The present invention relates generally to medical methods, devices, and systems. In particular, the present invention relates to methods, devices, and systems for the endovascular, percutaneous or minimally invasive surgical treatment of bodily tissues, such as tissue approximation or valve repair. More particularly, the present invention relates to cutting of leaflet tissue in preparation of subsequent implanting of a medical implant through minimally invasive procedures.
Surgical repair of bodily tissues often involves tissue approximation and fastening of such tissues in the approximated arrangement. When repairing valves, tissue approximation includes coapting the leaflets of the valves in a therapeutic arrangement which may then be maintained by fastening or fixing the leaflets. Such coaptation can be used to treat regurgitation which most commonly occurs in the mitral valve.
Mitral valve regurgitation is characterized by retrograde flow from the left ventricle of a heart through an incompetent mitral valve into the left atrium. During a normal cycle of heart contraction (systole), the mitral valve acts as a check valve to prevent flow of oxygenated blood back into the left atrium. In this way, the oxygenated blood is pumped into the aorta through the aortic valve. Regurgitation of the valve can significantly decrease the pumping efficiency of the heart, placing the patient at risk of severe, progressive heart failure.
Mitral valve regurgitation can result from many different mechanical defects in the mitral valve or the left ventricular wall. The valve leaflets, the valve chordae which connect the leaflets to the papillary muscles, the papillary muscles themselves or the left ventricular wall may be damaged or otherwise dysfunctional. Commonly, the valve annulus may be damaged, dilated, or weakened, limiting the ability of the mitral valve to close adequately against the high pressures of the left ventricle.
One treatment for mitral valve regurgitation relies on valve replacement or repair including leaflet and annulus remodeling, the latter generally referred to as valve annuloplasty. One technique for mitral valve repair which relies on suturing adjacent segments of the opposed valve leaflets together is referred to as the “bow-tie” or “edge-to-edge” technique. While all these techniques can be effective, they usually rely on open heart surgery where the patient's chest is opened, typically via a sternotomy, and the patient placed on cardiopulmonary bypass. The need to both open the chest and place the patient on bypass is traumatic and has associated high mortality and morbidity.
In some patients, a fixation device can be installed into the heart using minimally invasive techniques. The fixation device can hold the adjacent segments of the opposed valve leaflets together and may reduce mitral valve regurgitation. One such device used to clip the anterior and posterior leaflets of the mitral valve together is the MitraClip® fixation device, sold by Abbott Vascular or Abbott Structural Heart, Santa Clara, Calif., USA.
However, sometimes after a fixation device is installed, undesirable mitral valve regurgitation can still exist, or can arise again. Further, other problems with the heart may arise that can make it desirable for the fixation device to be disabled or removed, usually in order that other procedures may be performed on the heart.
Current techniques for removing or disabling mitral valve fixation devices usually rely on open heart surgery where the patient's chest is opened, typically via a sternotomy, and the patient placed on cardiopulmonary bypass, which can pose a high risk of complications and extended patient recovery times.
For these reasons, it would be desirable to provide alternative and additional methods, devices, and systems for removing or disabling previously installed fixation devices. Such methods, devices, and systems should preferably not require open chest access and be capable of being performed either endovascularly, i.e., using devices which are advanced to the heart from a point in the patient's vasculature remote from the heart, or by another minimally invasive approach. The methods, devices, and systems may be useful for repair of tissues in the body other than heart valves. At least some of these objectives will be met by the inventions described hereinbelow.
The present disclosure describes methods, devices and systems that may be employed to detach a previously sutured “bowtie” or implanted device that clips together the anterior and posterior leaflets of a valve from one or all of the leaflets. The technology described and claimed herein could also be adapted to selectively target and cut tissue in other areas of the human anatomy via similar endovascular procedures.
These and other objects and features of the present disclosure will become more fully apparent from the following description and appended claims, or may be learned by the practice of the embodiments of the invention as set forth hereinafter.
To further clarify the above and other advantages and features of the present disclosure, a more particular description of the invention will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. It is appreciated that these drawings depict only illustrated embodiments of the invention and are therefore not to be considered limiting of its scope. Embodiments of the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
As mentioned earlier, sometimes, after installation of an edge-to-edge repair device, such as a suture “bow-tie” or fixation device, in the heart, it needs to be removed or at least detached from one or both of anterior and posterior leaflets. Ordinarily, this has been done during a high-risk invasive procedure such as open-heart surgery. The presently described system 100, and associated devices and methods, however, allow a physician or clinician to address heart problems in a minimally invasive procedure.
For ease of explanation,
Several structural defects in the heart can cause mitral valve regurgitation. Regurgitation occurs when the valve leaflets do not close properly allowing leakage from the ventricle into the atrium. As shown in
Various fixation devices are used for grasping, approximating and fixating tissues, such as valve leaflets, to treat cardiac valve regurgitation, particularly mitral valve regurgitation. Certain fixation devices are described in in U.S. Pat. No. 7,563,267, which is incorporated herein by this reference. The fixation devices may rely upon the use of an interventional tool that is positioned near a desired treatment site and used to grasp the target tissue. In endovascular applications, the interventional tool is typically an interventional catheter. In surgical applications, the interventional tool is typically an interventional instrument. Fixation of the grasped tissue is accomplished by maintaining grasping with a portion of the interventional tool which is left behind as an implant. The fixation devices are well adapted for the repair of valves, especially cardiac valves such as the mitral valve.
Referring to
The fixation device 14 (sometimes also referred to herein as a “suture ‘bow-tie’” or an “edge-to-edge repair device”) is releasably attached to the shaft 12 of the interventional tool 10 at its distal end. When describing the devices of the invention herein, “proximal” shall mean the direction toward the end of the device to be manipulated by the user outside the patient's body, and “distal” shall mean the direction toward the working end of the device that is positioned at the treatment site and away from the user. With respect to the mitral valve, proximal shall refer to the atrial or upstream side of the valve leaflets and distal shall refer to the ventricular or downstream side of the valve leaflets.
The fixation device 14 typically comprises proximal elements 16 (or gripping elements) and distal elements 18 (or fixation elements) which protrude radially outward and are positionable on opposite sides of the leaflets LF as shown to capture or retain the leaflets therebetween. The proximal elements 16 are preferably comprised of cobalt chromium, nitinol or stainless steel, and the distal elements 18 are preferably comprised of cobalt chromium or stainless steel, however any suitable materials may be used. The fixation device 14 is coupleable to the shaft 12 by a coupling mechanism 17. The coupling mechanism 17 allows the fixation device 14 to detach and be left behind as an implant to hold the leaflets together in the coapted position.
In some situations, it may be desired to reposition or remove the fixation device 14 after the proximal elements 16, distal elements 18, or both have been deployed to capture the leaflets LF. Such repositioning or removal may be desired for a variety of reasons, such as to reapproach the valve in an attempt to achieve better valve function, more optimal positioning of the device 14 on the leaflets, better purchase on the leaflets, to detangle the device 14 from surrounding tissue such as chordae, to exchange the device 14 with one having a different design, or to abort the fixation procedure, to name a few. To facilitate repositioning or removal of the fixation device 14 the distal elements 18 may be released and optionally inverted to a configuration suitable for withdrawal of the device 14 from the valve without tangling or interfering with or damaging the chordae, leaflets or other tissue. According to another embodiment, any of the endovascular methods described herein for disabling or removal of the fixation device may also be used.
Once the leaflets are coapted in the desired arrangement, the fixation device 14 is then detached from the shaft 12 and left behind as an implant to hold the leaflets together in the coapted position.
Additional examples of interventional tools and systems and fixation devices are described in in U.S. Pat. No. 7,563,267, which is incorporated herein by this reference.
Sometimes, after construction of the suture “bow-tie” or installation of one or more fixation devices in the heart, it needs to be removed or at least detached from one or both of anterior and posterior leaflets. Ordinarily, this has been done during an invasive procedure such as open-heart surgery. Invasive procedures such as these often have high risk of complications. Further, sometimes mitral valve fixation devices, or the suture “bow-tie,” are installed on patients for whom open-heart or more invasive procedures are otherwise unnecessary or undesirable. For these patients, and even for patients in whom open-heart surgery is used, it would be beneficial to have devices and systems specifically designed for removing or at least detaching the suture “bow-tie” or fixation devices from one or both of anterior and posterior leaflets within an endovascular procedure, rather than a procedure requiring open heart access.
Minimally invasive systems, methods, and devices for removing or at least detaching the suture “bow-tie” or fixation devices from one or both of anterior and posterior leaflets are disclosed herein. These minimally invasive systems, methods, and devices allow a practitioner to remove or at least detaching the suture “bow-tie” or fixation devices from one or both of anterior and posterior leaflets and, optionally, then proceed to do perform other medical procedures in the heart, without necessarily requiring open heart access or other more invasive procedures. Such systems, methods, and devices are configured to be effective even if the suture “bow-tie” or fixation device has been installed for weeks, months, or years, such that tissue surrounding the device may have grown over, into, or around the suture “bow-tie” or fixation device.
An embodiment of the present invention discloses systems that can include guidewires, catheters and other components that can perform various specific functions, and also multifunctional catheters that can perform any combination of functions. Such functions may include holding or retaining an installed fixation device or the suture “bow-tie”; cutting a leaflet or leaflets; removing the suture “bow-tie” or a fixation device; and repairing the leaflet(s). Related methods for performing such functions are also disclosed.
The mitral valve may be accessed using the systems, methods, and devices disclosed and/or claimed herein either surgically or by using endovascular techniques, and either by a retrograde approach through the ventricle or by an antegrade approach through the atrium, as described above. For illustration purposes, an antegrade approach is described.
The devices and associated methods and systems described herein may be used in combination with imaging modalities such as x-ray, fluoroscopy, echocardiography, charge coupled device cameras, complementary metal oxide semiconductor cameras, magnetic resonance imaging, and other imaging modalities. The availability of such imaging modalities during such procedures may help practitioners visualize, for example, where the fixation devices are, how they are connected to the heart, and where to direct the various catheters and/or other devices.
As illustrated, the system 100 can take the form of an elongate member 102, such as a multicomponent catheter, which is adapted to be advanced through a patient's vasculature. Elongate member or catheter 102 can include a guiding catheter 110 through which a delivery catheter 120 can be advanced to a previously implanted edge-to-edge repair device (not shown). The guiding catheter 110 can be, in one configuration, a steerable catheter or introducer, such as a Steerable Introducer sold under the trademark AGILIS.
