Barocas, V.H., et al., “An Anistrophic Biphasic Theory of Tissue-Equivalent Mechanics: The Interplay Among Cell Traction, Fibrillar Network Deformation, Fibril Alignment, and Cell Contact Guidance”, Journal of Biomechanical Engineering, 119, pp. 137-145, (May 1997). |
Barocas, V.H., et al., “Engineered Alignment in Media Equivalents: Magnetic Prealignment and Mandreal Compaction”, Journal of Biomechanical Engineering, 120, pp. 660-666, (Oct. 1998). |
Christie, G.W., “Anatomy of Aortic Heart Valve Leaflets: The Influence of Glutaraldehyde Fixation on Function”, European Journal of Cardio-thoracic Surgery, 6 (12), Suppl. 1, pp. S 25-S33, (1992). |
Girton, T.S., et al., “Exploiting Glycation to Stiffen and Strengthen Tissue Equivalents for Tissue Engineering”, pp. 87-92, (May 5, 1999), http://www3.interscience.wiley.com/cgi-bin/issuetoc?ID=61004825. |
Gottlob, R., et al., Venous Valves, Springer-Verlag, Wein, pp. 1-227, (1986). |
L'Heureux, N., et al., “In Vitro Construction of a Human Blood Vessel from Cultured Vascular Cells: A Morphologic Study”, Journal of Vascular Surgery, 17 (3), pp. 499-509, (Mar. 1999). |
Sapatnekar, S., et al., “Blood-biomaterial interaction in a flow system in the presence of bacteria: Effect of protein adsorption”, Journal of Biomedical Materials Research, 29, pp. 247-256, (1995). |
Sauren, A.H., et al., “Aortic Valve Histology and its Relation with Mechanics-Preliminary Report”, Journal of Biomechanics, 13 (2), pp. 97-104, (1980). |
Sauren, A.H., et al., “The Mechanical Properties of Porcine Aortic Valve Tissues”, Journal of Biomechanics, 16 (5), pp. 327-337, (1983). |
Shinoka, T., et al., “Tissue Engineering Heart Valves: Valve Leaflet Replacement Study in a Lamb Model”, Supplement to The Annals of Thoracic Surgery, 60 (6) Suppl., pp. S513-S516, (Dec. 1995). |
Talman, E.A., et al., “Internal Shear Properties of Fresh Porcine Aortic Valve Cusps: Implications for Normal Valve Function”, J. Heart Valve Dis., 5 (2), pp. 152-159, (1996). |