The present disclosure is directed to ultrasound imaging, and more specifically, to limited angle transmission acoustic wave tomography, also referred to as acoustic wave tomosynthesis. The acoustic wave can be generated mechanically by an US transducer, e.g., ultrasound tomosunthesis (USTS), or photoacoustically by shining a light source, e.g., photoacoustic tomosynthesis (PATS).
Effective diagnostic imaging of internal anatomy is critical to detection of cancers and other disease. For example, prostate cancer is the most common male cancer in the United States with an estimated 220,000 new cases and 28,000 deaths in 2015. A key to survival is early detection of cancer. Systematic sextant biopsies under transrectal ultrasound (TRUS) guidance have been the gold standard method since 1989. TRUS is real-time, relatively low cost, and shows the prostate capsule and boundaries. However, it suffers from poor spatial resolution and low sensitivity for cancer detection (40-60%). Typically, six biopsies are obtained in a regular but random fashion. This is somewhat blind in which instead of directing the needle to a specific target, it is placed in a specific geographic region of the prostate.
Although MRI is typically a superior imaging modality for visualizing the prostate gland, nerve bundles, and cancer lesions, it is not typically a real-time imaging modality and the cost of in-gantry prostate biopsy is significantly higher making it impractical. Fusion of TRUS and multi parametric MRI (mpMRI) can allow benefiting from both imaging modalities. In fusion guided-biopsy, targeting information is solely dependent on MR images. Even though US-MRI fusion guided biopsy has shown to be highly sensitive to detect higher-grade cancer, it still suffers from false positives for lower-grade cancers resulting in unnecessary biopsies. Another limitation is that it still requires MR imaging which is the most expensive imaging modality. Also, MRI is still less accessible to rural and suburb areas. Therefore, an ultrasound only based prostate biopsy technique has been a clinical need for decades. Some US based technologies have recently been proposed to address this clinical need, including elastography, Doppler, and US tissue characterization. Although several studies reported improvement in prostate cancer identification with quasi-static elastography, there are still some limitations in reproducibility, subjectivity, and the inability of this method to differentiate cancer from chronic prostatitis. Time series analysis is an interesting new machine learning technique to perform the tissue characterization and has recently shown some promising results for marking cancerous areas of prostate using the US RF image. This method is still based on a post-processing of reflection data and the reproducibility of the results are questionable.
As discussed herein, methods and systems for aligning ultrasound probes that can transmit and receive ultrasound signals are provided for achieving tomographic imaging of internal structures of the body, such as the prostate. Such systems and methods can provide, for example, improved accuracy and efficiency in cancer diagnosis.
In one embodiment, a method of imaging an internal structure of a patient using limited angle ultrasound tomography includes inserting a first ultrasound probe into the rectum of the patient, positioning a second ultrasound probe on an abdomen or perineum of the patient, aligning the first and second ultrasound probes with one another, transmitting and receiving ultrasound signals via the first and second ultrasound probes, and reconstructing tomographic images based on the ultrasound signals received by the first and second ultrasound probes.
In another embodiment, a transurethral ultrasound probe can be placed in addition to the TRUS probe to make tomographic image of the bottom half of the prostate.
In another embodiment, a transurethral ultrasound probe can be placed in addition to the TRAB/TRPR probe to make tomographic image of the top half of the prostate.
In one embodiment, the acoustic wave is generated by the transmitting US probe. In another embodiment, the acoustic wave is generated by shining light to the tissue of interested via photoacoustic phenomenon and both of the mentioned probes can act as receiver to reconstruct the tomographic image.
The tomographic images can be reconstructed by determining acoustic properties in each pixel of the tomographic image, such as the speed of sound (SOS) or attenuation in USTS scenario, or optical properties such as optical absorption coefficient in PATS. The acoustic properties can be calculated by determining a distance between a transmitting ultrasound probe and a receiving ultrasound probe, determining a measured travel time between a respective transmitting ultrasound probe and a respective receiving ultrasound probe.
The ultrasound probes can be of various types. For example, in one embodiment the first ultrasound probe comprises a bi-plane transrectal ultrasound probe and the second ultrasound probe comprises a linear array transducer. The first ultrasound probe can have a linear transducer array or a curved transducer array.
The manner in which the probes are moved and controlled can vary. In one embodiment, the first and second ultrasound probes are coupled to one or more robotic arm and can be repositioned using the robotic arm. The first ultrasound probe can also have a tracked passive or motorized brachytherapy stepper to facilitate repositioning, or one or more force sensors to restrict the amount of force applied to the patient by the first ultrasound probe.