The guiding catheter 110 can be steered through the tortuous anatomy to the heart and, using a transseptal approach, advanced through the septum between the right and left atria toward the mitral valve (MV). Once in place, the guiding catheter 110, whether alone or in combination with the delivery catheter 120, can position a distal end 122 of the delivery catheter 120 relative to the mitral valve (MV) for performing edge-to-edge repair device detachment as described herein. The steerability of guiding catheter 110 can be achieved through any number of known structures and methods, including but not limited to those disclosed in U.S. Pat. No. 7,653,267. In some embodiments, delivery catheter 120 can also move axially relative to the guide catheter. In other embodiments, a distal end portion of delivery catheter 120 can also be steerable independent of, and in a different plane from, guiding catheter 110.
The delivery catheter 120 accommodates a capturing member 140 and a cutting member 150 that extends from a proximal end 124 to the distal end 122. The capturing member 140, such as a snare, is used to capture and aid with positioning a cutting region of the cutting member 150 relative to the tissue to be cut to detach the edge-to-edge repair device from the leaflets LF. As discussed in additional detail below, withdrawing the capturing member 140 into the delivery catheter 120, while at the same time advancing the cutting member 150, provides the desired looping and positioning of the cutting member 150 so that the cutting region of the cutting member 150 can be used to cut the leaflets.
To aid with such capturing, as illustrated in
While
The capturing member 140 can be a wire, tubular member, or other elongate structure and can be made of metal, plastic, shape-memory alloys or polymers, or any suitable material, e.g., such as those described herein (e.g., cobalt-chromium alloys, stainless steel, nickel-titanium, Elgiloy®, etc.
A distal end portion of capturing member 140 can include a pre-formed, resilient, shape-memory loop configuration and/or orientation, such as looped portion 144. The loop can collapse and straighten when held within the constraints of the delivery catheter 120. Once advanced distally beyond the distal end of the delivery catheter 120, the loop can self-expand and return to its pre-formed, shape-memory configuration and orientation.
Capturing member 140 can also include one or more radiopaque markers positioned adjacent and/or around the looped portion 144. As discussed in additional detail below, such radiopaque markers assist in locating and visualizing the location, position and orientation of such capturing member 140 and cutting member 150, as well as their respective locations, positions and orientations relative to one another.
The cutting member 150 can electrically communicate with an electrosurgical device 130 (such as an electrosurgical generator), which can selectively provide radio-frequency energy to the cutting member 150. The cutting member 150, therefore, can function as a probe electrode that can cut, coagulate, desiccate, and fulgurate tissue, such as the leaflets LF. More particularly, the cutting member 150 can be used to cut at least a portion of at least one of the anterior and posterior leaflets LF or other tissue to which the edge-to-edge repair device is coupled.
The cutting member 150 can include a conductive core 158 with an electrically insulating coating 160 formed over at least a portion of the core 158. In some configurations the cutting member 150 is a guide wire that includes a proximal end 154 that can be electrically connected or coupled to an electrosurgical device 130, which can be used to selectively apply electrical energy to cutting member 150. The electrical cooperation can occur through an uncoated or exposed portion 159 at the proximal end 154 of core 158, which can be connected to electrosurgical device 130. Additional details regarding the cutting member 140 will be provided in connection with
Portions of capturing member 140 and cutting member 150 can also include good torque characteristics. In other words, when rotational forces are applied at their respective proximal ends to cause rotational movement at the proximal ends, such rotational movement is translated relatively closely to the respective distal ends. In this manner, the relative positioning and orientation of the distal end of capturing member 140 (including any pre-formed bends or curves and/or loop 144) and the distal end of cutting member (including any pre-formed bends or curves) can be closely correlated to the rotational position of the corresponding proximal ends thereof.
System 100 can also include a handle or fixture, schematically illustrated at 112, located at or near the proximal end 124 of system 100. Handle or fixture 112 can incorporate any number of known structures and methods for manipulating and controlling the advancing, withdrawing, positioning and orienting of the various components of system 100, including, but not limited to, guiding member 110, delivery catheter 120, capturing member 140, cutting member 150 and other components and sub-components of system 100, relative to a patient's anatomy and/or relative one another.
Each illustrated cutting member 150a-150d has a proximal end 154a-154d and a distal end 152a-152d. Formed at the distal end 152a-152d is an atraumatic tip 156a-156d that can be formed, in one configuration, from a coil. This atraumatic tip 156a-156d can be shaped by a physician or clinician using the cutting member 150 or can have a preformed shape to aid with positioning the cutting member 150 relative to the edge-to-edge repair device, leaflets, and the orifices O formed by the edge-to-edge repair device and the leaflets. The coil can be formed of a metal or alloy, or other deformable or resiliently deformable material.
Each cutting member 150a-150d has a conductive core 158a-158d and a coating 160a-160d disposed over the conductive core 158a-158d. The coating 160a-160d partially covers the conductive core 158a-158d, except for one or more bare regions 162a-162d where the conductive core 158a-158d is uncoated or exposed. These regions 162a-162d allow radio-frequency energy to be delivered from the conductive core 158a-158d or for such energy to be delivered to tissue contacting those regions 162a-162d to cut, coagulate, desiccate, and fulgurate the tissue. For instance, in
In addition to the conductive core 158a-158d and the coating 160a-160d, each cutting member 150a-150d includes radiopaque markers 164a-164d. These markers 164a-164d define the peripheral bounds of the cutting regions 162a-162d and aid in positioning those regions of the cutting member 150a-150d. For instance, the markers 164a-164d can be viewed via fluoroscopy, x-ray, or other imaging technique. While the markers 164a-164d are illustrated defining the bounds of the cutting regions 162a-162d, other markers can be included to define other locations of the cutting member 150a-150d or any other part of the system 100 or relationship between two or more parts of the system 100.
Referring to
In one particular embodiment, the electrically conductive core 158d can be made of surgical quality steel and can have a diameter of approximately 0.014″ (or approximately 0.04 cm) at its proximal end and a diameter of approximately 0.005″ (or approximately 0.01 cm) to approximately 0.008″ (or approximately 0.02 cm) in the cutting region(s) 162d. Alternatively, a proximal portion of the cutting member could also be formed from a hypotube. Cutting member 150d can have an overall length of approximately 70″ (or approximately 180 cm), with a cutting region 162d of approximately 4″ (or approximately 10 cm) in length, and the atraumatic tip can be approximately 0.4″ (or approximately 1 cm) to approximately 1.2″ (or approximately 3 cm) in length.
The cutting member 150 can be a wire, tubular member, or other elongate structure, with the conductive core being made of a metal, alloy, conductive polymer, or other conductive material. The coating for the cutting member 150 can be a polymer, such as polyterafluoroethylene or other polymer, a hydrophilic coating, a composite material, or other material the can provide lubricity to the cutting member and/or insulative properties to limit unwanted electrical conductivity of the conductive core with the tissue or the other components of the system 100.
Turning to
The lumens 126 and 128 can extend from luer connectors 170 and 172, through extension tubular members 174 and 174, which can join the luer connectors 170 and 172 to a reminder of the delivery catheter 120, to the distal end 122. These lumens 126 and 128 can be formed during extrusion of the shaft 125 of the delivery catheter 120 when the shaft 125 is formed of a polymer or other material capable of being extruded. For instance,
As shown in
In addition to the shaft 125 and the lumens 126 and 128 having different cross-section, the distal end 122 of the shaft 125 can also have different configurations. For instance, as shown in
In addition to having the lumens 126 and 128 being formed from the material forming the shaft 125, such as when polymers are assembled to form the shaft 125, it is possible to include separate tubular members that are slidable relative to each other and/or relative to the shaft 125. This provides enhanced positioning capabilities for the delivery catheter 120 because each tubular member is independently advanceable and also independently positionable relative to the distal end 122 of the delivery catheter 120 and the mitral valve MV. Such a structure is illustrated in
Illustrated in
The tubular members 180 and 182 can be moved forward and backward, or proximal and distal, relative to a shaft shell 186. Tubular members 180 and 182 can also move axially relative to, and independent of, one another. This allows for enhanced positioning of the distal ends of tubular members 180 and 182 (and, thus, enhanced positioning of capturing member 140 and cutting member 150) relative to the mitral valve MV during the procedure. For instance, the distal end of the tubular member 182 can be closer to the mitral valve MV than the distal end of the tubular member 180 during the procedure, or vice versa, to change the angle at which the looped portion 144 receives the distal end 152 of the cutting member 150. To further enhance the capabilities of the tubular members 180 and 182, one or both can be pre-formed with a resilient, pre-formed shape-memory curve or bend to aid with steerability and positioning of the distal ends of the tubular members 180 and 182 at desired locations within the heart. Thus, the positioning of the delivery catheter 120e and/or the distal ends of the various elements of capturing member 140 and cutting member 150 can be achieved by the steerability of the guiding catheter 110, pre-formed, shape-memory curves or bends in tubular members 180 and 182, or any combination thereof. In addition, a distal portion of the delivery catheter 120e could also be made to be independently steerable once it is advanced beyond the distal end of guiding catheter 110.
Alternatively, as illustrated in
Generally, the shaft and other portions of the delivery catheters 120 can be fabricated from polymers, metals, alloys, combinations thereof, or other materials that can accommodate the manufacture of the delivery catheter.
Illustrated in
The delivery catheter 120g of
The system 100 can be used to position the delivery catheter 120 in various spaces within a patient's anatomy. For instance, and as will be described herein, the system 100 can be used to position the capturing member 140 and the cutting member 150 relative to leaflets in apposition to an edge-to-edge repair device, such as the MitraClip® or a suture “bow-tie.” However, the presently described system 100 and associated methods and devices can be used for other valvular structures or other tissues in an anatomy.
