. In some applications, the anchor driver includes an anchor coupling element (e.g., an anchor-engaging head, etc.) configured to reversibly couple the tissue anchor to the anchor driver.
In some applications, an elongate advanceable element is coupled at a distal end thereof to the anchor coupling element, the elongate advanceable element having a distal end portion. In some applications, the anchor driver also has a distal end portion, and the distal end portion of the anchor driver has a first flexible state and a second flexible state that is less flexible than the first flexible state.
In an application, when the distal end portion of the anchor driver is in the first flexible state, the anchor-engaging head is configured to pivot with respect to the distal end portion of the elongate advanceable element.
In an application, the elongate advanceable element is shaped so as to define a flexible tube having a lumen, and the apparatus further includes a shaft slidable with respect to the flexible tube in order to control a flexibility of the flexible tube.
In an application, the shaft is more rigid than the flexible tube.
In an application, the shaft is slidable within the lumen of the flexible tube such that the distal end portion of the anchor driver assumes the second flexible state, and the shaft is retractable from within the lumen of flexible tube at at least the distal end portion of the elongate advanceable element distally, such that the distal end portion of the anchor driver assumes the first flexible state.
In an application, the anchor-engaging head is articulatable with respect to the elongate advanceable element.
In an application, the system and/or apparatus further includes a coupling pin coupled to a distal end of the elongate advanceable element, and the anchor-engaging head is shaped so as to define at least one slotted opening, and the coupling pin and the slotted opening are moveable with respect to each other in order to facilitate articulating between the anchor-engaging head and the elongate advanceable element.
In an application, the slotted opening is shaped so as to define at least one extreme section and a main section that is wider than the extreme section, and when the coupling pin is disposed within the extreme section, movement of the anchor-engaging head and the elongate advanceable element with respect to each other is restricted and the distal end portion of the anchor driver assumes the second flexible state. Also, in some applications, when the coupling pin is disposed within the main section, movement of the anchor-engaging head and the elongate advanceable element with respect to each other is facilitated and the distal end portion of the anchor driver assumes the first flexible state.
In an application, the main section has a first width that is 1.5-2 times wider than the extreme section.
In an application, the elongate advanceable element is rotatable about a longitudinal axis of the distal end portion of the elongate advanceable element with respect to the anchor-engaging head so as to transition the coupling pin between the main section and the extreme section.
There is further provided, in accordance with some applications, a method, including reversibly engaging an anchor-engaging head of an anchor driver with a tissue anchor. The anchor driver and tissue anchor can be the same as or similar to other anchor drivers and tissue anchor described herein. In some implementations, the anchor driver includes an elongate advanceable element coupled at a distal end thereof to the anchor coupling element, the elongate advanceable element having a distal end portion. In some implementations, the anchor driver has a distal end portion that has a first flexible state and a second flexible state that is less flexible than the first flexible state.
The method can also include, subsequently to the engaging, transitioning the distal end portion of the anchor driver to the first flexible state.
In an application, prior to the engaging the anchor-engaging head of the anchor driver with the tissue anchor, transitioning the distal end portion of the anchor driver from the first flexible state to the second flexible state.
In an application, during the engaging, the distal end portion is in the second flexible state, and transitioning includes transitioning the distal end portion of the anchor driver from the second flexible state to the first flexible state.
In an application, the method further includes disengaging the anchor-engaging head from the tissue anchor, and during the disengaging, the distal end portion of the anchor driver is in the second flexible state.
In an application, when the distal end portion of the anchor driver is in the first flexible state, pivoting the anchor-engaging head and the distal end portion of the elongate advanceable element with respect to each other.
In an application, the method further includes driving the tissue anchor into tissue of a subject (e.g., heart tissue, heart valve tissue, vasculature tissue, muscle tissue, etc.), and the method further includes applying torque to the elongate advanceable element, and, during the applying the torque, the distal end portion of the anchor driver is in the second flexible state.
In an application, the method further includes advancing the elongate advanceable element through vasculature of the subject, and, during the advancing, the distal end of the anchor driver is in the first flexible state, and, prior to the applying the torque, transitioning the distal end portion of the anchor driver from the first flexible state to the second flexible state.
In an application, the elongate advanceable element is shaped so as to define a flexible tube having a lumen, and the method further includes controlling a flexibility of the flexible tube by sliding a shaft with respect to the flexible tube.
In an application, the shaft is more rigid than the flexible tube.
In an application, the method further includes articulating the anchor-engaging head and the elongate advanceable element with respect to each other.
In an application, a distal end of the elongate advanceable element includes a coupling pin, and the anchor-engaging head is shaped so as to define at least one slotted opening, and the method further includes facilitating the articulating by facilitating movement between the coupling pin and the at least one slotted opening.
In an application, the slotted opening is shaped so as to define at least one extreme section and a main section that is wider than the extreme section, and transitioning the distal end portion of the elongate advanceable element to the first flexible state includes facilitating the movement between the coupling pin and the at least one slotted opening while the coupling pin is disposed within the main section.
The method can further include transitioning the distal end portion of the anchor driver to the second flexible state by facilitating positioning of the coupling pin within the extreme section and by the positioning restricting movement of the anchor-engaging head and the elongate advanceable element with respect to each other.
In an application, the main section has a first width that is 1.5-2 times wider than the extreme section.
In an application, the elongate advanceable element is rotatable with respect to the anchor-engaging head about a longitudinal axis of the distal end portion of the elongate advanceable element, and transitioning the distal end portion of the anchor driver to the first flexible state includes rotating the elongate advanceable element with respect to the anchor-engaging head, and by the rotating, moving the coupling pin from the extreme section to the main section.
In an application, subsequently to the transitioning of the distal end portion of the anchor driver to the first flexible state, transitioning the distal end portion of the anchor driver to the second flexible state by rotating the elongate advanceable element with respect to the anchor-engaging head, and by the rotating, moving the coupling pin from the main section to the extreme section.
In an application, moving the coupling pin from the main section to the extreme section includes locking the anchor-engaging head with respect to the distal end portion of the elongate advanceable element.
This method, including its individual steps, can be performed as part of a training or simulation, (e.g., which can involve simulated tissue, etc.).
There is further provided, in accordance with some applications, a system and/or an apparatus for use with a tissue anchor including an anchor handling device having a housing. In some applications, the anchor-handling device and/or the housing thereof is shaped to define a channel having an anchor-storage zone or area and a proximal opening.
In some applications, the anchor-handling device and/or the housing thereof includes a retaining member in the channel of the anchor-handling device. The retaining member can have a retaining state in which the retaining member is configured to retain the tissue anchor in the anchor-storage zone. In some applications, the retaining member is configured to allow the tissue anchor to leave the anchor-storage zone/area in response to a force applied thereto. In some implementations, the force is a proximally-directed force, and the retaining member is configured, by moving in response to the proximally-directed force applied to the tissue anchor, to allow the tissue anchor to leave the anchor-storage zone/area in response to the proximally-directed force. In some implementations, the proximally-directed force is greater than a pre-determined threshold force, and/or the retaining member is configured such that a pre-determined threshold force is less than a desired amount of proximally-directed force.
In some applications, the retaining member is shaped to define a cradle at a proximal end thereof, the cradle defining first and second slanted surfaces, the first and second surfaces being configured to abut against the tissue anchor such that the anchor fits snugly in the anchor-storage zone.
In an application, the first and second slanted surfaces adjoin to form an apex of the cradle.
In an application, the first and second slanted surfaces form a generally “V”-shape.
There is further provided, in accordance with some applications, a system and/or an apparatus for use with a tissue anchor, the system/apparatus including an anchor-handling device having a housing. The system/apparatus and/or housing thereof is shaped to define a channel having an anchor-storage zone/area and a proximal opening.
In some implementations, the system/apparatus and/or housing thereof includes a retaining member disposed within the channel of the anchor-handling device. In some implementations, the retaining member has a longitudinal axis and a retaining state in which the retaining member is configured to retain the tissue anchor in the anchor-storage zone. The retaining member can be configured, by moving in response to a force (e.g., a proximally-directed force, etc.) applied to the tissue anchor, to allow the tissue anchor to leave the anchor-storage zone in response to the force (e.g., a proximally-directed force, etc.). The force (e.g., the proximally-directed force, etc.) can be greater than a pre-determined threshold force, and/or the retaining member can be configured to release the tissue anchor in response to a force above a pre-determined threshold force.
In some implementations, a pivot is coupled to the retaining member, the pivot including a support pillar couplable to the tissue anchor, the pivot being configured to pivot the support pillar and the tissue anchor away from the longitudinal axis of the retaining member.
In an application, the anchor is shaped so as to define a lumen, and the support pillar is shaped so as to define a rod that fits within the lumen of the tissue anchor.
Additional features, components, steps, etc. can be incorporated into the systems, apparatuses, methods, etc. described in this summary.
The present invention will be more fully understood from the following detailed description of applications thereof, taken together with the drawings, in which:
Reference is made to
In some implementations, the retaining member (e.g., pin 30) has a retaining state in which it retains tissue anchor 40 within zone 26, and is moved out the retaining state when the sufficient proximally-directed force is applied to the tissue anchor.
Housing 22 of device 20 can be shaped to define a plurality of channels 24, each of the plurality of channels having a respective anchor-storage zone/area 26 and a respective proximal opening 28. In some implementations, device 20 comprises a plurality of tissue anchors 40 slidable through a respective channel 24 and are configured to be stored in a respective anchor-storage zone/area. As such, device 20 comprises a plurality of retaining members, e.g., pins 30. Each retaining member can be configured to retain a respective tissue anchor 40 in the respective anchor-storage zone/area 26, and to allow the respective tissue anchor 40 to leave the respective anchor-storage zone/area 26 in response to a force, such as a proximally-directed force, applied to the respective tissue anchor 40.
A variety of tissue anchors, which can be of a variety of configurations, shapes, and sizes can be used. In some implementations, tissue anchor 40 is shaped so as to define a core 41 and a tissue-engaging member 44. Tissue anchor 40 can be dimensioned to fit snugly in anchor-storage zone 26 of the housing. The tissue anchor (e.g., core 41 thereof) can be dimensioned to slide snugly through channel 24 of the housing, and for some applications this snug sliding prevents tissue-engaging member 44 of the anchor from touching the housing (e.g., the wall of the channel) when the anchor moves through the channel. At least a portion of the pin can be dimensioned to slide snugly through the chamber.
As shown in
It is to be noted that although pin 30 is shown as being generally rectangular (i.e., having a generally rectangular transverse cross-section), the term “pin”, as used throughout the present application, including the specification and the claims, may include a pin having a different shape (e.g., having a circular transverse cross-section). Pin 30 comprises first and second legs 33 and 35 that are compressible radially inwardly and toward each other and toward a longitudinal axis 27 of channel 24 and of chamber 25 in response to application of a compression force thereto.