In other embodiments it can include a transrectal ultrasound probe, a linear array transducer, and one or more mechanical arms coupled to the rectal ultrasound probe and linear array transducer to mechanically constrain movement of the rectal ultrasound probe and linear array transducer and facilitate alignment of them relative to one another. The transrectal ultrasound probe can comprise a bi-plane ultrasound probe, with a linear sagittal or curved axial transducer array or a tri-planar TRUS probe with an angled linear array, a curved axial and a curved sagittal array or a combination of these. The one or more mechanical arms can be robotically controlled arms that are configured to align the transrectal ultrasound probe and the linear array transducer.
The foregoing and other features and advantages of the invention will become more apparent from the following detailed description of several embodiments which proceeds with reference to the accompanying figures.
The following description is exemplary in nature and is not intended to limit the scope, applicability, or configuration of the invention in any way. Various changes to the described embodiment may be made in the function and arrangement of the elements described herein without departing from the scope of the invention.
As used in this application and in the claims, the singular forms “a,” “an,” and “the” include the plural forms unless the context clearly dictates otherwise. Additionally, the term “includes” means “comprises.” Further, the terms “coupled” or “associated” generally mean electrically, electromagnetically, and/or physically (e.g., mechanically or chemically) coupled or linked and does not exclude the presence of intermediate elements between the coupled or associated items absent specific contrary language.
Although the operations of exemplary embodiments of the disclosed method may be described in a particular, sequential order for convenient presentation, it should be understood that disclosed embodiments can encompass an order of operations other than the particular, sequential order disclosed. For example, operations described sequentially may in some cases be rearranged or performed concurrently. Further, descriptions and disclosures provided in association with one particular embodiment are not limited to that embodiment, and may be applied to any embodiment disclosed.
Moreover, for the sake of simplicity, the attached figures may not show the various ways (readily discernable, based on this disclosure, by one of ordinary skill in the art) in which the disclosed system, method, and apparatus can be used in combination with other systems, methods, and apparatuses. Additionally, the description sometimes uses terms such as “produce” and “provide” to describe the disclosed method. These terms are high-level abstractions of the actual operations that can be performed. The actual operations that correspond to these terms can vary depending on the particular implementation and are, based on this disclosure, readily discernible by one of ordinary skill in the art.
US tomographic imaging uses two transducers and works based on transmission, rather than reflection in B-mode, in which the transmitter and receiver transducers are located at different known positions with respect to the volume of interest. The received signal can be used to reconstruct the volume's acoustic properties such as speed of sound (SOS), attenuation, and spectral scattering maps. This information, which is not available on current US machines, can be used to differentiate among different tissue types including abnormal tissues. In some embodiments, software can be provided that receives data from the transmitter and receiver probes as inputs, and uses that raw data to reconstruct a SOS/attenuation map for each pixel in addition to the B-mode image.
In addition to a transrectal ultrasound (TRUS) probe, which is can be used during biopsy for B-mode imaging, the systems and methods disclosed herein include at least one additional (e.g., a second) transducer, such as a transabdominal (TRAB) and/or a transperineal (TRPR) transducer on the patient. The later can be positioned with or without a robot arm that aligns (e.g., autonomously) the TRAB and/or TRPR probe to the TRUS in order to make a tomography image. An embodiment with multiple probes is shown, for example, in
Transmission ultrasound can be performed using full 180 degree angle or limited angle techniques. For limited angle ultrasound, the angle depends on the range of motion and is less than 180 degrees. For example, assuming the axial distance between the probes is 10 cm and two linear probes of length 6 cm are used (with no movement), the angle will be 73 degrees (=2*a sin(0.6)). Therefore, at an angle of 180 degrees, the probes would be infinitely long.
In the former case, transmitter and receivers move physically or electronically 180 degrees whereas in latter, transmitter and receiver move a limited angle, where the angle depends on the distance of transducers or the number of transmitters and receivers. USCT can be used for breast imaging and imaging extremities and USTS can be used for breast imaging and imaging bones/limbs. The methods and systems described herein provide the ability to extend tomography imaging to prostate.
USTS provides tissue acoustic properties such as the speed of sound and attenuation, in “each pixel” or region of interest thus can detect cancerous areas based on the fact that cancerous and non-cancerous prostate tissue have different acoustic properties. For example, since cancerous tissue has a different speed of sound and attenuation than healthy tissue, they can be demonstrated with different colors in velocity/attenuation maps, even though they may look similar in standard B-mode US.
Image registration of two or more imaging modalities as described herein can be performed in various manners to align the data from the different sensors (e.g., different US probes) and utilize a common coordinate system.
