This is a National Stage Application of PCT/CN2020/074175 under 35 U.S.C. § 371(a) filed on Feb. 3, 2020, the disclosure of which is incorporated herein by reference in its entirety.
The present disclosure relates generally to a surgical instrument and, more specifically, to a surgical stapling instrument for clamping, and joining and/or cutting tissue.
Surgical stapling instruments used for applying parallel rows of staples through compressed living tissue are well known in the art, and are commonly used, for example, for closure of tissue or organs during surgical procedures for performing anastomoses and/tissue transection or resection. Surgical stapling instruments are often used for occlusion of organs in thoracic and abdominal procedures. Typically, surgical stapling instruments include an anvil assembly, a cartridge assembly for supporting an array of surgical staples, an approximation mechanism for approximating the anvil and cartridge assemblies, and a firing mechanism for ejecting the surgical staples from the cartridge assembly.
The cartridge assembly may include an alignment pin and a tissue guide for retaining tissue between the cartridge and anvil assemblies and for aligning and maintaining alignment between the cartridge and anvil assemblies during approximation and firing of the surgical stapling instrument.
To ensure alignment of the cartridge and the anvil assemblies, it would be beneficial to have a surgical stapling instrument that includes features that restrict unnecessary movement of the cartridge and anvil assemblies and maintain alignment of the cartridge and anvil assembly during actuation of surgical stapling instrument.
The present disclosure relates to a surgical stapling instrument comprising an elongate body portion defining a longitudinal axis and having a proximal portion and a distal portion and an end effector supported on the distal portion of the elongated body portion. The end effector includes a housing having a base portion and a jaw portion, an anvil assembly supported on the jaw portion, a cartridge assembly releasably supported on the base portion, and a pusher assembly disposed within the base portion of the housing of the end effector. The base portion secured to the distal portion of the elongate body portion and the cartridge assembly including a housing and a tissue guide. The tissue guide being moveable from a retracted position to an advanced position relative to the housing of the cartridge assembly. The pusher assembly is configured to move the tissue guide from the retracted position to the advanced position such that the tissue guide engages the anvil assembly.
In embodiments, the tissue guide includes a feature for engaging the flange.
The present disclosure further relates to a surgical stapling instrument comprising an elongate body portion defining a longitudinal axis and having a proximal portion and a distal portion and an end effector supported on the distal portion of the elongated body portion. The end effector includes a housing having a base portion and a jaw portion, an anvil assembly supported on the jaw portion, and a cartridge assembly releasably supported on the base portion and moveable between a retracted position and an advanced position. The base portion is secured to the distal portion of the elongate body portion. The cartridge assembly includes a tissue contacting surface and a tissue guide extending from the tissue contacting surface. The tissue guide is spaced from the anvil assembly when in the retracted position and is in engagement with the anvil assembly when in the advanced position.
In embodiments, a free end of the tissue guide is sharpened.
The present disclosure relates to a surgical stapling instrument comprising an elongate body portion defining a longitudinal axis and having a proximal portion and a distal portion and an end effector supported on the distal portion of the elongated body portion. The end effector includes a housing having a base portion and a jaw portion, an anvil assembly supported on the jaw portion, a cartridge assembly releasably supported on the base portion, and a tissue guide selectively extendable from the cartridge assembly. The base portion is secured to the distal portion of the elongate body portion. The tissue guide is configured to engage the anvil assembly as the cartridge assembly is secured to the base portion to cause deployment of the tissue guide.
In embodiments, the anvil assembly includes a flange and the tissue guide engages the flange as the cartridge assembly is secured to the base portion.
In addition, the present disclosure relates to a surgical stapling instrument comprising an elongate body portion defining a longitudinal axis and having a proximal portion and a distal portion and an end effector supported on the distal portion of the elongated body portion. The end effector includes a housing having a base portion and a jaw portion, an anvil assembly supported on the jaw portion, a cartridge assembly releasably supported on the base portion, and a tissue guide assembly selectively extendable relative to the cartridge assembly. The base portion includes at least one tab. The tissue guide assembly is configured to engage the at least one tab of the base portion as the cartridge assembly is secured to the base portion to cause deployment of the tissue guide.
In embodiments, the tissue guide assembly includes a tissue guide portion and a base portion. The base portion may define at least one slot for receiving the at least one tab of the base portion. The tissue guide assembly may further include a spring for biasing the tissue guide portion distally relative to the base portion.
The present disclosure relates to a surgical stapling instrument comprising an elongate body portion defining a longitudinal axis and having a proximal portion and a distal portion and an end effector supported on the distal portion of the elongated body portion. The end effector includes a housing having a base portion and a jaw portion, an anvil assembly supported on the jaw portion, a cartridge assembly releasably supported on the base portion, and a tissue guide assembly selectively extendable relative to the cartridge assembly. The tissue guide assembly includes a first member and a second member. The first member telescopes relative to the second member between retracted and extended positions.
The present disclosure further relates to a surgical stapling instrument comprising an elongate body portion defining a longitudinal axis and having a proximal portion and a distal portion and an end effector supported on the distal portion of the elongated body portion. The end effector includes a housing having a base portion and a jaw portion, an anvil assembly supported on the jaw portion, a cartridge assembly releasably supported on the base portion, and a tissue guide assembly selectively extendable relative to the cartridge assembly. The base portion including at least one tab. The tissue guide assembly includes a tissue guide pivotally secured to the cartridge assembly.