It is hypothesized that this configuring of device 20 to require that the sufficient force or sufficient proximally-directed force be applied to tissue anchor 40 prevents inadvertent movement and/or exit of the tissue anchor (e.g., due to general transport or handling of the device), and/or withdrawal of the anchor by driver when the driver is sub-optimally coupled to the anchor.
Following removal of anchor 40 from channel 24, a proximal portion of pin 30 remains exposed from opening 28. This may be particularly useful for a physician using a multiple-anchor-handling device, such as device 20, e.g., to prevent the physician inadvertently attempting to obtain an anchor from an empty zone 26. That is, the proximal portion of pin 30 functions as an empty-housing indicator.
Reference is now made to
For some applications, surfaces 51a and 51b support only core 41 of anchor 40. For some applications, surfaces 51a and 51b support the entire anchor 40 including core 41 and tissue-engaging member 44.
For some applications, cradle 50 is shaped so as to define only base 55 and not surfaces 53a and 53b.
For some applications, surfaces 53a and 53b support only core 41 of anchor 40. For some applications, surfaces 53a and 53b support the entire anchor 40 including core 41 and tissue-engaging member 44.
For either cradle 50 shown in
Reference is now made to
As shown in
For such applications, once detent 31 has moved into cavity 32, a proximally-directed force that is smaller than the threshold force is sufficient to move pin 30 further proximally. That is, once the initial resistance provided by the inhibitor is overcome, anchor 40 is further withdrawable using a smaller force than that required to overcome the initial resistance.
(It will be understood by those skilled in the art that it is possible to use other configurations to achieve a behavior similar to that described above. For example, housing 22 can define a protrusion (e.g., a detent), and pin 30 can comprise a cavity (e.g., a notch) into which the protrusion extends.)
Due to slanted face 37 of detent 31, a distal force can be applied to push pin 30 back into the retaining state shown in
For some applications, housing 22 defines a second cavity therein (not shown), disposed proximally to cavity 32. Once pin 30 is moved proximally, portion 29 engages with the second cavity, while detent 31 is disposed within cavity 32. For some applications, housing 22 is at least in part transparent, so as to enable viewing of the coupling of the anchor driver to anchor 40, and/or withdrawal of the anchor from the housing. For such applications, for each pin, housing 22 defines first, second, third, and fourth cavities. Portions 29 engaging with first and second cavities and detents 31 engaging with third and fourth cavities.
Reference is now made to
Holder 90 can be shaped so as to define two scaffolding lateral arms which create two openings at either end of holder 90. That is, even though device 20 is shown as entering and exiting one opening at a first end of holder 90 in
For some applications, wearable article 100 comprises an adhesive configured to temporarily affix anchor-handling device 20 to a garment of the operating physician. For some applications, wearable article 100 comprises an adhesive configured to temporarily affix anchor-handling device 20 to a glove of the operating physician. For some applications, wearable article 100 comprises a hook-and-loop fastener configured to temporarily affix anchor-handling device 20 to a garment of the operating physician. For some applications, wearable article 100 comprises hook-and-loop fastener configured to temporarily affix anchor-handling device 20 to a glove of the operating physician. It is to be noted that any suitable device for temporarily affixing anchor-handling device 20 to the physician, e.g., magnets, pins, etc., can be used.
For some applications, wearable article 100 comprises a thin metal sheet. For some applications, the thin metal sheet is malleable in order to confirm article 100 to a particular part of the body of the operating physician.
Reference is now made to
For some applications, band 102 comprises a closed loop and is stretchable to pass, or slide, over a hand of the operating physician such that the operating physician can wear device 20 on his/her wrist or around a part of the central region of the hand of the operating physician. For some applications, band 102 comprises a first portion comprising a stretchable and flexible material and a second portion comprising a material that is less stretchable and less flexible than the stretchable and flexible material of the first portion. For such applications, band 102 is variably stretchable and variably flexible. For such applications, the second portion can be in a vicinity of holder 90. For some applications, the more-flexible and more-stretchable section of band 102 are disposed at lateral sections of the band, e.g., not in a vicinity of holder 90.
As shown in
As shown in
For some applications, system 10 comprises a design in which a single band 102 is wrappable around both the wrist and the central region of the hand of the operating physician. For some applications, system 10 comprises a multi-band design in which two or more bands are used to wrap around the wrist and the central region of the hand of the operating physician. In either embodiment, the multiple wrapping or multi-band design imparts more stability during use of device 20.
Reference is now made to
Reference is now made to
Device 20 is shaped so as to define a female coupling 84, e.g., a cavity, shaped so as to receive male coupling 94 of holder 90 in order to facilitate reversible locking of anchor-handling device 20 to holder 90.
Anchor-handling device 20 comprises a detent 82 which is movable responsively to force applied thereto by male coupling 94 of holder 90 in order to facilitate reversible locking of anchor-handling device 20 to holder 90. As shown in
Device 20 is then recouplable to holder 90. For some applications, depressible elements 80 are pushed inward in order to move detents inwardly to clear male couplings 94 as device 20 is moved distally into space 92 of holder 90. For some applications, detents are moved responsively to distal movement of housing 22 of device 20 against male couplings 94 of holder 90.
Reference is again made to
Various tissue anchors as may be known in the art can be used.
In some implementations, using driver 60, anchor 40 can be advanced through a transluminal implant-delivery system and used to couple an implant, e.g., an annuloplasty structure, to tissue of a subject.
In some implementations, driver 60 comprises an anchor-engaging head 62 at a distal end of the driver, and an elongate advanceable element 64 proximal to the anchor-engaging head. For some applications, elongate advanceable element 64 comprises a tube shaped to define a lumen. For some applications, elongate advanceable element 64 comprises a shaft. Elongate advanceable element 64 is flexible and advanceable (e.g., transcatheterally) through vasculature of a subject, and can have a length greater than 20 cm, and/or less than 2.5 m, such as greater than 50 cm and/or less than 1.5 m, e.g., between 0.9 m and 1.2 m. For some applications, driver 60 comprises a handle (now shown) at a proximal end of elongate advanceable element 64, the handle comprises an adjuster (e.g., a switch or a lever) configured to actuate engaging head 62.
As shown in
Reference is now made to
Shaft 66 is slidable proximally and distally with respect to the tube of element 64. When a distal end portion of element 64 is devoid of shaft 66 (as shown in
Once the operating physician advances shaft 66 within the distal portion of the tube of element 64, the distal end portion of element 64 is less flexible and stiffer. The presence of shaft 66 within the lumen of the tube of element 64 (as shown in
Increased flexibility of element 64 is useful during navigating anchor driver 60 through vasculature and steering the distal end portion of anchor driver 60 to the appropriate location along tissue of the annulus of a valve. Therefore, during these steps, shaft 66 is not present within the lumen of element 64, as shown in
In some applications, shaft 66 is positioned within the lumen of element 64 during connecting of anchor driver 60 to an anchor within anchor-handling device 20 as described hereinabove, and during rotating of element 64 and applying torque to element 64 in order to apply torque to anchor 40 during insertion into tissue (e.g., driving anchor 40 into tissue) and retrieval of anchor 40 from tissue. During these steps, the distal end of elongate advanceable element 64 and the distal end portion of anchor driver 60 are in a second flexible state that is less flexible than the first flexible state (as shown in
As such, movement of shaft 66 longitudinally proximally and distally with respect to element 64 facilitates transitioning of the distal end of elongate advanceable element 64 between the first and second flexible states.
As shown in
For some applications, anchor driver 60 is assembled such that shaft 66 is disposed within the lumen of element 64 (as shown in
As shown in
During disengaging of anchor-engaging head 62 from tissue anchor 40, shaft 66 is retracted as to transition anchor driver 60 into the more flexible state and implant more flexibility to the distal end of anchor driver 60 during the flexing and bending of element 64 with respect to tissue anchor 40, now implanted.
Reference is now made to
Each slotted opening 160 can be shaped so as to circumferentially a main section 166 and at least one circumferentially extreme section 164. As shown, each opening 160 is shaped so as to define a respective extreme section 164 at either side of main section 166. For some applications, opening 160 can define a single extreme section 164. Main section 166 is longitudinally wider than each extreme section 164. For example, in some implementations, main section 166 is 1.5-2 times wider than a width of each extreme section 164. That is, a width of section 166 measured along a longitudinal axis 165 of the distal end portion of elongate advanceable element 64 is greater than a width of section 164 measured along axis 165. Opening 160 can be diamond-shaped or another shape.
Reference is now made to
As shown in
For some applications, anchor driver 60 is assembled such that pin 162 is disposed within extreme section 164 (as shown in
As shown in
When anchor driver 60 engages an anchor, e.g., from within device 20 as described hereinabove, coupling pin 162 is moved back into main section 166 so as to transition anchor driver 60 into the more flexible state and implant more flexibility to the distal end of anchor driver 60.
During disengaging of anchor-engaging head 62 from tissue anchor 40, coupling pin 162 is moved back into main section 166 so as to transition anchor driver 60 into the more flexible state and implant more flexibility to the distal end of anchor driver 60 during the flexing and bending of element 64 with respect to tissue anchor 40, now implanted.
Reference is now made to
Reference is now made to
As shown in
Once tissue anchor 40 has been inserted into tissue, head 62 can be disengaged from anchor 40 by pulling proximally on rod 170 such that the distal end of rod 170 is disposed proximally to slot 152. Head 62 can then be pivoted and slid proximally so that slot 152 slide proximally away from coupling member 172.
Other designs of tissue anchors and anchor drivers and mechanisms for attachment and release therebetween are also possible.
Reference is now made to
U.S. patent application Ser. No. 12/437,103 to Zipory et al., filed May 7, 2009, which published as US 2010/0286767. For example, (1) device 20 of the present application can be used to facilitate the techniques described with reference to
U.S. patent application Ser. No. 12/689,635 to Zipory et al., filed Jan. 19, 2010, which published as US 2010/0280604. For example, (1) device 20 of the present application can be used to facilitate the techniques described with reference to
PCT patent application IL2012/050451 to Sheps et al., filed Nov. 8, 2013, which published as WO 2013/069019. For example, (1) device 20 of the present application can be used to facilitate the techniques described with reference to
PCT patent application IL2013/050860 to Sheps et al., titled “Controlled steering functionality for implant-delivery tool”, filed on Oct. 23, 2013, which published as WO 2014/064694. For example, (1) device 20 of the present application can be used to facilitate techniques described with reference to
PCT patent application IL2013/050861 to Herman et al., titled “Percutaneous tissue anchor techniques”, filed on Oct. 23, 2013, which published as WO 2014/064695. For example, (1) device 20 of the present application can be used to facilitate the techniques described with reference to
Reference is made to
For some applications, the anchor-handling devices described herein are configured to be at least in part submerged in saline prior to and/or during use, e.g., to reduce a likelihood of air (e.g., bubbles) being retained by the anchor and/or driver and subsequently introduced into the subject.