Methods and systems for performing prostate USTS are described in more detail below, including details of testing performed for ex vivo prostate USTS to illustrate its effectiveness. The testing discussed herein used a mock prostate and lesions with comparable speed of sound. The setup of the ex vivo testing is depicted in
To facilitate comparison of the USTS image reconstructed using this setup with MRI image and histology, in one embodiment the following technique was performed. First, a patient specific mold (as shown in
The prostate was put inside the mold cavity and the mold's halves glued together. Then, the mold was inserted into a container. The container holds the mold in place during the USTS scan, can be filled with liquid to fill the gaps between mold and prostate, and provides windows made of Mylar sheet to provide US transparency. The container was marked with lines that determine the slices that correspond to the MRI slices.
Two linear arrays can be used (e.g., two linear array Ultrasonix probes). In one example, the transmitting probe was connected to an Ultrasonix Sonixtoch scanner (Vancouver, BC). The receiving probe was connected to an Ultrasonix Data Acquisition (DAQ) device which can receive the US waveforms of 128 channels in parallel with sampling frequency of 40 MHz. The DAQ device was connected to the US machine using a USB cable to transfer the received data. In addition, the trigger-out of the US machine was set to produce the line trigger (i.e., send a trigger pulse after each transmission) and was connected to the trigger-in of the DAQ device using a BNC cable to synchronize the transmit-receive sequences.
To reconstruct an USTS image, i.e. to calculate the speed of sound in each pixel of the image (
The US data collected contains of 128 waveforms per transmitter, each corresponding to one receiver and one image (slice), calculated from 128 transmissions. Hence, in order to compute the speed of sound, the time of flight should be picked at all 128×128 (=16384) waveforms. A MATLAB interface was implemented to pick the travel times semi-automatically. The initial locations of the time of flights were estimated using a center of mass method over an estimated window as:
where s(t) is the intensity of the received signal at time t. s(t) is set to zero outside [tbg−w, tbg+w], where tbg is the estimated background time of flight, w is half of a certain window length to reduce the effect of noise and refractions. As shown in
The grid area between transmit-receive pairs (
S(X−Xbg)=T−Tbg (2)
where S is the system matrix, X is a vectored concatenation of the image matrix, and T is a vector containing the time of flight measurements. Xbg and Tbg are the known background speed of sound values, and the measured time of flights for background respectively. The background is collected by scanning a slice that only contains of the acrylamide gel. This information can be helpful in compensating for probe misalignment and measurement bias. Various methods can be used to solve for this equation, such as the expectation maximization algorithm which is suitable for limited data reconstruction.
The example simulated the mathematics of the reconstruction problem without considering US wave propagation properties. The ground-truth image was created based on the typical of size of the prostate and lesions. As shown in
Using the setup shown in
A simulation phantom was created in MATLAB based on the prostate description given above.
Two methods of solving for equation (2) were used (conjugate gradient and expectation maximization). It was observed that a background speed of 1523 m/s produced a better image than ones with 1300 m/s and 1010 m/s, corresponding to plastisol and silicon ecoflex respectively. Artifacts in the images are due to the limited angle data but the lesions are still distinguishable from the prostate.
In some embodiments, the systems and methods described herein can include a TRAB and/or TRUS probe with a longer array than is typical for such probes. In other embodiment, the TRUS or TRAB/TRPR imaging arrays can be virtually extended by moving the probe using the robot. In other embodiments, safety features can be provided with the system to ensure the amount of force applied to the patient by a probe does not exceed certain predetermined thresholds. For example, one or more sensors (e.g., strain/stress sensors) can be positioned on the probes and configured to communicate information to the user about an amount of force applied by the probe on the patient.
The systems and methods disclosed herein permit prostate imaging with high sensitivity and specificity without substantially altering the current clinical workflow. The tomographic images produced by the techniques disclosed herein can provide quantitative images, thus increasing sensitivity and specificity of US-based prostate cancer screening. These systems and methods can reduce health disparity by reducing the cost of imaging, reduce the need for additional trips to the hospital, and enhance clinical outcomes.
In some embodiments, another ultrasound probe, such as a transurethral ultrasound probe can be placed in addition to the first and/or second US probe to make tomographic image of other regions of the tissue of interest, such as the bottom portion or the top portion of the prostate.
As shown in
In some embodiments, another ultrasound probe may be used in combination with either the first or second ultrasound probe. In some embodiments, the third ultrasound probe may be a transurethral probe.
The first, second or third ultrasound probe may have an embedded source for electrometric emission that is capable of generating specific wavelengths or patterns of wavelengths. The source of electrometric emission may be a light source in the infrared, visible or ultraviolet spectrum. The light source may include any incandescent, LED, laser, source or any other source known in the art that is capable of generating photo-acoustic waves (based on known photoacoustic phenomenon) in the tissue of interest, such as prostate tissue.