The positioning and deployment of the leaflet cutting device is more particularly illustrated in
With an end of the guiding catheter 110 facing the edge-to-edge repair device, the distal ends of lumens 126 and 128 can be positioned through orifices 0 on either side of edge-to-edge repair device. For instance, where the embodiment shown in
With the delivery catheter 120 so positioned, the capture member 140 can be advanced from the lumen 128 (and from the tubular member 182) into the left ventricle. By so doing, the looped portion 144 can self-expand to form a ring or opening (as shown in
When the position of the cutting member 150 is verified through comparing the location of the radiopaque markers 164 against radiopaque markers formed on the proximal and distal ends of the looped portion 144, the capture member 140 can be withdrawn towards the deliver catheter 120, and the lumen 126 as illustrated in
Following positioning of the cutting member 150, the leaflet can be cut by applying electrical energy to the cutting member 150 and drawing the exposed cutting regions 162 through the leaflet tissue, as illustrated in
In an alternate approach, schematically illustrated in
This alternate approach, using the delivery catheter 120f, is schematically illustrated in
With the capture member 140 in place, i.e., the looped portion 144 self-expands to form a ring or opening with which to receive the cutting members 150a and 150b, the two tubular members 180a and 180b are advanced to position the distal ends of tubular members 180a and 180b through orifices O on either side of the edge-to-edge repair device 18, as shown in
When the position of the cutting members 150a and 150b are verified through comparing the location of the radiopaque markers 164 against radiopaque markers formed on the proximal and distal ends of the looped portion 144, the capture member 140 can be withdrawn towards the deliver catheter 120, and the lumen 126, as shown in
Once the edge-to-edge repair device 18 is successfully detached from a first one of the leaflets, then a physician or clinician can move onto performing other procedures. Alternatively, if it is desirable or necessary to completely remove the edge-to-edge repair device 18, delivery catheter 120f can also be used to sequentially cut the edge-to-edge repair device 18 from both leaflets of the mitral valve. In other words, delivery device 120f can first be deployed in the manner discussed above to cut one leaflet and then be subsequently deployed in a similar manner to cut the other leaflet. In either event, the physician or clinician can then move on to perform one or more of a mitral valve annuloplasty, balloon valvuloplasty, mitral valve repair, installation of a replacement valve, and combinations thereof.
The technology described and claimed herein could also be readily adapted to selectively target and cut tissue in other areas of the human anatomy via similar endovascular procedures.
In keeping with the foregoing embodiments and disclosure, the technology disclosed herein can be directed to systems, devices and methods for at least partially detaching an edge-to-edge repair device that holds together anterior and posterior leaflets of a mitral valve of a human heart. For example, the devices are directed to at least partially detaching an edge-to-edge repair device that holds together anterior and posterior leaflets of a mitral valve of a human heart and can include one or more of the following elements: an elongate member having a proximal end, a proximal end portion, a distal end portion and a distal end, the elongate member; a guiding catheter with a distal end portion that can be selectively bent to reorient the distal end portion of the elongate member; a delivery catheter coaxially located within the guiding catheter; a delivery catheter shell having a first lumen and a second lumen, each extending from a proximal end to a distal end of the delivery catheter shell; a first tubular member having a distal end portion and positioned within the first lumen and being moveable in an axial direction relative to the delivery catheter shell; a second tubular member having a distal end portion and positioned within the second lumen and being moveable in an axial direction relative to the delivery catheter shell; a capture member extending through the first tubular member and being movable in an axial direction relative to the first tubular member, the capture member having a self-expanding, shape-memory loop formed at a distal end thereof; and/or a first cutting member extending through the second tubular member and being movable in an axial direction relative to the second tubular member, the first cutting member comprising an electrically conductive core extending its entire length, an electrically insulative coating covering a major portion of the conductive core, and one or more uncoated, electrically conductive cutting regions. The devices can also include one or more of the following additional features: wherein one or both of the first and second tubular members include a preferential, shape-memory bend in the distal end portion thereof; wherein the cutting member comprises a first cutting region and a second cutting region, wherein the first cutting region is disposed at a proximal end of the cutting member and the second cutting region is disposed between the proximal end and a distal end of the cutting member; wherein the first cutting region is disposed at and forms a distal end of the cutting member, proximal of an atraumatic coil tip; wherein the cutting member further comprises one or more radiopaque markers defining peripheral bounds of the cutting regions; wherein the capture member comprises a self-expanding, shape-memory loop portion for capturing the cutting member; wherein the loop portion comprises a narrowed portion configured to facilitate preferential collapsing of the capture member upon drawing the capture member into the second tubular member; and/or wherein the capture member further comprises one or more radiopaque markers defining peripheral bounds of the loop portion.
Similarly, the methods can be directed to at least partially detaching an edge-to-edge repair device that holds anterior and posterior leaflets of the mitral valve together, wherein a first orifice in the mitral valve is located to one side of the edge-to-edge repair device and a second orifice in the mitral valve is located to an other side of the edge-to-edge repair device, and can include, for example, any one or more of the following steps or acts: advancing a capture member from a first catheter portion that extends from a distal end of a delivery catheter and through the first orifice; advancing a cutting member from a second catheter portion that extends from the distal end of the delivery catheter and through the second orifice; capturing the cutting member with the capture member and positioning the cutting member around a portion of one of the leaflets of the mitral valve adjacent to the edge-to-edge repair device; and/or cutting at least a portion of one of the leaflets adjacent to the edge-to-edge repair device to detach the edge-to-edge repair device from the at least one of the anterior or posterior leaflets.
In another embodiment, the methods can include any one or more of the following steps or acts: advancing an elongate member through a least a portion of the vasculature of a patient and into a left atrium of a patient's heart, the elongate member having a proximal end portion, distal end portion and a distal end, the proximal end portion being located and accessible outside the patient's vasculature, the elongate member having a guiding catheter with a distal end portion that can be selectively bent to reorient the distal end portion of the elongate member, the elongate member also having a delivery catheter coaxially located within the steering catheter, the delivery catheter having a first lumen and a second lumen, each extending from a proximal end to a distal end of the delivery catheter, the delivery catheter also having a capture member extending through the first lumen and cutting member extending through the second lumen; puncturing, with the distal end of the elongate member, a septal wall between the right atrium and a left atrium of the heart and advancing the distal end portion of the elongate member into the left atrium of the heart; bending the distal end portion of the steering catheter to direct the distal end portion of the elongate member toward the mitral valve and align the delivery catheter with the edge-to-edge repair device; advancing the capture member beyond the distal end of the delivery catheter and through the first orifice; advancing the cutting member beyond the distal end of the delivery catheter and through the second orifice; capturing a distal end portion of the cutting member with a distal end portion of the capture member; withdrawing the distal end portion of the capture member in a proximal direction through the first lumen to position a cutting region formed in the cutting member around a portion of one of the anterior or posterior leaflets of the mitral valve adjacent to the edge-to-edge repair device; and/or applying electrical energy to the cutting member to cause the cutting region to cut through a portion of the tissue of one of the anterior and posterior leaflets adjacent to the edge-to-edge repair device to detach the edge-to-edge repair device from the at least one of the anterior or posterior leaflets.
Further still, the methods can also include any one or more of the following additional steps or acts: advancing a distal end portion of the capture member beyond a distal end of the first catheter portion, the distal end portion of the capture member having a self-expanding, shape-memory loop, and allowing the self-expanding, shape-memory loop to deploy on a ventricular side of the mitral valve; advancing a distal end portion of the cutting member beyond a distal end of the second catheter portion and through the loop of the capturing member; withdrawing the capturing member in a proximal direction and causing the loop to snare the cutting member and draw it around the edge-to-edge repair device and into contact with a portion of the tissue of the leaflet between the first and second orifices and adjacent to the edge-to-edge repair device; withdrawing the capture member in a proximal direction until one of the electrically conductive cutting regions passes around and is positioned against the tissue of the leaflet adjacent the edge-to-edge repair device; advancing the cutting member in a distal direction to aid in positioning one of the electrically conductive cutting regions against the tissue of the leaflet adjacent the edge-to-edge repair device; applying electrical energy to the cutting member; positioning the first catheter portion in the first orifice and positioning the second catheter portion in the second orifice; positioning the first catheter portion in the first orifice by sliding the first catheter portion within a body of the delivery catheter; positioning the second catheter portion in the second orifice by sliding the second catheter portion within a body of the delivery catheter; positioning the first catheter portion independently of positioning a second catheter portion; positioning the first catheter portion relative to the second catheter portion by moving the first catheter portion away from the second catheter portion; positioning the first catheter portion relative to the second catheter portion, wherein the first catheter portion and the second catheter portion are formed at the distal end of the delivery catheter, the delivery catheter comprising a split portion that allows the first catheter portion to extend away from the second catheter portion; performing a procedure selected from the group consisting of mitral valve annuloplasty, balloon valvuloplasty, mitral valve repair, installation of a replacement valve, and combinations thereof; and/or withdrawing the snare into the second catheter portion while advancing the cutting member from the first catheter portion to vary a length of the cutting member exposed to the anterior and posterior leaflets.
The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
This application claims the benefit of priority based on U.S. Provisional Patent Application Ser. No. 62/748,947, filed Oct. 22, 2018 and entitled “Leaflet Cutting Devices and Methods.”