It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof that are not in the prior art, which would occur to persons skilled in the art upon reading the foregoing description. Further, the techniques, methods, operations, steps, etc. described herein can be performed on a living animal or on a non-living simulation, such as on a cadaver, cadaver heart, simulator (e.g. with the body parts, tissue, etc. being simulated), etc.
The present application is a Continuation of International Patent Application PCT/IB2020/000472 to Brauon et al., filed May 8, 2020, entitled “Tissue anchor handling systems and methods,” which claims priority from U.S. Provisional Patent Application 62/853,850 to Brauon et al., filed May 29, 2019, entitled “Tissue anchor handling systems and methods,” which is assigned to the assignee of the present invention and is incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3604488 | Wishart et al. | Sep 1971 | A |
3656185 | Carpentier | Apr 1972 | A |
3840018 | Heifetz | Oct 1974 | A |
3881366 | Bradley et al. | May 1975 | A |
3898701 | La Russa | Aug 1975 | A |
4042979 | Angell | Aug 1977 | A |
4118805 | Reimels | Oct 1978 | A |
4214349 | Munch | Jul 1980 | A |
4261342 | Aranguren Duo | Apr 1981 | A |
4290151 | Massana | Sep 1981 | A |
4434828 | Trincia | Mar 1984 | A |
4473928 | Johnson | Oct 1984 | A |
4602911 | Ahmadi et al. | Jul 1986 | A |
4625727 | Leiboff | Dec 1986 | A |
4712549 | Peters et al. | Dec 1987 | A |
4778468 | Hunt et al. | Oct 1988 | A |
4917698 | Carpentier et al. | Apr 1990 | A |
4935027 | Yoon | Jun 1990 | A |
4961738 | Mackin | Oct 1990 | A |
5042707 | Taheri | Aug 1991 | A |
5061277 | Carpentier et al. | Oct 1991 | A |
5064431 | Gilbertson et al. | Nov 1991 | A |
5104407 | Lam et al. | Apr 1992 | A |
5108420 | Marks | Apr 1992 | A |
5201880 | Wright et al. | Apr 1993 | A |
5258008 | Wilk | Nov 1993 | A |
5300034 | Behnke et al. | Apr 1994 | A |
5325845 | Adair | Jul 1994 | A |
5346498 | Greelis et al. | Sep 1994 | A |
5383852 | Stevens-Wright | Jan 1995 | A |
5449368 | Kuzmak | Sep 1995 | A |
5450860 | O'Connor | Sep 1995 | A |
5464404 | Abela et al. | Nov 1995 | A |
5474518 | Farrer Velazquez | Dec 1995 | A |
5477856 | Lundquist | Dec 1995 | A |
5593424 | Northrup III | Jan 1997 | A |
5601572 | Middleman et al. | Feb 1997 | A |
5626609 | Zvenyatsky et al. | May 1997 | A |
5643317 | Pavcnik et al. | Jul 1997 | A |
5669919 | Sanders et al. | Sep 1997 | A |
5676653 | Taylor et al. | Oct 1997 | A |
5683402 | Cosgrove et al. | Nov 1997 | A |
5702397 | Goble et al. | Dec 1997 | A |
5702398 | Tarabishy | Dec 1997 | A |
5709695 | Northrup, III | Jan 1998 | A |
5716370 | Williamson, IV et al. | Feb 1998 | A |
5716397 | Myers | Feb 1998 | A |
5728116 | Rosenman | Mar 1998 | A |
5730150 | Peppel et al. | Mar 1998 | A |
5749371 | Zadini et al. | May 1998 | A |
5752963 | Allard et al. | May 1998 | A |
5782844 | Yoon et al. | Jul 1998 | A |
5810882 | Bolduc et al. | Sep 1998 | A |
5824066 | Gross | Oct 1998 | A |
5830221 | Stein et al. | Nov 1998 | A |
5843120 | Israel et al. | Dec 1998 | A |
5855614 | Stevens et al. | Jan 1999 | A |
5876373 | Giba et al. | Mar 1999 | A |
5935098 | Blaisdell et al. | Aug 1999 | A |
5957953 | DiPoto et al. | Sep 1999 | A |
5961440 | Schweich, Jr. et al. | Oct 1999 | A |
5961539 | Northrup, III et al. | Oct 1999 | A |
5984959 | Robertson et al. | Nov 1999 | A |
5993459 | Larsen et al. | Nov 1999 | A |
6042554 | Rosenman et al. | Mar 2000 | A |
6045497 | Schweich, Jr. et al. | Apr 2000 | A |
6050936 | Schweich, Jr. et al. | Apr 2000 | A |
6059715 | Schweich, Jr. et al. | May 2000 | A |
6074341 | Anderson et al. | Jun 2000 | A |
6074401 | Gardiner et al. | Jun 2000 | A |
6074417 | Peredo | Jun 2000 | A |
6086582 | Altman et al. | Jul 2000 | A |
6102945 | Campbell | Aug 2000 | A |
6106550 | Magovern et al. | Aug 2000 | A |
6110200 | Hinnenkamp | Aug 2000 | A |
6132390 | Cookston et al. | Oct 2000 | A |
6143024 | Campbell et al. | Nov 2000 | A |
6159240 | Sparer et al. | Dec 2000 | A |
6165119 | Schweich, Jr. et al. | Dec 2000 | A |
6174332 | Loch et al. | Jan 2001 | B1 |
6183411 | Mortier et al. | Feb 2001 | B1 |
6187040 | Wright | Feb 2001 | B1 |
6210347 | Forsell | Apr 2001 | B1 |
6217610 | Carpentier et al. | Apr 2001 | B1 |
6228032 | Eaton et al. | May 2001 | B1 |
6231602 | Carpentier et al. | May 2001 | B1 |
6251092 | Qin et al. | Jun 2001 | B1 |
6296656 | Bolduc et al. | Oct 2001 | B1 |
6315784 | Djurovic | Nov 2001 | B1 |
6319281 | Patel | Nov 2001 | B1 |
6328746 | Gambale | Dec 2001 | B1 |
6332893 | Mortier et al. | Dec 2001 | B1 |
6355030 | Aldrich et al. | Mar 2002 | B1 |
6361559 | Houser et al. | Mar 2002 | B1 |
6368348 | Gabbay | Apr 2002 | B1 |
6402780 | Williamson, IV et al. | Jun 2002 | B2 |
6406420 | McCarthy et al. | Jun 2002 | B1 |
6406493 | Tu et al. | Jun 2002 | B1 |
6419696 | Ortiz et al. | Jul 2002 | B1 |
6451054 | Stevens | Sep 2002 | B1 |
6458076 | Pruitt | Oct 2002 | B1 |
6461336 | Larre | Oct 2002 | B1 |
6461366 | Seguin | Oct 2002 | B1 |
6470892 | Forsell | Oct 2002 | B1 |
6503274 | Howanec, Jr. et al. | Jan 2003 | B1 |
6524338 | Gundry | Feb 2003 | B1 |
6527780 | Wallace et al. | Mar 2003 | B1 |
6530952 | Vesely | Mar 2003 | B2 |
6533772 | Sherts et al. | Mar 2003 | B1 |
6537314 | Langberg et al. | Mar 2003 | B2 |
6547801 | Dargent et al. | Apr 2003 | B1 |
6554845 | Fleenor et al. | Apr 2003 | B1 |
6564805 | Garrison et al. | May 2003 | B2 |
6565603 | Cox | May 2003 | B2 |
6569198 | Wilson et al. | May 2003 | B1 |
6579297 | Bicek et al. | Jun 2003 | B2 |
6589160 | Schweich, Jr. et al. | Jul 2003 | B2 |
6592593 | Parodi et al. | Jul 2003 | B1 |
6602288 | Cosgrove et al. | Aug 2003 | B1 |
6602289 | Colvin et al. | Aug 2003 | B1 |
6613078 | Barone | Sep 2003 | B1 |
6613079 | Wolinsky et al. | Sep 2003 | B1 |
6619291 | Hlavka et al. | Sep 2003 | B2 |
6626899 | Houser et al. | Sep 2003 | B2 |
6626917 | Craig | Sep 2003 | B1 |
6626930 | Allen et al. | Sep 2003 | B1 |
6629534 | Goar et al. | Oct 2003 | B1 |
6629921 | Schweich, Jr. et al. | Oct 2003 | B1 |
6651671 | Donlon et al. | Nov 2003 | B1 |
6652556 | VanTassel et al. | Nov 2003 | B1 |
6682558 | Tu et al. | Jan 2004 | B2 |
6689125 | Keith et al. | Feb 2004 | B1 |
6689164 | Seguin | Feb 2004 | B1 |
6695866 | Kuehn et al. | Feb 2004 | B1 |
6702826 | Liddicoat et al. | Mar 2004 | B2 |
6702846 | Mikus et al. | Mar 2004 | B2 |
6706065 | Langberg et al. | Mar 2004 | B2 |
6709385 | Forsell | Mar 2004 | B2 |
6709456 | Langberg et al. | Mar 2004 | B2 |
6711444 | Koblish | Mar 2004 | B2 |
6719786 | Ryan et al. | Apr 2004 | B2 |
6723038 | Schroeder et al. | Apr 2004 | B1 |
6726716 | Marquez | Apr 2004 | B2 |
6726717 | Alfieri et al. | Apr 2004 | B2 |
6749630 | McCarthy et al. | Jun 2004 | B2 |
6752813 | Goldfarb et al. | Jun 2004 | B2 |
6764310 | Ichihashi et al. | Jul 2004 | B1 |
6764510 | Vidlund et al. | Jul 2004 | B2 |
6764810 | Ma et al. | Jul 2004 | B2 |
6770083 | Seguin | Aug 2004 | B2 |
6786924 | Ryan et al. | Sep 2004 | B2 |
6786925 | Schoon et al. | Sep 2004 | B1 |
6790231 | Liddicoat et al. | Sep 2004 | B2 |
6797001 | Mathis et al. | Sep 2004 | B2 |
6797002 | Spence et al. | Sep 2004 | B2 |
6802319 | Stevens et al. | Oct 2004 | B2 |
6805710 | Bolling et al. | Oct 2004 | B2 |
6805711 | Quijano et al. | Oct 2004 | B2 |
6855126 | Flinchbaugh | Feb 2005 | B2 |
6858039 | McCarthy | Feb 2005 | B2 |
6884250 | Monassevitch et al. | Apr 2005 | B2 |
6893459 | Macoviak | May 2005 | B1 |
6908478 | Alferness et al. | Jun 2005 | B2 |