When the light energy is delivered to the biological tissue, it gets partly absorbed by the tissue and converts to heat energy leading to expansion in the tissue. This expansion causes mechanical movements that creates acoustic wave and can be detected by an ultrasonic transducer. The amplitude of the transmitted acoustic wave by each part of the tissue is a function of its optical absorption coefficient. Hence the received signal can be used to reconstruct an image representing the tissue optical absorption which can classify normal, benign, and malignant tissue.
For the purposes herein, transrectal or trans-urethral light delivery with TRUS probes as a receiver for prostate photoacoustic imaging can be performed in a variety of manners consistent with the teachings herein. See, e.g., Valluru, K., Chinni, B., Bhatt, S., Dogra, V., Rao, N. and Akata, D., 2010, July, Probe design for photoacoustic imaging of prostate in Imaging Systems and Techniques (IST), 2010 IEEE International Conference on (pp. 121-124). IEEE, and Bell, M. A. L., Guo, X., Song, D. Y. and Boctor, E. M., 2015, Transurethral light delivery for prostate photoacoustic imaging, Journal of biomedical optics, 20(3), pp. 036002-036002, both of which are incorporated by reference herein.
Utilizing one ultrasound probe as receiver, a method of delay and sum beamforming can be used to reconstruct the photoacoustic image which contains artifacts and blurring effects due to data incompleteness and inaccuracy of the method. With the embodiment proposed here, since two probes are used as receivers, more accurate photoacoustic tomographic image reconstruction becomes possible.
As noted above, the source of electrometric emission may be arrayed around the probe in 360 degrees, or some lesser degree of array (e.g., 45-180 degrees, 90-180 degrees, or 180-270 degrees) to focus or diffuse the light source, wherein the probe can be rotated to generate acoustic waves at different angles.
In still other embodiments the first, second or third ultrasound probe may have reflective or refractive surface materials such as a metallic coating or reflective polymers. In some embodiments the photo-acoustic waves generated from the tissue of interest are received by a US transducer to reconstruct a photoacoustic tomographic image. In other embodiments the US transducers receiving the photo-acoustic waves generated from the tissue are b TRUS or TRAB/TRPR transducers. The photoacoustic image can show different optical properties of scanned tissues such as optical absorption coefficient. Since different tissues have different optical properties, they show up differently in such image making another layer of information for tissue classification and prostate cancer screening.
In some embodiments, the light source can be attached to a TRUS probe, a TRAB/TRPR probe, or other suitable structures to excite the tissue and generate photoacoustic waves as disclosed herein.
The light source can be any suitable light source for the functions and purposes disclosed herein, including, for example, laser and LED light sources.
In some embodiment, a TRUS probe and a TRAB or a drop-in US probe can be used as transmitter and receiver, respectively during robot-assisted prostatectomy or partial nephrectomy procedures (e.g. using da Vinci robot, Intuitive Surgical, Sunnyvale, Calif.). In such scenario, both transmitter and receiver, or at least the TRAB or the drop-in probe can be manipulated using one of the arms of the surgical robot.
Depending on the area to be imaged, different internal approaches can be taken for at least one of the probes. For example, in some embodiments, the first US probe is an esophageal ultrasound transducer and a second US transducer from outside the body are aligned to reconstruct a tomography image to detect esophageal cancer. In other embodiments, similar TRUS and TRAB/TRPR probes are used for bladder cancer screening. In some embodiments, a transurethral probe and a TRAB/TRPR US probes are aligned to make a tomographic image of the bladder. Other approaches can include transvaginal acoustic wave tomographic systems (
In some embodiments, the first US probe is an intravascular ultrasound transducer (iVUS) and the second probe is outside body and aligned to make tomographic images (either acoustic or photoacoustic) of the vessels for different purposes.
In some embodiments, two external US transducers are aligned to make a tomographic image in order to verify plaque in carotid artery.
Thus,
In some embodiment, a TRUS and a TPUS 2D/3D probe can be used with one or more light source to provide near to full angle photoacoustic US tomosynthesis of the prostate.
In some embodiments, at least one US probe of the system is an endoscopic probe, or an intraductal probe.
In view of the many possible embodiments to which the principles of our invention may be applied, it should be recognized that illustrated embodiments are only examples of the invention and should not be considered a limitation on the scope of the invention. Rather, the scope of the invention is defined by the following claims. We therefore claim as our invention all that comes within the scope and spirit of these claims.
This application claims the benefit of U.S. Provisional Application No. 62/347,437, filed Jun. 8, 2016, which is herein incorporated by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/036599 | 6/8/2017 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62347437 | Jun 2016 | US |