Number | Name | Date | Kind |
---|---|---|---|
1996261 | Storz | Apr 1935 | A |
3296668 | Aiken | Jan 1967 | A |
3470875 | Johnson et al. | Oct 1969 | A |
3671979 | Moulopoulos | Jun 1972 | A |
3675639 | Cimber | Jul 1972 | A |
3776237 | Hill et al. | Dec 1973 | A |
3874388 | King et al. | Apr 1975 | A |
4007743 | Blake | Feb 1977 | A |
4056854 | Boretos et al. | Nov 1977 | A |
4091815 | Larsen | May 1978 | A |
4235238 | Ogiu et al. | Nov 1980 | A |
4312337 | Donahue | Jan 1982 | A |
4484579 | Meno et al. | Nov 1984 | A |
4487205 | Di Giovanni et al. | Dec 1984 | A |
4498476 | Cerwin et al. | Feb 1985 | A |
4510934 | Batra | Apr 1985 | A |
4531522 | Bedi et al. | Jul 1985 | A |
4578061 | Lemelson | Mar 1986 | A |
4641366 | Yokoyama et al. | Feb 1987 | A |
4686965 | Bonnet et al. | Aug 1987 | A |
4777951 | Cribier et al. | Oct 1988 | A |
4809695 | Gwathmey et al. | Mar 1989 | A |
4872455 | Pinchuk et al. | Oct 1989 | A |
4878495 | Grayzel | Nov 1989 | A |
4917089 | Sideris | Apr 1990 | A |
4944295 | Gwathmey et al. | Jul 1990 | A |
4969890 | Sugita et al. | Nov 1990 | A |
4994077 | Dobben | Feb 1991 | A |
5015249 | Nakao et al. | May 1991 | A |
5042707 | Taheri | Aug 1991 | A |
5047041 | Samuels | Sep 1991 | A |
5049153 | Nakao et al. | Sep 1991 | A |
5053043 | Gottesman et al. | Oct 1991 | A |
5071428 | Chin | Oct 1991 | A |
5069679 | Taheri | Dec 1991 | A |
5078722 | Stevens | Jan 1992 | A |
5078723 | Dance et al. | Jan 1992 | A |
5171259 | Inoue | Dec 1992 | A |
5190554 | Coddington et al. | Mar 1993 | A |
5217460 | Knoepfler | Jun 1993 | A |
5226911 | Chee et al. | Jul 1993 | A |
5254130 | Poncet et al. | Oct 1993 | A |
5282845 | Bush et al. | Feb 1994 | A |
5318525 | West et al. | Jun 1994 | A |
5320632 | Heidmueller | Jun 1994 | A |
5332402 | Teitelbaum | Jul 1994 | A |
5336227 | Nakao et al. | Aug 1994 | A |
5342393 | Stack | Aug 1994 | A |
5350399 | Erlebacher et al. | Sep 1994 | A |
5368601 | Sauer et al. | Nov 1994 | A |
5373854 | Kolozsi | Dec 1994 | A |
5387219 | Rappe | Feb 1995 | A |
5391182 | Chin | Feb 1995 | A |
5395030 | Kuramoto et al. | Mar 1995 | A |
5403326 | Harrison et al. | Apr 1995 | A |
5411552 | Andersen et al. | May 1995 | A |
5417684 | Jackson et al. | May 1995 | A |
5417699 | Klein et al. | May 1995 | A |
5417700 | Egan | May 1995 | A |
5423830 | Schneebaum et al. | Jun 1995 | A |
5423857 | Rosenman et al. | Jun 1995 | A |
5423882 | Jackman et al. | Jun 1995 | A |
5431666 | Sauer et al. | Jul 1995 | A |
5450860 | O'Connor | Sep 1995 | A |
5456400 | Shichman et al. | Oct 1995 | A |
5456684 | Schmidt et al. | Oct 1995 | A |
5472423 | Gronauer | Dec 1995 | A |
5478353 | Yoon | Dec 1995 | A |
5496332 | Sierra et al. | Mar 1996 | A |
5507755 | Gresl et al. | Apr 1996 | A |
5507757 | Sauer et al. | Apr 1996 | A |
5522873 | Jackman et al. | Jun 1996 | A |
5527322 | Klein et al. | Jun 1996 | A |
5536251 | Evard et al. | Jul 1996 | A |
5542949 | Yoon | Aug 1996 | A |
5554185 | Block et al. | Sep 1996 | A |
5562678 | Booker | Oct 1996 | A |
5569274 | Rapacki et al. | Oct 1996 | A |
5571085 | Accisano, III | Nov 1996 | A |
5571137 | Marlow et al. | Nov 1996 | A |
5571215 | Sterman et al. | Nov 1996 | A |
5582611 | Tsuruta et al. | Dec 1996 | A |
5584803 | Stevens et al. | Dec 1996 | A |
5609598 | Laufer et al. | Mar 1997 | A |
5617854 | Munsif | Apr 1997 | A |
5618306 | Roth et al. | Apr 1997 | A |
5620461 | Muijs Van De Moer et al. | Apr 1997 | A |
5626588 | Sauer et al. | May 1997 | A |
5636634 | Kordis et al. | Jun 1997 | A |
5649937 | Bito et al. | Jul 1997 | A |
5662681 | Nash et al. | Sep 1997 | A |
5669917 | Sauer et al. | Sep 1997 | A |
5669919 | Sanders et al. | Sep 1997 | A |
5690671 | McGurk et al. | Nov 1997 | A |
5695504 | Gifford, III et al. | Dec 1997 | A |
5695505 | Yoon | Dec 1997 | A |
5706824 | Whittier | Jan 1998 | A |
5709707 | Lock et al. | Jan 1998 | A |
5716367 | Koike et al. | Feb 1998 | A |
5718725 | Sterman et al. | Feb 1998 | A |
5722421 | Francese et al. | Mar 1998 | A |
5725542 | Yoon | Mar 1998 | A |
5725556 | Moser et al. | Mar 1998 | A |
5741271 | Nakao et al. | Apr 1998 | A |
5741280 | Fleenor | Apr 1998 | A |
5746747 | McKeating | May 1998 | A |
5749828 | Solomon et al. | May 1998 | A |
5769812 | Stevens et al. | Jun 1998 | A |
5769863 | Garrison | Jun 1998 | A |
5782845 | Shewchuk | Jul 1998 | A |
5797927 | Yoon | Aug 1998 | A |
5797960 | Stevens et al. | Aug 1998 | A |
5810849 | Kontos | Sep 1998 | A |
5810876 | Kelleher | Sep 1998 | A |
5820591 | Thompson et al. | Oct 1998 | A |
5820630 | Lind | Oct 1998 | A |
5823956 | Roth et al. | Oct 1998 | A |
5829447 | Stevens et al. | Nov 1998 | A |
5836955 | Buelna et al. | Nov 1998 | A |
5840081 | Andersen et al. | Nov 1998 | A |
5843103 | Wulfman | Dec 1998 | A |
5853422 | Huebsch et al. | Dec 1998 | A |
5855590 | Malecki et al. | Jan 1999 | A |
5855614 | Stevens et al. | Jan 1999 | A |
5860990 | Nobles et al. | Jan 1999 | A |
5861003 | Latson et al. | Jan 1999 | A |
5891160 | Williamson, IV et al. | Apr 1999 | A |
5895404 | Ruiz | Apr 1999 | A |
5895417 | Pomeranz et al. | Apr 1999 | A |
5906620 | Nakao et al. | May 1999 | A |
5908420 | Parins | Jun 1999 | A |
5947363 | Bolduc et al. | Sep 1999 | A |
5954732 | Hart et al. | Sep 1999 | A |
5957949 | Leonhard et al. | Sep 1999 | A |
5957973 | Quiachon et al. | Sep 1999 | A |
5972020 | Carpentier et al. | Oct 1999 | A |
5972030 | Garrison et al. | Oct 1999 | A |
5980455 | Daniel et al. | Nov 1999 | A |
5989284 | Laufer | Nov 1999 | A |
5997547 | Nakao et al. | Dec 1999 | A |
6007546 | Snow et al. | Dec 1999 | A |
6022360 | Reimels et al. | Feb 2000 | A |
6033419 | Hamblin et al. | Mar 2000 | A |
6053933 | Balazs et al. | Apr 2000 | A |
6056769 | Epstein et al. | May 2000 | A |
6063106 | Gibson | May 2000 | A |
6066146 | Carroll et al. | May 2000 | A |
6090118 | McGuckin, Jr. | Jul 2000 | A |
6099553 | Hart et al. | Aug 2000 | A |
6117144 | Nobles et al. | Sep 2000 | A |
6117159 | Huebsch et al. | Sep 2000 | A |
6123665 | Kawano | Sep 2000 | A |
6136010 | Modesitt et al. | Oct 2000 | A |
6139508 | Simpson | Oct 2000 | A |
6143024 | Campbell et al. | Nov 2000 | A |
6162233 | Williamson, IV et al. | Dec 2000 | A |
6165183 | Kuehn et al. | Dec 2000 | A |
6165204 | Levinson et al. | Dec 2000 | A |
6168614 | Andersen et al. | Jan 2001 | B1 |
6171320 | Monassevitch | Jan 2001 | B1 |
6174322 | Schneidt | Jan 2001 | B1 |
6180059 | Divino, Jr. et al. | Jan 2001 | B1 |
6197043 | Davidson | Mar 2001 | B1 |
6203553 | Robertson et al. | Mar 2001 | B1 |
6206893 | Klein et al. | Mar 2001 | B1 |
6206907 | Marino et al. | Mar 2001 | B1 |
6245079 | Nobles et al. | Jun 2001 | B1 |
6264617 | Bales et al. | Jul 2001 | B1 |
6267781 | Tu | Jul 2001 | B1 |
6269819 | Oz et al. | Aug 2001 | B1 |
6283127 | Sterman et al. | Sep 2001 | B1 |
6299637 | Shaolian et al. | Oct 2001 | B1 |
6312447 | Grimes | Nov 2001 | B1 |
6319250 | Falwell et al. | Nov 2001 | B1 |
6332893 | Mortier et al. | Dec 2001 | B1 |
6334860 | Dorn | Jan 2002 | B1 |
6355030 | Aldrich et al. | Mar 2002 | B1 |
6358277 | Duran | Mar 2002 | B1 |
6368326 | Dakin et al. | Apr 2002 | B1 |
6387104 | Pugsley, Jr. et al. | May 2002 | B1 |
6402780 | Williamson et al. | Jun 2002 | B2 |
6402781 | Langberg et al. | Jun 2002 | B1 |
6406420 | McCarthy et al. | Jun 2002 | B1 |
6419640 | Taylor | Jul 2002 | B1 |
6419669 | Frazier et al. | Jul 2002 | B1 |
6461366 | Seguin | Oct 2002 | B1 |
6464707 | Bjerken | Oct 2002 | B1 |
6482224 | Michler et al. | Nov 2002 | B1 |
6485489 | Teirstein et al. | Nov 2002 | B2 |
6494881 | Bales et al. | Dec 2002 | B1 |
6508828 | Akerfeldt et al. | Jan 2003 | B1 |
6517550 | Konya et al. | Feb 2003 | B1 |
6533796 | Sauer et al. | Mar 2003 | B1 |
6537314 | Langberg et al. | Mar 2003 | B2 |