6908482 | McCarthy et al. | Jun 2005 | B2 |
6918917 | Nguyen et al. | Jul 2005 | B1 |
6926730 | Nguyen et al. | Aug 2005 | B1 |
6960217 | Bolduc | Nov 2005 | B2 |
6976995 | Mathis et al. | Dec 2005 | B2 |
6986775 | Morales et al. | Jan 2006 | B2 |
6989028 | Lashinski et al. | Jan 2006 | B2 |
6997951 | Solem et al. | Feb 2006 | B2 |
7004176 | Lau | Feb 2006 | B2 |
7007798 | Happonen et al. | Mar 2006 | B2 |
7011669 | Kimblad | Mar 2006 | B2 |
7011682 | Lashinski et al. | Mar 2006 | B2 |
7018406 | Seguin et al. | Mar 2006 | B2 |
7037334 | Hlavka et al. | May 2006 | B1 |
7077850 | Kortenbach | Jul 2006 | B2 |
7077862 | Vidlund et al. | Jul 2006 | B2 |
7087064 | Hyde | Aug 2006 | B1 |
7101395 | Tremulis et al. | Sep 2006 | B2 |
7101396 | Artof et al. | Sep 2006 | B2 |
7112207 | Allen et al. | Sep 2006 | B2 |
7118595 | Ryan et al. | Oct 2006 | B2 |
7125421 | Tremulis et al. | Oct 2006 | B2 |
7150737 | Purdy et al. | Dec 2006 | B2 |
7159593 | McCarthy et al. | Jan 2007 | B2 |
7166127 | Spence et al. | Jan 2007 | B2 |
7169187 | Datta et al. | Jan 2007 | B2 |
7172625 | Shu et al. | Feb 2007 | B2 |
7175660 | Cartledge et al. | Feb 2007 | B2 |
7186262 | Saadat | Mar 2007 | B2 |
7186264 | Liddicoat et al. | Mar 2007 | B2 |
7189199 | McCarthy et al. | Mar 2007 | B2 |
7192443 | Solem et al. | Mar 2007 | B2 |
7220277 | Arru et al. | May 2007 | B2 |
7226467 | Lucatero et al. | Jun 2007 | B2 |
7226477 | Cox | Jun 2007 | B2 |
7226647 | Kasperchik et al. | Jun 2007 | B2 |
7229452 | Kayan | Jun 2007 | B2 |
7238191 | Bachmann | Jul 2007 | B2 |
7288097 | Seguin | Oct 2007 | B2 |
7294148 | McCarthy | Nov 2007 | B2 |
7311728 | Solem et al. | Dec 2007 | B2 |
7311729 | Mathis et al. | Dec 2007 | B2 |
7314485 | Mathis | Jan 2008 | B2 |
7316710 | Cheng et al. | Jan 2008 | B1 |
7329279 | Haug et al. | Feb 2008 | B2 |
7329280 | Bolling et al. | Feb 2008 | B2 |
7335213 | Hyde et al. | Feb 2008 | B1 |
7361190 | Shaoulian et al. | Apr 2008 | B2 |
7364588 | Mathis et al. | Apr 2008 | B2 |
7377941 | Rhee et al. | May 2008 | B2 |
7390329 | Westra et al. | Jun 2008 | B2 |
7404824 | Webler et al. | Jul 2008 | B1 |
7431692 | Zollinger et al. | Oct 2008 | B2 |
7442207 | Rafiee | Oct 2008 | B2 |
7452376 | Lim et al. | Nov 2008 | B2 |
7455690 | Cartledge et al. | Nov 2008 | B2 |
7485142 | Milo | Feb 2009 | B2 |
7485143 | Webler et al. | Feb 2009 | B2 |
7500989 | Solem et al. | Mar 2009 | B2 |
7507252 | Lashinski et al. | Mar 2009 | B2 |
7510575 | Spenser et al. | Mar 2009 | B2 |
7510577 | Moaddeb et al. | Mar 2009 | B2 |
7527647 | Spence | May 2009 | B2 |
7530995 | Quijano et al. | May 2009 | B2 |
7549983 | Roue et al. | Jun 2009 | B2 |
7559936 | Levine | Jul 2009 | B2 |
7562660 | Saadat | Jul 2009 | B2 |
7563267 | Goldfarb et al. | Jul 2009 | B2 |
7563273 | Goldfarb et al. | Jul 2009 | B2 |
7569062 | Kuehn et al. | Aug 2009 | B1 |
7585321 | Cribier | Sep 2009 | B2 |
7588582 | Starksen et al. | Sep 2009 | B2 |
7591826 | Alferness et al. | Sep 2009 | B2 |
7604646 | Goldfarb et al. | Oct 2009 | B2 |
7608091 | Goldfarb et al. | Oct 2009 | B2 |
7608103 | McCarthy | Oct 2009 | B2 |
7618449 | Tremulis et al. | Nov 2009 | B2 |
7625403 | Krivoruchko | Dec 2009 | B2 |
7632303 | Stalker et al. | Dec 2009 | B1 |
7635329 | Goldfarb et al. | Dec 2009 | B2 |
7635386 | Gammie | Dec 2009 | B1 |
7655015 | Goldfarb et al. | Feb 2010 | B2 |
7666204 | Thornton et al. | Feb 2010 | B2 |
7682319 | Martin et al. | Mar 2010 | B2 |
7682369 | Seguin | Mar 2010 | B2 |
7686822 | Shayani | Mar 2010 | B2 |
7699892 | Rafiee et al. | Apr 2010 | B2 |
7704269 | St. Goar et al. | Apr 2010 | B2 |
7704277 | Zakay et al. | Apr 2010 | B2 |
7722666 | Lafontaine | May 2010 | B2 |
7736388 | Goldfarb et al. | Jun 2010 | B2 |
7748389 | Salahieh et al. | Jul 2010 | B2 |
7753924 | Starksen et al. | Jul 2010 | B2 |
7758632 | Hojeibane et al. | Jul 2010 | B2 |
7780726 | Seguin | Aug 2010 | B2 |
7871368 | Zollinger et al. | Jan 2011 | B2 |
7871433 | Lattouf | Jan 2011 | B2 |
7883475 | Dupont et al. | Feb 2011 | B2 |
7883538 | To et al. | Feb 2011 | B2 |
7892281 | Seguin et al. | Feb 2011 | B2 |
7927370 | Webler et al. | Apr 2011 | B2 |
7927371 | Navia et al. | Apr 2011 | B2 |
7942927 | Kaye et al. | May 2011 | B2 |
7947056 | Griego et al. | May 2011 | B2 |
7955315 | Feinberg et al. | Jun 2011 | B2 |
7955377 | Melsheimer | Jun 2011 | B2 |
7981152 | Webler et al. | Jul 2011 | B1 |
7992567 | Hirotsuka et al. | Aug 2011 | B2 |
7993368 | Gambale et al. | Aug 2011 | B2 |
7993397 | Lashinski et al. | Aug 2011 | B2 |
8012201 | Lashinski et al. | Sep 2011 | B2 |
8034103 | Burriesci et al. | Oct 2011 | B2 |
8052592 | Goldfarb et al. | Nov 2011 | B2 |
8057493 | Goldfarb et al. | Nov 2011 | B2 |
8062355 | Figulla et al. | Nov 2011 | B2 |
8070804 | Hyde et al. | Dec 2011 | B2 |
8070805 | Vidlund et al. | Dec 2011 | B2 |
8075616 | Solem et al. | Dec 2011 | B2 |
8100964 | Spence | Jan 2012 | B2 |
8123801 | Milo | Feb 2012 | B2 |
8142493 | Spence et al. | Mar 2012 | B2 |
8142495 | Hasenkam et al. | Mar 2012 | B2 |
8142496 | Berreklouw | Mar 2012 | B2 |
8147542 | Maisano et al. | Apr 2012 | B2 |
8152844 | Rao et al. | Apr 2012 | B2 |
8163013 | Machold et al. | Apr 2012 | B2 |
8187299 | Goldfarb et al. | May 2012 | B2 |
8187324 | Webler et al. | May 2012 | B2 |
8202315 | Hlavka et al. | Jun 2012 | B2 |
8206439 | Gomez Duran | Jun 2012 | B2 |
8216302 | Wilson et al. | Jul 2012 | B2 |
8231671 | Kim | Jul 2012 | B2 |
8262725 | Subramanian | Sep 2012 | B2 |
8265758 | Policker et al. | Sep 2012 | B2 |
8277502 | Miller et al. | Oct 2012 | B2 |
8287584 | Salahieh et al. | Oct 2012 | B2 |
8287591 | Keidar et al. | Oct 2012 | B2 |
8292884 | Levine et al. | Oct 2012 | B2 |
8303608 | Goldfarb et al. | Nov 2012 | B2 |
8323334 | Deem et al. | Dec 2012 | B2 |
8328868 | Paul et al. | Dec 2012 | B2 |
8333777 | Schaller et al. | Dec 2012 | B2 |
8343173 | Starksen et al. | Jan 2013 | B2 |
8343174 | Goldfarb et al. | Jan 2013 | B2 |
8343213 | Salahieh et al. | Jan 2013 | B2 |
8349002 | Milo | Jan 2013 | B2 |
8353956 | Miller et al. | Jan 2013 | B2 |
8357195 | Kuehn | Jan 2013 | B2 |
8382829 | Call et al. | Feb 2013 | B1 |
8388680 | Starksen et al. | Mar 2013 | B2 |
8393517 | Milo | Mar 2013 | B2 |
8403138 | Weisshaupt | Mar 2013 | B2 |
8419825 | Burgler et al. | Apr 2013 | B2 |
8430926 | Kirson | Apr 2013 | B2 |
8449573 | Chu | May 2013 | B2 |
8449599 | Chau et al. | May 2013 | B2 |
8454686 | Alkhatib | Jun 2013 | B2 |
8460370 | Zakay | Jun 2013 | B2 |
8460371 | Hlavka et al. | Jun 2013 | B2 |
8475491 | Milo | Jul 2013 | B2 |
8475525 | Maisano et al. | Jul 2013 | B2 |
8480732 | Subramanian | Jul 2013 | B2 |
8518107 | Tsukashima et al. | Aug 2013 | B2 |
8523940 | Richardson et al. | Sep 2013 | B2 |
8551161 | Dolan | Oct 2013 | B2 |
8585755 | Chau et al. | Nov 2013 | B2 |
8591576 | Hasenkam et al. | Nov 2013 | B2 |
8608797 | Gross et al. | Dec 2013 | B2 |
8628569 | Benichou et al. | Jan 2014 | B2 |
8628571 | Hacohen et al. | Jan 2014 | B1 |
8641727 | Starksen et al. | Feb 2014 | B2 |
8652202 | Alon et al. | Feb 2014 | B2 |
8652203 | Quadri et al. | Feb 2014 | B2 |
8679174 | Ottma et al. | Mar 2014 | B2 |
8685086 | Navia et al. | Apr 2014 | B2 |
8728097 | Sugimoto et al. | May 2014 | B1 |
8728155 | Montorfano et al. | May 2014 | B2 |
8734467 | Miller et al. | May 2014 | B2 |
8734699 | Heideman et al. | May 2014 | B2 |
8740920 | Goldfarb et al. | Jun 2014 | B2 |
8747463 | Fogarty et al. | Jun 2014 | B2 |
8778021 | Cartledge | Jul 2014 | B2 |
8784481 | Alkhatib et al. | Jul 2014 | B2 |