6540755 | Ockuly et al. | Apr 2003 | B2 |
6551331 | Nobles et al. | Apr 2003 | B2 |
6562037 | Paton et al. | May 2003 | B2 |
6562052 | Nobles et al. | May 2003 | B2 |
6575971 | Hauck et al. | Jun 2003 | B2 |
6599311 | Biggs et al. | Jul 2003 | B1 |
6616684 | Vidlund et al. | Sep 2003 | B1 |
6619291 | Hlavka et al. | Sep 2003 | B2 |
6626899 | Houser et al. | Sep 2003 | B2 |
6626921 | Blatter et al. | Sep 2003 | B2 |
6626930 | Allen et al. | Sep 2003 | B1 |
6629534 | St. Goar et al. | Oct 2003 | B1 |
6641592 | Sauer et al. | Nov 2003 | B1 |
6656221 | Taylor et al. | Dec 2003 | B2 |
6669687 | Saadat | Dec 2003 | B1 |
6685648 | Flaherty et al. | Feb 2004 | B2 |
6689164 | Seguin | Feb 2004 | B1 |
6695866 | Kuehn et al. | Feb 2004 | B1 |
6701929 | Hussein | Mar 2004 | B2 |
6702825 | Frazier et al. | Mar 2004 | B2 |
6702826 | Liddicoat et al. | Mar 2004 | B2 |
6709382 | Homer | Mar 2004 | B1 |
6709456 | Langberg et al. | Mar 2004 | B2 |
6718985 | Hlavka et al. | Apr 2004 | B2 |
6719767 | Kimblad | Apr 2004 | B1 |
6740107 | Loeb et al. | May 2004 | B2 |
6746471 | Mortier et al. | Jun 2004 | B2 |
6752813 | Goldfarb et al. | Jun 2004 | B2 |
6755777 | Schweich et al. | Jun 2004 | B2 |
6764510 | Vidlund et al. | Jul 2004 | B2 |
6767349 | Ouchi | Jul 2004 | B2 |
6770083 | Seguin | Aug 2004 | B2 |
6797002 | Spence et al. | Sep 2004 | B2 |
6860179 | Hopper et al. | Mar 2005 | B2 |
6875224 | Grimes | Apr 2005 | B2 |
6926715 | Hauck et al. | Aug 2005 | B1 |
6932810 | Ryan | Aug 2005 | B2 |
6945978 | Hyde | Sep 2005 | B1 |
6949122 | Adams et al. | Sep 2005 | B2 |
6966914 | Abe | Nov 2005 | B2 |
6986775 | Morales et al. | Jan 2006 | B2 |
7004970 | Cauthen III et al. | Feb 2006 | B2 |
7011669 | Kimblad | Mar 2006 | B2 |
7033390 | Johnson et al. | Apr 2006 | B2 |
7048754 | Martin et al. | May 2006 | B2 |
7056294 | Khairkhahan et al. | Jun 2006 | B2 |
7112207 | Allen et al. | Sep 2006 | B2 |
7226467 | Lucatero et al. | Jun 2007 | B2 |
7258694 | Choi et al. | Aug 2007 | B1 |
7288097 | Seguin | Oct 2007 | B2 |
7291168 | Macoviak et al. | Nov 2007 | B2 |
7338467 | Lutter | Mar 2008 | B2 |
7381210 | Zarbatany et al. | Jun 2008 | B2 |
7435257 | Lashinski et al. | Oct 2008 | B2 |
7464712 | Oz et al. | Dec 2008 | B2 |
7497822 | Kugler et al. | Mar 2009 | B1 |
7533790 | Knodel et al. | May 2009 | B1 |
7563267 | Goldfarb et al. | Jul 2009 | B2 |
7563273 | Goldfarb et al. | Jul 2009 | B2 |
7604646 | Goldfarb et al. | Oct 2009 | B2 |
7608091 | Goldfarb et al. | Oct 2009 | B2 |
7635329 | Goldfarb et al. | Dec 2009 | B2 |
7655015 | Goldfarb et al. | Feb 2010 | B2 |
7666204 | Thornton et al. | Feb 2010 | B2 |
7955340 | Michlitsch | Jun 2011 | B2 |
8216234 | Long | Jul 2012 | B2 |
8257356 | Bleich et al. | Sep 2012 | B2 |
8398708 | Meiri et al. | Mar 2013 | B2 |
8435237 | Bahney | May 2013 | B2 |
8496655 | Epp et al. | Jul 2013 | B2 |
8500768 | Cohen | Aug 2013 | B2 |
8523881 | Cabiri et al. | Sep 2013 | B2 |
8623077 | Cohn | Jan 2014 | B2 |
8690858 | Machold et al. | Apr 2014 | B2 |
8821518 | Saliman et al. | Sep 2014 | B2 |
8926588 | Berthiaume et al. | Jan 2015 | B2 |
9126032 | Khairkhahan et al. | Sep 2015 | B2 |
9211119 | Hendricksen | Dec 2015 | B2 |
9370341 | Ceniccola et al. | Jun 2016 | B2 |
9498331 | Chang et al. | Nov 2016 | B2 |
9572666 | Basude et al. | Feb 2017 | B2 |
9770256 | Cohen et al. | Sep 2017 | B2 |
9949833 | McCleary et al. | Apr 2018 | B2 |
10238493 | Metchik et al. | Mar 2019 | B1 |
10667804 | Basude et al. | Jun 2020 | B2 |
11013554 | Coates | May 2021 | B2 |
11406250 | Saadat | Aug 2022 | B2 |
20010002445 | Vesely | May 2001 | A1 |
20010005787 | Oz et al. | Jun 2001 | A1 |
20010010005 | Kammerer et al. | Jul 2001 | A1 |
20010037084 | Nardeo | Nov 2001 | A1 |
20010044568 | Langberg et al. | Nov 2001 | A1 |
20010044635 | Niizeki et al. | Nov 2001 | A1 |
20020013547 | Paskar | Jan 2002 | A1 |
20020013571 | Goldfarb et al. | Jan 2002 | A1 |
20020022848 | Garrison et al. | Feb 2002 | A1 |
20020026233 | Shaknovich | Feb 2002 | A1 |
20020035361 | Houser et al. | Mar 2002 | A1 |
20020035381 | Bardy et al. | Mar 2002 | A1 |
20020042651 | Liddicoat et al. | Apr 2002 | A1 |
20020055767 | Forde et al. | May 2002 | A1 |
20020055774 | Liddicoat | May 2002 | A1 |
20020055775 | Carpentier et al. | May 2002 | A1 |
20020058910 | Hermann et al. | May 2002 | A1 |
20020058995 | Stevens | May 2002 | A1 |
20020077687 | Ahn | Jun 2002 | A1 |
20020087148 | Brock et al. | Jul 2002 | A1 |
20020087169 | Brock et al. | Jul 2002 | A1 |
20020103532 | Langberg et al. | Aug 2002 | A1 |
20020147456 | Diduch et al. | Oct 2002 | A1 |
20020156526 | Hilavka et al. | Oct 2002 | A1 |
20020161378 | Downing | Oct 2002 | A1 |
20020169360 | Taylor et al. | Nov 2002 | A1 |
20020173811 | Tu et al. | Nov 2002 | A1 |
20020173841 | Ortiz et al. | Nov 2002 | A1 |
20020183766 | Seguin | Dec 2002 | A1 |
20020183787 | Wahr et al. | Dec 2002 | A1 |
20020183835 | Taylor et al. | Dec 2002 | A1 |
20030005797 | Hopper et al. | Jan 2003 | A1 |
20030045778 | Ohline et al. | Mar 2003 | A1 |
20030050693 | Quijano et al. | Mar 2003 | A1 |
20030069570 | Witzel et al. | Apr 2003 | A1 |
20030069593 | Tremulis et al. | Apr 2003 | A1 |
20030074012 | Nguyen et al. | Apr 2003 | A1 |
20030083742 | Spence et al. | May 2003 | A1 |
20030105519 | Fasol et al. | Jun 2003 | A1 |
20030105520 | Alferness et al. | Jun 2003 | A1 |
20030120340 | Lisk et al. | Jun 2003 | A1 |
20030120341 | Shennib et al. | Jun 2003 | A1 |
20030130669 | Damarati | Jul 2003 | A1 |
20030130730 | Cohn et al. | Jul 2003 | A1 |
20030144697 | Mathis et al. | Jul 2003 | A1 |
20030167071 | Martin et al. | Sep 2003 | A1 |
20030171776 | Adams et al. | Sep 2003 | A1 |
20030187467 | Schreck | Oct 2003 | A1 |
20030195562 | Collier et al. | Oct 2003 | A1 |
20030208231 | Williamson, IV et al. | Nov 2003 | A1 |
20030229395 | Cox | Dec 2003 | A1 |
20030233038 | Hassett | Dec 2003 | A1 |
20040002719 | Oz et al. | Jan 2004 | A1 |
20040003819 | St. Goar et al. | Jan 2004 | A1 |
20040015232 | Shu et al. | Jan 2004 | A1 |
20040019377 | Taylor et al. | Jan 2004 | A1 |
20040019378 | Hlavka et al. | Jan 2004 | A1 |
20040024414 | Downing | Feb 2004 | A1 |
20040030319 | Korkor | Feb 2004 | A1 |
20040030382 | St. Goar et al. | Feb 2004 | A1 |
20040034380 | Woolfson et al. | Feb 2004 | A1 |
20040039442 | St. Goar et al. | Feb 2004 | A1 |
20040044350 | Martin | Mar 2004 | A1 |
20040044365 | Bachman | Mar 2004 | A1 |
20040049207 | Goldfarb et al. | Mar 2004 | A1 |
20040049211 | Tremulis et al. | Mar 2004 | A1 |
20040059345 | Nakao et al. | Mar 2004 | A1 |
20040078053 | Berg et al. | Apr 2004 | A1 |
20040087975 | Lucatero et al. | May 2004 | A1 |
20040088047 | Spence et al. | May 2004 | A1 |
20040092858 | Wilson et al. | May 2004 | A1 |
20040092962 | Thornton et al. | May 2004 | A1 |
20040097979 | Svanidze et al. | May 2004 | A1 |
20040106989 | Wilson et al. | Jun 2004 | A1 |
20040111099 | Nguyen et al. | Jun 2004 | A1 |
20040116848 | Gardeski et al. | Jun 2004 | A1 |
20040116951 | Rosengart | Jun 2004 | A1 |
20040122448 | Levine | Jun 2004 | A1 |
20040127849 | Kantor | Jul 2004 | A1 |
20040127981 | Randert et al. | Jul 2004 | A1 |
20040127982 | Machold et al. | Jul 2004 | A1 |
20040127983 | Mortier et al. | Jul 2004 | A1 |
20040133062 | Pai et al. | Jul 2004 | A1 |
20040133063 | McCarthy et al. | Jul 2004 | A1 |
20040133192 | Houser et al. | Jul 2004 | A1 |
20040133220 | Lashinski et al. | Jul 2004 | A1 |
20040133232 | Rosenbluth et al. | Jul 2004 | A1 |
20040133240 | Adams et al. | Jul 2004 | A1 |
20040133273 | Cox | Jul 2004 | A1 |
20040138744 | Lashinski et al. | Jul 2004 | A1 |
20040138745 | Macoviak et al. | Jul 2004 | A1 |
20040147826 | Peterson | Jul 2004 | A1 |
20040148021 | Cartledge et al. | Jul 2004 | A1 |
20040153144 | Seguin | Aug 2004 | A1 |
20040162610 | Laiska et al. | Aug 2004 | A1 |
20040167539 | Kuehn et al. | Aug 2004 | A1 |
20040186486 | Roue et al. | Sep 2004 | A1 |
20040186566 | Hindrichs et al. | Sep 2004 | A1 |
20040193191 | Starksen et al. | Sep 2004 | A1 |
20040215339 | Drasler et al. | Oct 2004 | A1 |
20040220593 | Greenhalgh | Nov 2004 | A1 |
20040220657 | Nieminen et al. | Nov 2004 | A1 |
20040225233 | Frankowski et al. | Nov 2004 | A1 |
20040225300 | Goldfarb et al. | Nov 2004 | A1 |
20040225305 | Ewers et al. | Nov 2004 | A1 |
20040225353 | McGuckin et al. | Nov 2004 | A1 |
20040236354 | Seguin | Nov 2004 | A1 |
20040242960 | Orban | Dec 2004 | A1 |
20040243229 | Vidlund et al. | Dec 2004 | A1 |
20040249452 | Adams et al. | Dec 2004 | A1 |
20040249453 | Cartledge et al. | Dec 2004 | A1 |
20040260393 | Randert et al. | Dec 2004 | A1 |
20050004583 | Oz et al. | Jan 2005 | A1 |
20050004665 | Aklog | Jan 2005 | A1 |
20050004668 | Aklog et al. | Jan 2005 | A1 |
20050021056 | St. Goer et al. | Jan 2005 | A1 |
20050021057 | St. Goer et al. | Jan 2005 | A1 |
20050033446 | Deem et al. | Feb 2005 | A1 |
20050038383 | Kelley et al. | Feb 2005 | A1 |
20050038508 | Gabbay | Feb 2005 | A1 |
20050049698 | Bolling et al. | Mar 2005 | A1 |
20050055089 | Macoviak et al. | Mar 2005 | A1 |
20050059351 | Cauwels et al. | Mar 2005 | A1 |
20050065453 | Shabaz et al. | Mar 2005 | A1 |
20050085903 | Lau | Apr 2005 | A1 |
20050119735 | Spence et al. | Jun 2005 | A1 |
20050131438 | Cohn | Jun 2005 | A1 |
20050143809 | Salahieh et al. | Jun 2005 | A1 |
20050149014 | Hauck et al. | Jul 2005 | A1 |
20050159763 | Mollenauer | Jul 2005 | A1 |
20050159810 | Filsoufi | Jul 2005 | A1 |
20050192633 | Montpetit | Sep 2005 | A1 |
20050197694 | Pai et al. | Sep 2005 | A1 |
20050197695 | Stacchino et al. | Sep 2005 | A1 |
20050216039 | Lederman | Sep 2005 | A1 |
20050228422 | Machold et al. | Oct 2005 | A1 |
20050228495 | Macoviak | Oct 2005 | A1 |
20050251001 | Hassett | Nov 2005 | A1 |
20050256452 | DeMarchi et al. | Nov 2005 | A1 |
20050267493 | Schreck et al. | Dec 2005 | A1 |
20050273160 | Lashinski et al. | Dec 2005 | A1 |
20050277876 | Hayden | Dec 2005 | A1 |
20060004247 | Kute et al. | Jan 2006 | A1 |
20060009759 | Chrisitian et al. | Jan 2006 | A1 |
20060015003 | Moaddes et al. | Jan 2006 | A1 |
20060015179 | Bulman-Fleming et al. | Jan 2006 | A1 |
20060020275 | Goldfarb et al. | Jan 2006 | A1 |
20060020327 | Lashinski et al. | Jan 2006 | A1 |
20060020334 | Lashinski et al. | Jan 2006 | A1 |
20060030866 | Schreck | Feb 2006 | A1 |
20060030867 | Zadno | Feb 2006 | A1 |
20060030885 | Hyde | Feb 2006 | A1 |
20060058871 | Zakay et al. | Mar 2006 | A1 |
20060064115 | Allen et al. | Mar 2006 | A1 |
20060064116 | Allen et al. | Mar 2006 | A1 |
20060064118 | Kimblad | Mar 2006 | A1 |
20060074484 | Huber | Apr 2006 | A1 |
20060089671 | Goldfarb et al. | Apr 2006 | A1 |
20060089711 | Dolan | Apr 2006 | A1 |
20060135961 | Rosenman et al. | Jun 2006 | A1 |
20060135993 | Seguin | Jun 2006 | A1 |
20060184198 | Bales | Aug 2006 | A1 |
20060184203 | Martin et al. | Aug 2006 | A1 |
20060195012 | Mortier et al. | Aug 2006 | A1 |
20060229708 | Powell | Oct 2006 | A1 |
20060252984 | Randert et al. | Nov 2006 | A1 |
20060276890 | Solem | Dec 2006 | A1 |
20070016225 | Nakao | Jan 2007 | A1 |
20070038293 | St. Goer et al. | Feb 2007 | A1 |
20070060997 | de Boer | Mar 2007 | A1 |
20070073185 | Nakao | Mar 2007 | A1 |
20070100356 | Lucatero et al. | May 2007 | A1 |
20070118155 | Goldfarb et al. | May 2007 | A1 |
20070129737 | Goldfarb et al. | Jun 2007 | A1 |
20070173757 | Levine et al. | Jul 2007 | A1 |
20070197858 | Goldfarb et al. | Aug 2007 | A1 |
20070198082 | Kapadia et al. | Aug 2007 | A1 |
20070260225 | Sakakine et al. | Nov 2007 | A1 |
20070287884 | Schena | Dec 2007 | A1 |
20080009858 | Rizvi | Jan 2008 | A1 |
20080039935 | Buch et al. | Feb 2008 | A1 |
20080045936 | Vaska et al. | Feb 2008 | A1 |
20080051703 | Thorton et al. | Feb 2008 | A1 |
20080051807 | St. Goar et al. | Feb 2008 | A1 |
20080097467 | Gruber et al. | Apr 2008 | A1 |
20080097489 | Goldfarb et al. | Apr 2008 | A1 |
20080167714 | St. Goer et al. | Jul 2008 | A1 |
20080183194 | Goldfarb et al. | Jul 2008 | A1 |
20080188850 | Mody et al. | Aug 2008 | A1 |
20080195126 | Solem | Aug 2008 | A1 |
20080243249 | Kohm et al. | Oct 2008 | A1 |
20080294175 | Bardsley et al. | Nov 2008 | A1 |
20080312496 | Zwolinski | Dec 2008 | A1 |
20090012538 | Saliman et al. | Jan 2009 | A1 |
20090036768 | Seehusen et al. | Feb 2009 | A1 |
20090156995 | Martin et al. | Jun 2009 | A1 |
20090163934 | Raschdorf, Jr. et al. | Jun 2009 | A1 |
20090177266 | Powell et al. | Jul 2009 | A1 |
20090192510 | Bahney | Jul 2009 | A1 |
20090198322 | Deem et al. | Aug 2009 | A1 |
20090204005 | Keast et al. | Aug 2009 | A1 |
20090209955 | Forster et al. | Aug 2009 | A1 |
20090209991 | Hinchliffe et al. | Aug 2009 | A1 |
20090270858 | Hauck et al. | Oct 2009 | A1 |
20090276039 | Meretei | Nov 2009 | A1 |
20090281619 | Le et al. | Nov 2009 | A1 |
20090326567 | Goldfarb et al. | Dec 2009 | A1 |
20100016958 | St. Goer et al. | Jan 2010 | A1 |
20100022823 | Goldfarb et al. | Jan 2010 | A1 |
20100044410 | Argentine et al. | Feb 2010 | A1 |
20100121437 | Subramanian et al. | May 2010 | A1 |
20100152612 | Headley et al. | Jun 2010 | A1 |
20100217261 | Watson | Aug 2010 | A1 |
20100262231 | Tuval et al. | Oct 2010 | A1 |
20100268226 | Epp et al. | Oct 2010 | A1 |
20100298929 | Thornton et al. | Nov 2010 | A1 |
20110009864 | Bucciaglia et al. | Jan 2011 | A1 |
20110184405 | Mueller | Jul 2011 | A1 |
20110224710 | Bleich | Sep 2011 | A1 |
20110238052 | Robinson | Sep 2011 | A1 |
20120022527 | Woodruff | Jan 2012 | A1 |
20120022640 | Gross et al. | Jan 2012 | A1 |
20120065464 | Ellis et al. | Mar 2012 | A1 |
20120150194 | Odermatt et al. | Jun 2012 | A1 |
20120157765 | Mitelberg | Jun 2012 | A1 |
20120172915 | Fifer et al. | Jul 2012 | A1 |
20120179184 | Orlov | Jul 2012 | A1 |
20120265222 | Gordin et al. | Oct 2012 | A1 |
20120310330 | Buchbinder et al. | Dec 2012 | A1 |
20120316639 | Kleinschrodt | Dec 2012 | A1 |
20120330348 | Strauss et al. | Dec 2012 | A1 |
20130041314 | Dillon | Feb 2013 | A1 |
20130066341 | Ketai et al. | Mar 2013 | A1 |
20130066342 | Dell et al. | Mar 2013 | A1 |
20130109910 | Alexander et al. | May 2013 | A1 |
20130172828 | Kappel et al. | Jul 2013 | A1 |
20130317515 | Kuroda et al. | Nov 2013 | A1 |
20140039511 | Morris et al. | Feb 2014 | A1 |
20140135799 | Henderson | May 2014 | A1 |
20140228871 | Cohen et al. | Aug 2014 | A1 |
20140276913 | Tah et al. | Sep 2014 | A1 |
20140309670 | Bakos et al. | Oct 2014 | A1 |
20140324164 | Gross et al. | Oct 2014 | A1 |
20140350662 | Vaturi | Nov 2014 | A1 |
20140358224 | Tegels et al. | Dec 2014 | A1 |
20140364866 | Dryden et al. | Dec 2014 | A1 |
20140379074 | Spence et al. | Dec 2014 | A1 |
20150005704 | Heisel et al. | Jan 2015 | A1 |
20150005801 | Marquis et al. | Jan 2015 | A1 |
20150051698 | Ruyra Baliarda et al. | Feb 2015 | A1 |
20150094800 | Chawla | Apr 2015 | A1 |
20150112430 | Creaven et al. | Apr 2015 | A1 |
20150211946 | Pons et al. | Jul 2015 | A1 |
20150230947 | Krieger et al. | Aug 2015 | A1 |
20150257877 | Hernandez | Sep 2015 | A1 |
20150306806 | Dando et al. | Oct 2015 | A1 |
20150313581 | Wolfe et al. | Nov 2015 | A1 |
20160015410 | Asirvatham et al. | Jan 2016 | A1 |
20160074165 | Spence et al. | Mar 2016 | A1 |
20160174979 | Wei | Jun 2016 | A1 |
20160317174 | Dake | Nov 2016 | A1 |
20170042678 | Ganesan et al. | Feb 2017 | A1 |
20170100183 | Iaizzo et al. | Apr 2017 | A1 |
20170202559 | Taha | Jul 2017 | A1 |
20170232238 | Biller et al. | Aug 2017 | A1 |