8790367 | Nguyen et al. | Jul 2014 | B2 |
8790394 | Miller et al. | Jul 2014 | B2 |
8795298 | Hernlund et al. | Aug 2014 | B2 |
8795355 | Alkhatib | Aug 2014 | B2 |
8795356 | Quadri et al. | Aug 2014 | B2 |
8795357 | Yohanan et al. | Aug 2014 | B2 |
8808366 | Braido et al. | Aug 2014 | B2 |
8808368 | Maisano et al. | Aug 2014 | B2 |
8845717 | Khairkhahan et al. | Sep 2014 | B2 |
8845723 | Spence et al. | Sep 2014 | B2 |
8852261 | White | Oct 2014 | B2 |
8852272 | Gross et al. | Oct 2014 | B2 |
8858623 | Miller et al. | Oct 2014 | B2 |
8864822 | Spence et al. | Oct 2014 | B2 |
8870948 | Erzberger et al. | Oct 2014 | B1 |
8870949 | Rowe | Oct 2014 | B2 |
8888843 | Khairkhahan et al. | Nov 2014 | B2 |
8889861 | Skead et al. | Nov 2014 | B2 |
8894702 | Quadri et al. | Nov 2014 | B2 |
8911461 | Traynor et al. | Dec 2014 | B2 |
8911494 | Hammer et al. | Dec 2014 | B2 |
8926696 | Cabiri et al. | Jan 2015 | B2 |
8926697 | Gross et al. | Jan 2015 | B2 |
8932343 | Alkhatib et al. | Jan 2015 | B2 |
8932348 | Solem et al. | Jan 2015 | B2 |
8940044 | Hammer et al. | Jan 2015 | B2 |
8945211 | Sugimoto | Feb 2015 | B2 |
8951285 | Sugimoto et al. | Feb 2015 | B2 |
8951286 | Sugimoto et al. | Feb 2015 | B2 |
8961595 | Alkhatib | Feb 2015 | B2 |
8961602 | Kovach et al. | Feb 2015 | B2 |
8979922 | Jayasinghe et al. | Mar 2015 | B2 |
8992604 | Gross et al. | Mar 2015 | B2 |
9005273 | Salahieh et al. | Apr 2015 | B2 |
9011520 | Miller et al. | Apr 2015 | B2 |
9011530 | Reich et al. | Apr 2015 | B2 |
9023100 | Quadri et al. | May 2015 | B2 |
9072603 | Tuval et al. | Jul 2015 | B2 |
9107749 | Bobo et al. | Aug 2015 | B2 |
9119719 | Zipory et al. | Sep 2015 | B2 |
9125632 | Loulmet et al. | Sep 2015 | B2 |
9125742 | Yoganathan et al. | Sep 2015 | B2 |
9138316 | Bielefeld | Sep 2015 | B2 |
9173646 | Fabro | Nov 2015 | B2 |
9180005 | Lashinski et al. | Nov 2015 | B1 |
9180007 | Reich et al. | Nov 2015 | B2 |
9192472 | Gross et al. | Nov 2015 | B2 |
9198756 | Aklog et al. | Dec 2015 | B2 |
9226825 | Starksen et al. | Jan 2016 | B2 |
9265608 | Miller et al. | Feb 2016 | B2 |
9326857 | Cartledge et al. | May 2016 | B2 |
9414921 | Miller et al. | Aug 2016 | B2 |
9427316 | Schweich, Jr. et al. | Aug 2016 | B2 |
9474606 | Zipory et al. | Oct 2016 | B2 |
9526613 | Gross et al. | Dec 2016 | B2 |
9561104 | Miller et al. | Feb 2017 | B2 |
9579090 | Simms et al. | Feb 2017 | B1 |
9693865 | Gilmore et al. | Jul 2017 | B2 |
9730793 | Reich et al. | Aug 2017 | B2 |
9788941 | Hacohen | Oct 2017 | B2 |
9801720 | Gilmore et al. | Oct 2017 | B2 |
9907547 | Gilmore et al. | Mar 2018 | B2 |
10368852 | Gerhardt et al. | Aug 2019 | B2 |
20010021874 | Carpentier et al. | Sep 2001 | A1 |
20020022862 | Grafton et al. | Feb 2002 | A1 |
20020082525 | Oslund et al. | Jun 2002 | A1 |
20020087048 | Brock et al. | Jul 2002 | A1 |
20020103532 | Langberg et al. | Aug 2002 | A1 |
20020120292 | Morgan | Aug 2002 | A1 |
20020151916 | Muramatsu et al. | Oct 2002 | A1 |
20020151970 | Garrison et al. | Oct 2002 | A1 |
20020169358 | Mortier et al. | Nov 2002 | A1 |
20020177904 | Huxel et al. | Nov 2002 | A1 |
20020188301 | Dallara et al. | Dec 2002 | A1 |
20020188350 | Arru et al. | Dec 2002 | A1 |
20020198586 | Inoue | Dec 2002 | A1 |
20030050693 | Quijano et al. | Mar 2003 | A1 |
20030078465 | Pai et al. | Apr 2003 | A1 |
20030078653 | Vesely et al. | Apr 2003 | A1 |
20030083538 | Adams et al. | May 2003 | A1 |
20030093148 | Bolling et al. | May 2003 | A1 |
20030105519 | Fasol et al. | Jun 2003 | A1 |
20030114901 | Loeb et al. | Jun 2003 | A1 |
20030120340 | Liska et al. | Jun 2003 | A1 |
20030144657 | Bowe et al. | Jul 2003 | A1 |
20030167062 | Gambale et al. | Sep 2003 | A1 |
20030171760 | Gambale | Sep 2003 | A1 |
20030199974 | Lee et al. | Oct 2003 | A1 |
20030204193 | Gabriel et al. | Oct 2003 | A1 |
20030204195 | Keane et al. | Oct 2003 | A1 |
20030229350 | Kay | Dec 2003 | A1 |
20030229395 | Cox | Dec 2003 | A1 |
20040002735 | Lizardi et al. | Jan 2004 | A1 |
20040010287 | Bonutti | Jan 2004 | A1 |
20040019359 | Worley et al. | Jan 2004 | A1 |
20040019377 | Taylor et al. | Jan 2004 | A1 |
20040024451 | Johnson et al. | Feb 2004 | A1 |
20040039442 | St. Goar et al. | Feb 2004 | A1 |
20040044350 | Martin et al. | Mar 2004 | A1 |
20040049211 | Tremulis et al. | Mar 2004 | A1 |
20040059413 | Argento | Mar 2004 | A1 |
20040068273 | Fariss et al. | Apr 2004 | A1 |
20040106950 | Grafton et al. | Jun 2004 | A1 |
20040111095 | Gordon et al. | Jun 2004 | A1 |
20040122514 | Fogarty et al. | Jun 2004 | A1 |
20040127982 | Machold et al. | Jul 2004 | A1 |
20040133274 | Webler et al. | Jul 2004 | A1 |
20040133374 | Kattan | Jul 2004 | A1 |
20040138744 | Lashinski et al. | Jul 2004 | A1 |
20040138745 | Macoviak et al. | Jul 2004 | A1 |
20040148019 | Vidlund et al. | Jul 2004 | A1 |
20040148020 | Vidlund et al. | Jul 2004 | A1 |
20040148021 | Cartledge et al. | Jul 2004 | A1 |
20040176788 | Opolski | Sep 2004 | A1 |
20040181287 | Gellman | Sep 2004 | A1 |
20040186566 | Hindrichs et al. | Sep 2004 | A1 |
20040193191 | Starksen et al. | Sep 2004 | A1 |
20040243227 | Starksen et al. | Dec 2004 | A1 |
20040260317 | Bloom et al. | Dec 2004 | A1 |
20040260344 | Lyons et al. | Dec 2004 | A1 |
20040260393 | Rahdert et al. | Dec 2004 | A1 |
20040260394 | Douk et al. | Dec 2004 | A1 |
20040267358 | Reitan | Dec 2004 | A1 |
20050004668 | Aklog et al. | Jan 2005 | A1 |
20050010287 | Macoviak et al. | Jan 2005 | A1 |
20050010787 | Tarbouriech | Jan 2005 | A1 |
20050016560 | Voughlohn | Jan 2005 | A1 |
20050049692 | Numamoto et al. | Mar 2005 | A1 |
20050055038 | Kelleher et al. | Mar 2005 | A1 |
20050055087 | Starksen | Mar 2005 | A1 |
20050060030 | Lashinski et al. | Mar 2005 | A1 |
20050065601 | Lee et al. | Mar 2005 | A1 |
20050070999 | Spence | Mar 2005 | A1 |
20050075654 | Kelleher | Apr 2005 | A1 |
20050075727 | Wheatley | Apr 2005 | A1 |
20050090827 | Gedebou | Apr 2005 | A1 |
20050090834 | Chiang et al. | Apr 2005 | A1 |
20050096740 | Langberg et al. | May 2005 | A1 |
20050107871 | Realyvasquez et al. | May 2005 | A1 |
20050119734 | Spence et al. | Jun 2005 | A1 |
20050125002 | Baran et al. | Jun 2005 | A1 |
20050125011 | Spence et al. | Jun 2005 | A1 |
20050131533 | Alfieri et al. | Jun 2005 | A1 |
20050137686 | Salahieh et al. | Jun 2005 | A1 |
20050137688 | Salahieh et al. | Jun 2005 | A1 |
20050137695 | Salahieh et al. | Jun 2005 | A1 |
20050159728 | Armour et al. | Jul 2005 | A1 |
20050159810 | Filsoufi | Jul 2005 | A1 |
20050171601 | Cosgrove et al. | Aug 2005 | A1 |
20050177180 | Kaganov et al. | Aug 2005 | A1 |
20050177228 | Solem et al. | Aug 2005 | A1 |
20050187568 | Klenk et al. | Aug 2005 | A1 |
20050192596 | Jugenheimer et al. | Sep 2005 | A1 |
20050203549 | Realyvasquez | Sep 2005 | A1 |
20050203606 | VanCamp | Sep 2005 | A1 |
20050216039 | Lederman | Sep 2005 | A1 |
20050216079 | MaCoviak | Sep 2005 | A1 |
20050222665 | Aranyi | Oct 2005 | A1 |
20050234481 | Waller | Oct 2005 | A1 |
20050240199 | Martinek et al. | Oct 2005 | A1 |
20050251177 | Saadat et al. | Nov 2005 | A1 |
20050256532 | Nayak et al. | Nov 2005 | A1 |
20050267478 | Corradi et al. | Dec 2005 | A1 |
20050273138 | To et al. | Dec 2005 | A1 |
20050288778 | Shaoulian et al. | Dec 2005 | A1 |
20060004442 | Spenser et al. | Jan 2006 | A1 |
20060004443 | Liddicoat et al. | Jan 2006 | A1 |
20060020326 | Bolduc et al. | Jan 2006 | A9 |
20060020327 | Lashinski et al. | Jan 2006 | A1 |
20060020333 | Lashinski et al. | Jan 2006 | A1 |