20180008268 | Khairkhahan | Jan 2018 | A1 |
20180028215 | Cohen | Feb 2018 | A1 |
20180092661 | Prabhu | Apr 2018 | A1 |
20180133010 | Kizuka | May 2018 | A1 |
20180161159 | Lee | Jun 2018 | A1 |
20180360457 | Ellis et al. | Dec 2018 | A1 |
20190029790 | Bak-Boychuk et al. | Jan 2019 | A1 |
20190183571 | De Marchena | Jun 2019 | A1 |
20190298517 | Sanchez et al. | Oct 2019 | A1 |
20190307458 | Mathis | Oct 2019 | A1 |
20210113232 | Ortiz et al. | Apr 2021 | A1 |
20210145574 | Childs et al. | May 2021 | A1 |
Number | Date | Country |
---|---|---|
1469724 | Jan 2004 | CN |
102770080 | Nov 2012 | CN |
103841899 | Jun 2014 | CN |
104244841 | Dec 2014 | CN |
3504292 | Jul 1986 | DE |
9100873 | Apr 1991 | DE |
10116168 | Nov 2001 | DE |
0179562 | Jul 1989 | EP |
0558031 | Feb 1993 | EP |
0684012 | Nov 1995 | EP |
0727239 | Aug 1996 | EP |
0782836 | Jul 1997 | EP |
1674040 | Jun 2006 | EP |
1980288 | Oct 2008 | EP |
2005912 | Dec 2008 | EP |
2537487 | Dec 2012 | EP |
2641570 | Sep 2013 | EP |
2702965 | Mar 2014 | EP |
2740419 | Jun 2014 | EP |
3009103 | Apr 2016 | EP |
2705556 | Dec 1994 | FR |
2768324 | Mar 1999 | FR |
2903292 | Jan 2008 | FR |
1598111 | Sep 1981 | GB |
2151142 | Jul 1985 | GB |
2001-517529 | Oct 2001 | JP |
2006528911 | Dec 2006 | JP |
2013516244 | May 2013 | JP |
2014523274 | Sep 2014 | JP |
2018-030008 | Mar 2018 | JP |
WO 1981000668 | Mar 1981 | WO |
WO 1991001689 | Feb 1991 | WO |
WO 1994018881 | Sep 1994 | WO |
WO 1994018893 | Sep 1994 | WO |
WO 1995008292 | Mar 1995 | WO |
WO 1995011620 | May 1995 | WO |
WO 1995015715 | Jun 1995 | WO |
WO 1996020655 | Jul 1996 | WO |
WO 1996022735 | Aug 1996 | WO |
WO 1996030072 | Oct 1996 | WO |
WO 1997018746 | May 1997 | WO |
WO 1997025927 | Jul 1997 | WO |
WO 1997026034 | Jul 1997 | WO |
WO 1997038748 | Oct 1997 | WO |
WO 1997039688 | Oct 1997 | WO |
WO 1997048436 | Dec 1997 | WO |
WO 1998007375 | Feb 1998 | WO |
WO 1998024372 | Jun 1998 | WO |
WO 1998030153 | Jul 1998 | WO |
WO 1998032382 | Jul 1998 | WO |
WO 1998035638 | Aug 1998 | WO |
WO 1999000059 | Jan 1999 | WO |
WO 1999001377 | Jan 1999 | WO |
WO 1999007295 | Feb 1999 | WO |
WO 1999013777 | Mar 1999 | WO |
WO 1999044524 | Sep 1999 | WO |
WO 2000003651 | Jan 2000 | WO |
WO 2000003759 | Jan 2000 | WO |
WO 2000012168 | Mar 2000 | WO |
WO 2000044313 | Aug 2000 | WO |
WO 2000060995 | Oct 2000 | WO |
WO 2001000114 | Jan 2001 | WO |
WO 2001026557 | Apr 2001 | WO |
WO 2001028432 | Apr 2001 | WO |
WO 2001028455 | Apr 2001 | WO |
WO 2001047438 | Jul 2001 | WO |
WO 2001049213 | Jul 2001 | WO |
WO 2001050985 | Jul 2001 | WO |
WO 2001054618 | Aug 2001 | WO |
WO 2001066001 | Sep 2001 | WO |
WO 2001070320 | Sep 2001 | WO |
WO 2001089440 | Nov 2001 | WO |
WO 2002000099 | Jan 2002 | WO |
WO 2002001999 | Jan 2002 | WO |
WO 2002003892 | Jan 2002 | WO |
WO 2002034167 | May 2002 | WO |
WO 2002060352 | Aug 2002 | WO |
WO 2002062263 | Aug 2002 | WO |
WO 2003001893 | Jan 2003 | WO |
WO 2003003930 | Jan 2003 | WO |
WO 2003020179 | Mar 2003 | WO |
WO 2003028558 | Apr 2003 | WO |
WO 2003037171 | May 2003 | WO |
WO 2003047467 | Jun 2003 | WO |
WO 2003049619 | Jun 2003 | WO |
WO 2003073913 | Sep 2003 | WO |
WO 2003105667 | Dec 2003 | WO |
WO 2004006810 | Jan 2004 | WO |
WO 2004012583 | Feb 2004 | WO |
WO 2004012789 | Feb 2004 | WO |
WO 2004014282 | Feb 2004 | WO |
WO 2004019811 | Mar 2004 | WO |
WO 2004030570 | Apr 2004 | WO |
WO 2004037317 | May 2004 | WO |
WO 2004045370 | Jun 2004 | WO |
WO 2004045378 | Jun 2004 | WO |
WO 2004045463 | Jun 2004 | WO |
WO 2004062725 | Jul 2004 | WO |
WO 2004082523 | Sep 2004 | WO |
WO 2004082538 | Sep 2004 | WO |
WO 2004103162 | Dec 2004 | WO |
WO 2004112585 | Dec 2004 | WO |
WO 2005018507 | Mar 2005 | WO |
WO 2005032421 | Apr 2005 | WO |
WO 2005062931 | Jul 2005 | WO |
WO 2005112792 | Dec 2005 | WO |
WO 2006037073 | Apr 2006 | WO |
WO 2006105008 | Oct 2006 | WO |
WO 2006105009 | Oct 2006 | WO |
WO 2006113906 | Oct 2006 | WO |
WO 2006115876 | Nov 2006 | WO |
WO 2007136829 | Nov 2007 | WO |
WO 2008103722 | Aug 2008 | WO |
WO 2010024801 | Mar 2010 | WO |
WO 2010121076 | Oct 2010 | WO |
WO 2012020521 | Feb 2012 | WO |
WO 2013049734 | Apr 2013 | WO |
WO 2013103934 | Jul 2013 | WO |
WO 2014064694 | May 2014 | WO |
WO 2014121280 | Aug 2014 | WO |
WO 2016022797 | Feb 2016 | WO |
WO 2016144708 | Sep 2016 | WO |
WO 2016150806 | Sep 2016 | WO |
WO 2017223073 | Dec 2017 | WO |
WO 2018009718 | Jan 2018 | WO |
WO 2018106482 | Jun 2018 | WO |
2018236766 | Dec 2018 | WO |
2019040943 | Feb 2019 | WO |
2019195336 | Oct 2019 | WO |
Entry |
---|
Supplementary European Search Report issued in European Application No. 05753261.6 dated Jun. 9, 2011, 3 pages total. |
Nishimura, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. Jun. 10, 2014; 63(22):2438-88. |
Abe et al, “De Vega's Annuloplasty for Acquired Tricuspid Disease: Early and Late Results in 110 Patients”, Ann. Thorac. Surg., pp. 670-676, vol. 48 (Jan. 1989). |
Abe et al., “Updated in 1996—De Vega's Annuloplasty for Acquired Tricuspid Disease: Early and Late Results in 110 Patients”, Ann. Thorac. Surg., pp. 1876-1877, vol. 62 (1996). |
Alfieri et al., “An Effective Technique to Correct Anterior Mitral Leaflet Prolapse,” J. Card Surg., 14:468-470 (1999). |
Alfieri et al., “Novel Suture Device for Beating Heart Mitral Leaflet Approximation,” Annals of Thoracic Surgery, 74:1488-1493 (2002). |
Alfieri et al., “The edge to edge technique,” The European Association for Cardio-Thoracic Surgery 14th Annual Meeting, Oct. 7-11, 2000, Book of Proceedings. |
Ali Khan et al, Blade Atrial Septostomy: Experience with the First 50 Procedures, Cathet. Cardiovasc. Diagn., Aug. 1991, pp. 257-262, vol. 23. |
Alvarez et al, Repairing the Degenerative Mitral Valve: Ten to Fifteen-year Follow-up, Journal of Thoracic Cardiovascular Surgery, Aug. 1996, pp. 238-247, vol. 112, No. 2. |
Bailey, “Mitral Regurgitation” in Surgery of the Heart, Chapter 20, pp. 686-737 (1955). |
Borghetti et al., “Preliminary observations on haemodynamics during physiological stress conditions following ‘double-orifice’ mitral valve repair,” European Journal of Cardio-thoracic Surgery, 20:262-269 (2001). |
Castedo, “Edge-to-Edge Tricuspid Repair for Redeveloped Valve Incompetence after DeVega's Annuloplasty,” Ann Thora Surg., 75:605-606 (2003). |
Chinese Office Action issued in Chinese Application No. 200980158707.2 dated Sep. 9, 2013. |
Communication dated Apr. 16, 2018 from the European Patent Office in counterpart European application No. 04752603.3. |
Communication dated Apr. 28, 2017 issued by the European Patent Office in counterpart application No. 16196023.2. |
Communication dated Jan. 26, 2017, from the European Patent Office in counterpart European application No. 16196023.2. |
Dang N C et al., “Surgical Revision After Percutaneous Mitral Valve Repair with a Clip: Initial Multicenter Experience”,The Annals of Thracic Surgery,Elsevier, United States, vol. 80, No. 6, pp. 2338-2342, (Dec. 1, 2005), XP027732951, ISSN:0003-4975 [retrieved on Dec. 1, 2005]. |
Dottori et al., “Echocardiographic imaging of the Alfieri type mitral valve repair,” Ital. Heart J., 2(4):319-320 (2001). |
Downing et al., “Beating heart mitral valve surgery: Preliminary model and methodology,” Journal of Thoracic and Cardiovascular Surgery, 123(6):1141-1146 (2002). |
Extended European Search Report, dated Oct. 17, 2014, issued in European Patent Application No. 06751584.1. |
Falk et al., “Computer-Enhanced Mitral Valve Surgery: Toward a Total Endoscopic Procedure,” Seminars in Thoracic and Cardiovascular Surgery, 11(3):244-249 (1999). |
Feldman et al, Randomized Comparison of Percutaneous Repair and Surgery for Mitral Regurgitation: 5-Year Results of Everest II. J Am Coll Cardiol. Dec. 29, 2015; 66(25):2844-2854. |