20060020336 | Liddicoat | Jan 2006 | A1 |
20060025787 | Morales et al. | Feb 2006 | A1 |
20060025858 | Alameddine | Feb 2006 | A1 |
20060030885 | Hyde | Feb 2006 | A1 |
20060041319 | Taylor et al. | Feb 2006 | A1 |
20060069429 | Spence et al. | Mar 2006 | A1 |
20060074486 | Liddicoat et al. | Apr 2006 | A1 |
20060085012 | Dolan | Apr 2006 | A1 |
20060095009 | Lampropoulos et al. | May 2006 | A1 |
20060106423 | Weisel et al. | May 2006 | A1 |
20060116757 | Lashinski et al. | Jun 2006 | A1 |
20060122633 | To et al. | Jun 2006 | A1 |
20060129166 | Lavelle | Jun 2006 | A1 |
20060142694 | Bednarek et al. | Jun 2006 | A1 |
20060149280 | Harvie et al. | Jul 2006 | A1 |
20060149368 | Spence | Jul 2006 | A1 |
20060161265 | Levine et al. | Jul 2006 | A1 |
20060184240 | Jimenez et al. | Aug 2006 | A1 |
20060184242 | Lichtenstein | Aug 2006 | A1 |
20060195134 | Crittenden | Aug 2006 | A1 |
20060206203 | Yang et al. | Sep 2006 | A1 |
20060241622 | Zergiebel | Oct 2006 | A1 |
20060241656 | Starksen et al. | Oct 2006 | A1 |
20060241748 | Lee et al. | Oct 2006 | A1 |
20060247763 | Slater | Nov 2006 | A1 |
20060259135 | Navia et al. | Nov 2006 | A1 |
20060271175 | Woolfson et al. | Nov 2006 | A1 |
20060276871 | Lamson et al. | Dec 2006 | A1 |
20060282161 | Huynh et al. | Dec 2006 | A1 |
20060287661 | Bolduc et al. | Dec 2006 | A1 |
20060287716 | Banbury et al. | Dec 2006 | A1 |
20070001627 | Lin et al. | Jan 2007 | A1 |
20070010800 | Weitzner et al. | Jan 2007 | A1 |
20070016287 | Cartledge et al. | Jan 2007 | A1 |
20070016288 | Gurskis et al. | Jan 2007 | A1 |
20070021781 | Jervis et al. | Jan 2007 | A1 |
20070027533 | Douk | Feb 2007 | A1 |
20070027536 | Mihaljevic et al. | Feb 2007 | A1 |
20070032823 | Tegg | Feb 2007 | A1 |
20070038221 | Fine et al. | Feb 2007 | A1 |
20070038293 | St.Goar et al. | Feb 2007 | A1 |
20070038296 | Navia et al. | Feb 2007 | A1 |
20070039425 | Wang | Feb 2007 | A1 |
20070049942 | Hindrichs et al. | Mar 2007 | A1 |
20070049970 | Belef et al. | Mar 2007 | A1 |
20070051377 | Douk et al. | Mar 2007 | A1 |
20070055206 | To et al. | Mar 2007 | A1 |
20070060922 | Dreyfuss | Mar 2007 | A1 |
20070061010 | Hauser et al. | Mar 2007 | A1 |
20070066863 | Rafiee et al. | Mar 2007 | A1 |
20070078297 | Rafiee et al. | Apr 2007 | A1 |
20070080188 | Spence et al. | Apr 2007 | A1 |
20070083168 | Whiting et al. | Apr 2007 | A1 |
20070083235 | Jervis et al. | Apr 2007 | A1 |
20070100427 | Perouse | May 2007 | A1 |
20070106328 | Wardle et al. | May 2007 | A1 |
20070112359 | Kimura et al. | May 2007 | A1 |
20070112422 | Dehdashtian | May 2007 | A1 |
20070112425 | Schaller et al. | May 2007 | A1 |
20070118151 | Davidson | May 2007 | A1 |
20070118154 | Crabtree | May 2007 | A1 |
20070118213 | Loulmet | May 2007 | A1 |
20070118215 | Moaddeb | May 2007 | A1 |
20070119871 | Garcia | May 2007 | A1 |
20070142907 | Moaddeb et al. | Jun 2007 | A1 |
20070162111 | Fukamachi et al. | Jul 2007 | A1 |
20070173931 | Tremulis et al. | Jul 2007 | A1 |
20070198082 | Kapadia et al. | Aug 2007 | A1 |
20070219558 | Deutsch | Sep 2007 | A1 |
20070239208 | Crawford | Oct 2007 | A1 |
20070244554 | Rafiee et al. | Oct 2007 | A1 |
20070244556 | Rafiee et al. | Oct 2007 | A1 |
20070255397 | Ryan et al. | Nov 2007 | A1 |
20070255400 | Parravicini et al. | Nov 2007 | A1 |
20070270755 | Von Oepen et al. | Nov 2007 | A1 |
20070276437 | Call et al. | Nov 2007 | A1 |
20070282375 | Hindrichs et al. | Dec 2007 | A1 |
20070282429 | Hauser et al. | Dec 2007 | A1 |
20070295172 | Swartz | Dec 2007 | A1 |
20070299424 | Cumming et al. | Dec 2007 | A1 |
20080004697 | Lichtenstein et al. | Jan 2008 | A1 |
20080027483 | Cartledge et al. | Jan 2008 | A1 |
20080027555 | Hawkins | Jan 2008 | A1 |
20080033460 | Ziniti et al. | Feb 2008 | A1 |
20080035160 | Woodson et al. | Feb 2008 | A1 |
20080039935 | Buch et al. | Feb 2008 | A1 |
20080051703 | Thornton et al. | Feb 2008 | A1 |
20080058595 | Snoke et al. | Mar 2008 | A1 |
20080065011 | Marchand et al. | Mar 2008 | A1 |
20080065204 | Macoviak et al. | Mar 2008 | A1 |
20080071366 | Tuval et al. | Mar 2008 | A1 |
20080086138 | Stone et al. | Apr 2008 | A1 |
20080086203 | Roberts | Apr 2008 | A1 |
20080091169 | Heideman et al. | Apr 2008 | A1 |
20080091257 | Andreas et al. | Apr 2008 | A1 |
20080097483 | Ortiz et al. | Apr 2008 | A1 |
20080097523 | Bolduc et al. | Apr 2008 | A1 |
20080103572 | Gerber | May 2008 | A1 |
20080140116 | Bonutti | Jun 2008 | A1 |
20080167713 | Bolling | Jul 2008 | A1 |
20080167714 | St. Goar et al. | Jul 2008 | A1 |
20080177380 | Starksen et al. | Jul 2008 | A1 |
20080195126 | Solem | Aug 2008 | A1 |
20080195200 | Vidlund et al. | Aug 2008 | A1 |
20080208265 | Frazier et al. | Aug 2008 | A1 |
20080221672 | Lamphere et al. | Sep 2008 | A1 |
20080228030 | Godin | Sep 2008 | A1 |
20080228223 | Alkhatib | Sep 2008 | A1 |
20080234729 | Page et al. | Sep 2008 | A1 |
20080262480 | Stahler et al. | Oct 2008 | A1 |
20080262609 | Gross et al. | Oct 2008 | A1 |
20080275300 | Rothe et al. | Nov 2008 | A1 |
20080275469 | Fanton et al. | Nov 2008 | A1 |
20080275551 | Alfieri | Nov 2008 | A1 |
20080281353 | Aranyi et al. | Nov 2008 | A1 |
20080281411 | Berreklouw | Nov 2008 | A1 |
20080287862 | Weitzner et al. | Nov 2008 | A1 |
20080288044 | Osborne | Nov 2008 | A1 |
20080288062 | Andrieu et al. | Nov 2008 | A1 |
20080294251 | Annest et al. | Nov 2008 | A1 |
20080300537 | Bowman | Dec 2008 | A1 |
20080300629 | Surti | Dec 2008 | A1 |
20080312506 | Spivey et al. | Dec 2008 | A1 |
20090024110 | Heideman et al. | Jan 2009 | A1 |
20090028670 | Garcia et al. | Jan 2009 | A1 |
20090043381 | Macoviak et al. | Feb 2009 | A1 |
20090054723 | Khairkhahan et al. | Feb 2009 | A1 |
20090054969 | Salahieh et al. | Feb 2009 | A1 |
20090062866 | Jackson | Mar 2009 | A1 |
20090076586 | Hauser et al. | Mar 2009 | A1 |
20090076600 | Quinn | Mar 2009 | A1 |
20090082797 | Fung et al. | Mar 2009 | A1 |
20090088837 | Gillinov et al. | Apr 2009 | A1 |
20090093877 | Keidar et al. | Apr 2009 | A1 |
20090099650 | Bolduc et al. | Apr 2009 | A1 |
20090105816 | Olsen et al. | Apr 2009 | A1 |
20090125102 | Cartledge et al. | May 2009 | A1 |
20090166913 | Guo et al. | Jul 2009 | A1 |
20090171439 | Nissl | Jul 2009 | A1 |
20090177266 | Powell et al. | Jul 2009 | A1 |
20090177274 | Scorsin et al. | Jul 2009 | A1 |
20090248148 | Shaolian et al. | Oct 2009 | A1 |
20090254103 | Deutsch | Oct 2009 | A1 |
20090264994 | Saadat | Oct 2009 | A1 |
20090287231 | Brooks et al. | Nov 2009 | A1 |
20090287304 | Dahlgren et al. | Nov 2009 | A1 |
20090299409 | Coe et al. | Dec 2009 | A1 |
20090326648 | Machold et al. | Dec 2009 | A1 |
20100001038 | Levin et al. | Jan 2010 | A1 |
20100010538 | Juravic et al. | Jan 2010 | A1 |
20100023118 | Medlock et al. | Jan 2010 | A1 |
20100030014 | Ferrazzi | Feb 2010 | A1 |
20100030328 | Seguin et al. | Feb 2010 | A1 |
20100042147 | Janovsky et al. | Feb 2010 | A1 |
20100049213 | Serina et al. | Feb 2010 | A1 |
20100063542 | van Der Burg et al. | Mar 2010 | A1 |
20100063550 | Felix et al. | Mar 2010 | A1 |
20100076499 | McNamara et al. | Mar 2010 | A1 |
20100094248 | Nguyen et al. | Apr 2010 | A1 |
20100094314 | Hernlund et al. | Apr 2010 | A1 |
20100106141 | Osypka et al. | Apr 2010 | A1 |
20100114180 | Rock et al. | May 2010 | A1 |
20100121349 | Meier et al. | May 2010 | A1 |
20100121435 | Subramanian et al. | May 2010 | A1 |
20100121437 | Subramanian et al. | May 2010 | A1 |
20100130989 | Bourque et al. | May 2010 | A1 |
20100130992 | Machold et al. | May 2010 | A1 |
20100152845 | Bloom et al. | Jun 2010 | A1 |
20100161043 | Maisano et al. | Jun 2010 | A1 |
20100168845 | Wright | Jul 2010 | A1 |
20100174358 | Rabkin et al. | Jul 2010 | A1 |
20100179574 | Longoria et al. | Jul 2010 | A1 |
20100217184 | Koblish et al. | Aug 2010 | A1 |
20100217382 | Chau et al. | Aug 2010 | A1 |
20100234935 | Bashiri et al. | Sep 2010 | A1 |
20100249497 | Peine et al. | Sep 2010 | A1 |
20100249908 | Chau et al. | Sep 2010 | A1 |
20100249915 | Zhang | Sep 2010 | A1 |
20100249920 | Bolling et al. | Sep 2010 | A1 |
20100262232 | Annest | Oct 2010 | A1 |
20100262233 | He | Oct 2010 | A1 |
20100286628 | Gross | Nov 2010 | A1 |
20100298929 | Thornton et al. | Nov 2010 | A1 |
20100305475 | Hinchliffe et al. | Dec 2010 | A1 |
20100324598 | Anderson | Dec 2010 | A1 |
20110004210 | Johnson et al. | Jan 2011 | A1 |
20110004298 | Lee et al. | Jan 2011 | A1 |
20110009956 | Cartledge et al. | Jan 2011 | A1 |
20110011917 | Loulmet | Jan 2011 | A1 |
20110026208 | Utsuro et al. | Feb 2011 | A1 |
20110029066 | Gilad et al. | Feb 2011 | A1 |
20110035000 | Nieminen et al. | Feb 2011 | A1 |
20110066231 | Cartledge et al. | Mar 2011 | A1 |
20110067770 | Pederson et al. | Mar 2011 | A1 |
20110071626 | Wright et al. | Mar 2011 | A1 |
20110082538 | Dahlgren et al. | Apr 2011 | A1 |
20110087146 | Ryan et al. | Apr 2011 | A1 |
20110093002 | Rucker et al. | Apr 2011 | A1 |
20110118832 | Punjabi | May 2011 | A1 |
20110137410 | Hacohen | Jun 2011 | A1 |
20110144576 | Rothe et al. | Jun 2011 | A1 |
20110144703 | Krause et al. | Jun 2011 | A1 |
20110202130 | Cartledge et al. | Aug 2011 | A1 |
20110208283 | Rust | Aug 2011 | A1 |
20110230941 | Markus | Sep 2011 | A1 |
20110230961 | Langer et al. | Sep 2011 | A1 |
20110238088 | Bolduc et al. | Sep 2011 | A1 |
20110257433 | Walker | Oct 2011 | A1 |
20110257633 | Cartledge et al. | Oct 2011 | A1 |
20110264208 | Duffy et al. | Oct 2011 | A1 |
20110276062 | Bolduc | Nov 2011 | A1 |
20110288435 | Christy et al. | Nov 2011 | A1 |
20110301498 | Maenhout et al. | Dec 2011 | A1 |
20120053628 | Sojka et al. | Mar 2012 | A1 |
20120053642 | Lozier et al. | Mar 2012 | A1 |
20120065464 | Ellis et al. | Mar 2012 | A1 |
20120078355 | Zipory et al. | Mar 2012 | A1 |
20120078359 | Li et al. | Mar 2012 | A1 |
20120089022 | House et al. | Apr 2012 | A1 |
20120089125 | Scheibe et al. | Apr 2012 | A1 |
20120095552 | Spence et al. | Apr 2012 | A1 |
20120109155 | Robinson et al. | May 2012 | A1 |
20120150290 | Gabbay | Jun 2012 | A1 |
20120158021 | Morrill | Jun 2012 | A1 |
20120158023 | Mitelberg et al. | Jun 2012 | A1 |
20120179086 | Shank et al. | Jul 2012 | A1 |
20120191182 | Hauser et al. | Jul 2012 | A1 |
20120226349 | Tuval et al. | Sep 2012 | A1 |
20120239142 | Liu et al. | Sep 2012 | A1 |
20120245604 | Tegzes | Sep 2012 | A1 |
20120271198 | Whittaker et al. | Oct 2012 | A1 |
20120296349 | Smith et al. | Nov 2012 | A1 |
20120296417 | Hill et al. | Nov 2012 | A1 |
20120310330 | Buchbinder et al. | Dec 2012 | A1 |
20120323313 | Seguin | Dec 2012 | A1 |
20130030522 | Rowe et al. | Jan 2013 | A1 |
20130046373 | Cartledge et al. | Feb 2013 | A1 |
20130053884 | Roorda | Feb 2013 | A1 |
20130079873 | Migliazza et al. | Mar 2013 | A1 |
20130085529 | Housman | Apr 2013 | A1 |
20130090724 | Subramanian et al. | Apr 2013 | A1 |
20130096673 | Hill et al. | Apr 2013 | A1 |
20130116776 | Gross et al. | May 2013 | A1 |
20130123910 | Cartledge et al. | May 2013 | A1 |
20130131791 | Hlavka et al. | May 2013 | A1 |
20130166017 | Cartledge et al. | Jun 2013 | A1 |
20130190863 | Call et al. | Jul 2013 | A1 |
20130204361 | Adams et al. | Aug 2013 | A1 |
20130218206 | Gadlage | Aug 2013 | A1 |
20130226289 | Shaolian et al. | Aug 2013 | A1 |
20130226290 | Yellin et al. | Aug 2013 | A1 |
20130231701 | Voss et al. | Sep 2013 | A1 |
20130268069 | Zakai et al. | Oct 2013 | A1 |
20130282059 | Ketai et al. | Oct 2013 | A1 |
20130289718 | Tsukashima et al. | Oct 2013 | A1 |
20130297013 | Klima et al. | Nov 2013 | A1 |
20130304093 | Serina et al. | Nov 2013 | A1 |
20130331930 | Rowe et al. | Dec 2013 | A1 |
20140067054 | Chau et al. | Mar 2014 | A1 |
20140081394 | Keranen et al. | Mar 2014 | A1 |
20140088368 | Park | Mar 2014 | A1 |
20140088646 | Wales et al. | Mar 2014 | A1 |
20140094826 | Sutherland et al. | Apr 2014 | A1 |
20140094903 | Miller et al. | Apr 2014 | A1 |
20140094906 | Spence et al. | Apr 2014 | A1 |
20140114390 | Tobis et al. | Apr 2014 | A1 |
20140135799 | Henderson | May 2014 | A1 |
20140142619 | Serina et al. | May 2014 | A1 |
20140142695 | Gross et al. | May 2014 | A1 |
20140148849 | Serina et al. | May 2014 | A1 |
20140155783 | Starksen et al. | Jun 2014 | A1 |
20140163615 | Gadlage et al. | Jun 2014 | A1 |
20140163670 | Alon et al. | Jun 2014 | A1 |
20140163690 | White | Jun 2014 | A1 |
20140188108 | Goodine et al. | Jul 2014 | A1 |
20140188140 | Meier et al. | Jul 2014 | A1 |
20140188215 | Hlavka et al. | Jul 2014 | A1 |
20140194976 | Starksen et al. | Jul 2014 | A1 |
20140207231 | Hacohen et al. | Jul 2014 | A1 |
20140243859 | Robinson | Aug 2014 | A1 |
20140243894 | Groothuis et al. | Aug 2014 | A1 |
20140243963 | Sheps et al. | Aug 2014 | A1 |
20140251042 | Asselin et al. | Sep 2014 | A1 |
20140275757 | Goodwin et al. | Sep 2014 | A1 |
20140276648 | Hammer et al. | Sep 2014 | A1 |
20140296962 | Cartledge et al. | Oct 2014 | A1 |
20140303649 | Nguyen et al. | Oct 2014 | A1 |
20140303720 | Sugimoto et al. | Oct 2014 | A1 |
20140309661 | Sheps et al. | Oct 2014 | A1 |
20140309730 | Alon et al. | Oct 2014 | A1 |
20140343668 | Zipory et al. | Nov 2014 | A1 |
20140350660 | Cocks et al. | Nov 2014 | A1 |
20140379006 | Sutherland et al. | Dec 2014 | A1 |
20150018940 | Quill et al. | Jan 2015 | A1 |
20150051697 | Spence et al. | Feb 2015 | A1 |
20150081014 | Gross et al. | Mar 2015 | A1 |
20150094800 | Chawla | Apr 2015 | A1 |
20150100116 | Mohl et al. | Apr 2015 | A1 |
20150112432 | Reich et al. | Apr 2015 | A1 |
20150127097 | Neumann et al. | May 2015 | A1 |
20150133997 | Deitch et al. | May 2015 | A1 |
20150182336 | Zipory et al. | Jul 2015 | A1 |
20150230919 | Chau et al. | Aug 2015 | A1 |
20150272586 | Herman et al. | Oct 2015 | A1 |
20150272734 | Sheps et al. | Oct 2015 | A1 |
20150282931 | Brunnett et al. | Oct 2015 | A1 |
20150351910 | Gilmore et al. | Dec 2015 | A1 |
20160008132 | Cabiri et al. | Jan 2016 | A1 |
20160029920 | Kronstrom et al. | Feb 2016 | A1 |
20160030034 | Graul et al. | Feb 2016 | A1 |
20160058557 | Reich et al. | Mar 2016 | A1 |
20160113767 | Miller et al. | Apr 2016 | A1 |
20160120642 | Shaolian et al. | May 2016 | A1 |
20160120645 | Alon | May 2016 | A1 |
20160158008 | Miller et al. | Jun 2016 | A1 |
20160242762 | Gilmore et al. | Aug 2016 | A1 |
20160256149 | Sampson et al. | Sep 2016 | A1 |
20160256274 | Hayoz | Sep 2016 | A1 |
20160262755 | Zipory | Sep 2016 | A1 |
20160302917 | Schewel | Oct 2016 | A1 |
20160317302 | Madjarov et al. | Nov 2016 | A1 |
20160346084 | Taylor et al. | Dec 2016 | A1 |
20160361058 | Bolduc et al. | Dec 2016 | A1 |
20160361168 | Gross et al. | Dec 2016 | A1 |
20160361169 | Gross et al. | Dec 2016 | A1 |
20170000609 | Gross et al. | Jan 2017 | A1 |
20170020631 | Horras | Jan 2017 | A1 |
20170042670 | Shaolian et al. | Feb 2017 | A1 |
20170100119 | Baird et al. | Apr 2017 | A1 |
20170224489 | Starksen et al. | Aug 2017 | A1 |
20170245993 | Gross et al. | Aug 2017 | A1 |
20180008409 | Kutzik et al. | Jan 2018 | A1 |
20180049875 | Iflah et al. | Feb 2018 | A1 |
20180140420 | Hayoz et al. | May 2018 | A1 |