Fucci et al, Improved Results with Mitral Valve Repair Using New Surgical Techniques, Eur. J. Cardiothorac. Surg., Nov. 1995, pp. 621-627, vol. 9. |
Garcia-Rinaldi et al., “Left Ventricular Volume Reduction and Reconstruction is Ischemic Cardiomyopathy,” Journal of Cardiac Surgery, 14:199-210 (1999). |
Izzat et al., “Early Experience with Partial Left Ventriculectomy in the Asia-Pacific Region,” Annuals of Thoracic Surgery, 67:1703-1707 (1999). |
Kallner et al., “Transaortic Approach for the Alfieri Stitch,” Ann Thorac Surg, 71:378-380 (2001). |
Kavarana et al., “Transaortic Repair of Mitral Regurgitation,” The Heart Surgery Forum, #2000-2389, 3(1):24-28 (2000). |
Khan et al., “Blade Atrial Septostomy; Experience with the First 50 Procedures”, Catheterization and Cardiovascular Diagnosis, 23:257-262 (1991). |
Kron et al., “Surgical Relocation of the Posterior Papillary Muscle in Chronic Ischemic Mitral Regurgitation,” Annals. of Thoracic Surgery, 74:600-601 (2002). |
Kruger et al., “P73—Edge to Edge Technique in Complex Mitral Valve Repair,” Thorac Cardiovasc Surg., 48(Suppl. 1):106 (2000). |
Maisano et al., “Valve Repair for Traumatic Tricuspid Regurgitation,” Eur. J. Cardio-Thorac Surg, 10:867-873 (1996). |
Maisano et al., “The Edge-to-edge Technique: A Simplified Method to Correct Mitral Insufficiency”, Eur. J. Cardiothorac. Surg., pp. 240-246, vol. 13 ( Jan. 14, 1998). |
Maisano et al., “The Double Orifice Repair for Barlow Disease: a Simple Solution for a Complex Repair,” Supplement | Circulation, 100(18):1-94 (Nov. 1999). |
Maisano et al., “The Double Orifice Technique as a Standardized Approach to Treat Mitral Regurgitation due to Severe Myxomatous Disease: Surgical Technique,” European Journal of Cardio-thoracic Surgery, 17:201-205 (2000). |
Maisano et al., “The Future of Transcatheter Mitral Valve Interventions: Competitive or Complementary Role of Repair vs. Replacement?”, Eur Heart J.36(26):1651-1659 ( Jul. 7, 2015 ). |
Mantovani et al., “Edge-to-edge Repair of Congenital Familiar Tricuspid Regurgitation: Case Report,” J. Heart Valve Dis., 9:641-643 (2000). |
McCarthy et al, “Tricuspid Valve Repair With the Cosgrove-Edwards Annuloplasty System”, Ann. Thorac. Surg., 64:267-8 ( Jan. 16, 1997). |
McCarthy et al., “Partial Left Ventriculectomy and Mitral Valve Repair for End-Stage Congestive Heart Failure,” European Journal of Cardio-thoracic Surgery, 13:337-343 (1998). |
Moainie et al., “Correction of Traumatic Tricuspid Regurgitation Using the Double Orifice Technique,” Annals of Thoracic Surgery, 73:963-965 (2002). |
Morales et al., “Development of an Off Bypass Mitral Valve Repair,” The Heart Surgery Forum #1999-4693, 2(2):115-120 (1999). |
Nakanishi et al., “Early Outcome with the Alfieri Mitral Valve Repair,” J. Cardiol., 37: 263-266 (2001) [Abstract in English; Article in Japanese]. |
Nielsen et al., “Edge-to-Edge Mitral Repair: Tension of the Approximating Suture and Leaflet Deformation During Acute Ischemic Mitral Regurgitation in the Ovine Heart,” Circulation, 104(Suppl. I):I-29-I-35 (2001). |
Nishimura et al, 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. Jun. 10, 2014; 63(22):2438-2488. |
Park et al., Clinical Use of Blade Atrial Septostomy, Circulation, pp. 600-608, vol. 58, No. 4 (1978 ). |
Privitera et al., “Alfieri Mitral Valve Repair: Clinical Outcome and Pathology,” Circulation, 106:e173-e174 (2002). |
Redaelli et al., “A Computational Study of the Hemodynamics After ‘Edge-To-Edge’ Mitral Valve Repair,” Journal of Biomechanical Engineering, 123:565-570 (2001). |
Reul et al., “Mitral Valve Reconstruction for Mitral Insufficiency,” Progress in Cardiovascular Diseases, XXXIX(6):567-599 (1997). |
Rose et al., “Late MitraClip Failure: Removal Technique for Leaflet-Sparing Mitral Valve Repair”, Journal of Cardiac Surgery, (Jul. 4, 2012), XP055047339, DOI: 10.1111/j. 1540-8191.2012.01483.x [retrieved on Dec. 11, 2012]. |
Takizawa H et al: “Development of a microfine active bending catheter equipped with MIF tactile sensors”, Micro Electro Mechanical Systems, 1999. MEMS '99. Twelfth IEEE Interna Tional Conference On Orlando, FL, USA Jan. 17-21, 1999, Piscataway, NJ, USA, IEEE, US, Jan. 17, 1999 (Jan. 17, 1999), pp. 412-417, XP010321677, ISBN: 978-0-7803-5194-3 figures 1-3. |
Tamura et al., “Edge to Edge Repair for Mitral Regurgitation in a Patient with Chronic Hemodialysis: Report of a Case,” Kyobu Geka. The Japanese Journal of Thoracic Surgery, 54(9):788-790 (2001). |
Timek et al., “Edge-to-edge mitral repair: gradients and three-dimensional annular dynamics in vivo during inotropic stimulation,” Eur J. of Cardiothoracic Surg., 19:431-437 (2001). |
Totaro, “Mitral valve repair for isolated prolapse of the anterior leaflet: an 11-year follow-up,” European Journal of Cardio-thoracic Surgery, 15:119-126 (1999). |
Uchida et al., Percutaneous Cardiomyotomy and Valvulotomy with Angioscopic Guidance, Am. Heart J., pp. 1221-1224, vol. 121 (Apr. 1991). |
Umana et al., ‘Bow-Tie’ Mitral Valve Repair: An Adjuvant Technique for Ischemic Mitral Regurgitation, Ann. Thorac. Surg., pp. 1640-1646, vol. 66 (May 12, 1998). |
Votta et al., “3-D Computational Analysis of the Stress Distribution on the Leaflets after Edge-to-Edge Repair of Mitral Regurgitation,” Journal of Heart Valve Disease, 11:810-822 (2002). |
U.S. Appl. No. 14/216,787, Apr. 8, 2016, Office Action. |
U.S. Appl. No. 14/216,787, Nov. 7, 2016, Notice of Allowance. |
U.S. Appl. No. 14/216,813, Mar. 9, 2017, Office Action. |
U.S. Appl. No. 14/216,813, Dec. 15, 2017, Office Action. |
U.S. Appl. No. 14/216,813, Apr. 6, 2018, Office Action. |
U.S. Appl. No. 14/577,852, Oct. 20, 2016, Office Action. |
U.S. Appl. No. 14/577,852, May 16, 2017, Office Action. |
U.S. Appl. No. 14/577,852, Sep. 7, 2017, Office Action. |
U.S. Appl. No. 14/577,852, Apr. 25, 2018, Notice of Allowance. |
U.S. Appl. No. 15/423,060, Apr. 25, 2019, Office Action. |
U.S. Appl. No. 15/423,060, Aug. 19, 2019, Office Action. |
U.S. Appl. No. 15/423,060, Oct. 28, 2019, Office Action. |
U.S. Appl. No. 15/423,060, Jan. 27, 2020, Notice of Allowance. |
U.S. Appl. No. 15/642,245, Aug. 9, 2019, Office Action. |
U.S. Appl. No. 15/642,245, Nov. 6, 2019, Notice of Allowance. |
U.S. Appl. No. 15/642,245, Jan. 29, 2019, Notice of Allowance. |
U.S. Appl. No. 15/642,245, Mar. 27, 2020, Notice of Allowance. |
U.S. Appl. No. 15/724,545, Dec. 27, 2019, Office Action. |
U.S. Appl. No. 15/724,545, May 1, 2020, Office Action. |
Alfieri et al., “The double orifice technique in mitral valve repair: a simple solution for complex problems,” Journal of Thoracic and Cardiovascular Surgery, 122:674-681 (2001). |
Bhudia et al., “Edge-to-Edge (Alfieri) Mitral Repair: Results in Diverse Clinical Settings,” Ann Thorac Surg, 77:1598-1606 (2004). |
Maisano et al., The future of transcatheter mitral valve interventions: competitive or complementary role of repair vs. replacement? Eur Heart J. Jul. 7, 2015; 36(26):1651-1659. |
Tager et al., Long-Term Follow-Up of Rheumatic Patients Undergoing Left-Sided Valve Replacement With Tricuspid Annuloplasty—Validity of Preoperative Echocardiographic Criteria in the Decision to Perform Tricuspid Annuloplasty, Am. J. Cardiol., Apr. 15, 1998, pp. 1013-1016, vol. 81. |
U.S. Provisional Application filed Jul. 6, 2016, by Khairkhahan., U.S. Appl. No. 62/359,121. |
U.S. Provisional Application filed Nov. 7, 2016, by Khairkhahan., U.S. Appl. No. 62/418,571. |
U.S. Provisional Application filed Oct. 22, 2018, by Dale et al., U.S. Appl. No. 62/748,947. |
Number | Date | Country | |
---|---|---|---|
20200121460 A1 | Apr 2020 | US |
Number | Date | Country | |
---|---|---|---|
62748947 | Oct 2018 | US |