20180168803 | Pesce et al. | Jun 2018 | A1 |
20180185025 | Gorek et al. | Jul 2018 | A1 |
20180228608 | Sheps et al. | Aug 2018 | A1 |
20180256334 | Sheps et al. | Sep 2018 | A1 |
20180289480 | D'ambra et al. | Oct 2018 | A1 |
20180318080 | Quill et al. | Nov 2018 | A1 |
20180318083 | Bolling et al. | Nov 2018 | A1 |
20190029498 | Mankowski et al. | Jan 2019 | A1 |
20190038411 | Alon | Feb 2019 | A1 |
20190111239 | Bolduc et al. | Apr 2019 | A1 |
20190117400 | Medema et al. | Apr 2019 | A1 |
20190125325 | Sheps et al. | May 2019 | A1 |
20190133582 | Eaves et al. | May 2019 | A1 |
20190151093 | Keidar et al. | May 2019 | A1 |
20190159898 | Kutzik et al. | May 2019 | A1 |
20190175344 | Khairkhahan | Jun 2019 | A1 |
20190175345 | Schaffner et al. | Jun 2019 | A1 |
20190175346 | Schaffner et al. | Jun 2019 | A1 |
20190183648 | Trapp et al. | Jun 2019 | A1 |
20190240023 | Spence et al. | Aug 2019 | A1 |
20190290260 | Caffes et al. | Sep 2019 | A1 |
20190290431 | Genovese et al. | Sep 2019 | A1 |
20190321049 | Herman et al. | Oct 2019 | A1 |
20190343633 | Garvin et al. | Nov 2019 | A1 |
20200015810 | Piccirillo | Jan 2020 | A1 |
20200015971 | Brauon et al. | Jan 2020 | A1 |
20200178956 | Mitelberg et al. | Jun 2020 | A1 |
20200289267 | Peleg et al. | Sep 2020 | A1 |
20200337840 | Reich | Oct 2020 | A1 |
20210015475 | Lau | Jan 2021 | A1 |
20210052387 | Greenan et al. | Feb 2021 | A1 |
20210059820 | Clark et al. | Mar 2021 | A1 |
20210085461 | Neumark et al. | Mar 2021 | A1 |
20210093453 | Peleg et al. | Apr 2021 | A1 |
20210145584 | Kasher et al. | May 2021 | A1 |
20220071620 | Brauon et al. | Mar 2022 | A1 |
20220096232 | Skaro et al. | Mar 2022 | A1 |
20220142779 | Sharon | May 2022 | A1 |
20220176076 | Keidar | Jun 2022 | A1 |
20220233316 | Sheps et al. | Jul 2022 | A1 |
20220273436 | Aviv et al. | Sep 2022 | A1 |
20220313438 | Chappel-Ram | Oct 2022 | A1 |
20220323221 | Sharon et al. | Oct 2022 | A1 |
20230016867 | Tennenbaum | Jan 2023 | A1 |
20230218291 | Zarbatany et al. | Jul 2023 | A1 |
20230320856 | Zarbatany et al. | Oct 2023 | A1 |
20240099736 | Elsheikh et al. | Mar 2024 | A1 |
Number | Date | Country |
---|---|---|
113331995 | Sep 2021 | CN |
1034753 | Sep 2000 | EP |
3531975 | Sep 2019 | EP |
9205093 | Apr 1992 | WO |
9846149 | Oct 1998 | WO |
02085250 | Feb 2003 | WO |
03047467 | Jun 2003 | WO |
2007098512 | Sep 2007 | WO |
2010000454 | Jan 2010 | WO |
2012176195 | Mar 2013 | WO |
2014064964 | May 2014 | WO |
2015059699 | Apr 2015 | WO |
2017075548 | May 2017 | WO |
2018075879 | Apr 2018 | WO |
2019145941 | Aug 2019 | WO |
2019145947 | Aug 2019 | WO |
2019182645 | Sep 2019 | WO |
2019224814 | Nov 2019 | WO |
2020240282 | Dec 2020 | WO |
2021014440 | Jan 2021 | WO |
2021038559 | Mar 2021 | WO |
2021038560 | Mar 2021 | WO |
2022064401 | Mar 2022 | WO |
2022090907 | May 2022 | WO |
2022101817 | May 2022 | WO |
2022153131 | Jul 2022 | WO |
2022157592 | Jul 2022 | WO |
2022172108 | Aug 2022 | WO |
2022172149 | Aug 2022 | WO |
2022200972 | Sep 2022 | WO |
2022224071 | Oct 2022 | WO |
2022229815 | Nov 2022 | WO |
2022250983 | Dec 2022 | WO |
Entry |
---|
Agarwal et al. International Cardiology Perspective Functional Tricuspid Regurgitation, Circ Cardiovasc Interv 2009;2;2;565-573 (2009). |
Ahmadi, A., G. Spillner, and Th Johannesson. “Hemodynamic changes following experimental production and correction of acute mitral regurgitation with an adjustable ring prosthesis.” The Thoracic and cardiovascular surgeon36.06 (1988): 313-319. |
Ahmadi, Ali et al. “Percutaneously adjustable pulmonary artery band.” The Annals of thoracic surgery 60 (1995): S520-S522. |
Alfieri et al.“Novel Suture Device for Beating-Heart Mitral Leaflet Approximation”, Ann Thorac Surg. 2002, 74:1488-1493. |
Alfieri et al., “An effective technique to correct anterior mitral leaflet prolapse,” J Card 14(6):468-470 (1999). |
Alfieri et al., “The double orifice technique in mitral valve repair: a simple solution for complex problems,” Journal of Thoracic Cardiovascular Surgery 122:674-681 (2001). |
Alfieri, “The edge-to-edge repair of the mitral valve,” [Abstract] 6th Annual NewEra Cardiac Care: Innovation & Technology, Heart Surgery Forum pp. 103. (2000). |
Amplatzer Cardiac Plug brochure (English pages), AGA Medical Corporation (Plymouth, MN) (copyright 2008-2010, downloaded Jan. 11, 2011). |
AMPLATZER® Cribriform Occluder. A patient guide to Percutaneous, Transcatheter, Atrial Septal Defect Closuer, AGA Medical Corporation, Apr. 2008. |
AMPLATZER® Septal Occluder. A patient guide to the Non-Surgical Closuer of the Atrial Septal Defect Using the AMPLATZER Septal Occluder System, AGA Medical Corporation, Apr. 2008. |
Assad, Renato S. “Adjustable Pulmonary Artery Banding.” (2014). |
Brennan, Jennifer, 510(k) Summary of safety and effectiveness, Jan. 2008. |
Daebritz, S. et al. “Experience with an adjustable pulmonary artery banding device in two cases: initial success-midterm failure.” The Thoracic and cardiovascular surgeon 47.01 (1999): 51-52. |
Dang NC et al. “Simplified Placement of Multiple Artificial Mitral Valve Chords,” The Heart Surgery Forum #2005-1005, 8 (3) (2005). |
Dictionary.com definition of “lock”, Jul. 29, 2013. |
Dieter RS, “Percutaneous valve repair: Update on mitral regurgitation and endovascular approaches to the mitral valve,” Applications in Imaging, Cardiac Interventions, Supported by an educational grant from Amersham Health pp. 11-14 (2003). |
Elliott, Daniel S., Gerald W. Timm, and David M. Barrett. “An implantable mechanical urinary sphincter: a new nonhydraulic design concept.” Urology52.6 (1998): 1151-1154. |
Langer et al. Ring plus String: Papillary muscle repositioning as an adjunctive repair technique for ischemic mitral regurgitation, The Journal of Thoracic Cardiovascular surgery vol. 133 No. 1, Jan. 2007. |
Langer et al. Ring+String, Successful Repair technique for ischemic mitral regurgitation with severe leaflet Tethering, The Department of Thoracic Cardiovascular surgery, Hamburg, Germany, Nov. 2008. |
Maisano, “The double-orifice technique as a standardized approach to treat mitral,” European Journal of Cardio-thoracic Surgery 17 (2000) 201-205. |
O'Reilly S et al., “Heart valve surgery pushes the envelope,” Medtech Insight 8(3): 73, 99-108 (2006). |
Odell JA et al., “Early Results o4yf a Simplified Method of Mitral Valve Annuloplasty,” Circulation 92:150-154 (1995). |
Park, Sang C. et al. “A percutaneously adjustable device for banding of the pulmonary trunk.” International journal of cardiology 9.4 (1985): 477-484. |
Swain CP et al., “An endoscopically deliverable tissue-transfixing device for securing biosensors in the gastrointestinal tract,” Gastrointestinal Endoscopy 40(6): 730-734 (1994). |
Swenson, O. An experimental implantable urinary sphincter. Invest Urol. Sep. 1976;14(2):100-3. |
Swenson, O. and Malinin, T.I., 1978. An improved mechanical device for control of urinary incontinence. Investigative urology, 15(5), pp. 389-391. |
Swenson, Orvar. “Internal device for control of urinary incontinence.” Journal of pediatric surgery 7.5 (1972): 542-545. |
Tajik, Abdul, “Two dimensional real-time ultrasonic imaging of the heart and great vessels”, Mayo Clin Proc. vol. 53:271-303, 1978. |
Number | Date | Country | |
---|---|---|---|
20220071620 A1 | Mar 2022 | US |
Number | Date | Country | |
---|---|---|---|
62853850 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/IB2020/000472 | May 2020 | WO |
Child | 17528897 | US |