In embodiments, the tissue guide is slidably disposed relative to the cartridge assembly.
Further, the present disclosure relates to a surgical stapling instrument comprising an elongate body portion defining a longitudinal axis and having a proximal portion and a distal portion and an end effector supported on the distal portion of the elongated body portion. The end effector includes a housing having a base portion and a jaw portion, an anvil assembly supported on the jaw portion, a cartridge assembly releasably supported on the base portion, and a tissue guide assembly selectively extendable relative to the cartridge assembly. The base portion includes at least one tab. The tissue guide assembly is configured to engage the at least one tab of the base portion as the cartridge assembly is secured to the base portion to cause deployment of the tissue guide.
The present disclosure relates to a surgical stapling instrument comprising an elongate body portion defining a longitudinal axis and having a proximal portion and a distal portion and an end effector supported on the distal portion of the elongated body portion. The end effector includes a housing having a base portion and a jaw portion, an anvil assembly supported on the jaw portion, a cartridge assembly releasably supported on the base portion, and a tissue guide selectively extendable relative to the cartridge assembly. The base portion includes at least one tab. The tissue guide is configured to engage at least one of the anvil assembly or the base portion as the cartridge assembly is secured to the base portion.
In embodiments, the tissue guide includes a snap feature and the base portion defines an opening for receiving the snap feature. The tissue guide may include a bent portion and the base portion may define an opening for receiving the bent portion.
The present disclosure relates to a surgical stapling instrument comprising an elongate body portion defining a longitudinal axis and having a proximal portion and a distal portion and an end effector supported on the distal portion of the elongated body portion. The end effector includes a housing having a base portion and a jaw portion, an anvil assembly supported on the jaw portion, a cartridge assembly releasably supported on the base portion, a tissue guide assembly selectively extendable relative to the cartridge assembly, and a clamping member disposed within the housing and moveable between a retracted position and an advanced position. The base portion includes at least one tab. The tissue guide assembly may include a tissue guide and a bushing slidably received about the tissue guide. Movement of the clamping member from the retracted position to the advance position may advance the bushing about the tissue guide.
Various embodiments of the presently disclosed surgical stapling instrument are disclosed herein with reference to the drawings, wherein:
Embodiments of the presently disclosed replaceable cartridge assembly for surgical stapling instruments are described in detail with reference to the drawings, wherein like reference numerals designate corresponding elements in each of the several views. In the drawings and the description that follow, the term “proximal” refers to the end of the surgical stapling instrument that is closer to the clinician, whereas the term “distal” refers to the end of the surgical stapling instrument that is farther from the clinician. In addition, the term “clinician” is used generally to refer to medical personnel including doctors, nurses, and support personnel.
It should be appreciated that the instruments described and illustrated herein are configured to fire surgical staples against an anvil surface; however, aspects of the present disclosure are equally applicable with other forms of staples, fasteners, clips, as well as two part fasteners, made of metallic and/or polymeric materials.
Embodiments of the presently disclosed surgical stapling instruments include a curved end effector having a curved anvil assembly and a curved cartridge assembly. It is envisioned that the aspects of the present disclosure may be suitable for use with surgical stapling instruments having linear end effectors.
With initial reference to
A thumb button 12a is slidably positioned on each side of the body 12 of the stapling instrument 10. The thumb buttons 12a are movable to manually advance an alignment pin 86 (
The stapling instrument 10 will be described to the extent necessary to fully disclose aspects of the present disclosure. For a detailed description of the internal structure and function of an exemplary surgical stapling instrument, please refer to commonly owned U.S. Pat. No. 6,817,508 (“the '508 patent”), and commonly owned U.S. Pat. App. Pub. No. 2018/0153544 (“the '544 publication”), the contents of which are incorporated by reference herein in their entireties.
With reference to
The base portion 52 and the transverse portion 54b of the jaw portion 54 of the frame assembly 50 of the end effector 20 are curved. In embodiments, the base portion 52 and the transverse portion 54b of the jaw portion 54 of the frame assembly 50 of the end effector 20 are substantially J-shaped although other curved and linear configurations are also envisioned. In embodiments, the end effector 20 includes a first radius of curvature and a second radius of curvature. The first and second radii of curvature may be increased or decreased to suit a particular procedure and/or to facilitate access to a particular body cavity or location within a body cavity. In some embodiments, the end effector 20 is formed by a plurality of substantially linear sections that are connected to each other to define a curved-like configuration. Each of the anvil assembly 60 and the cartridge assembly 80 include a curved configuration corresponding to the curved configuration of the frame assembly 50 of the end effector 20.
In embodiments, a pusher assembly 56 (
The head portions 32 (
The cartridge assembly 80 will only be described to the extent necessary to fully disclose the aspects of the present disclosure. For a detailed description of the structure and operation of an exemplary pusher assembly, please refer to the '544 publication.
The replaceable cartridge assembly 80 of the stapling instrument 10 includes a housing 82 having a base portion 82a supporting the tissue guide 84 and an alignment pin retaining portion 82a supporting an alignment pin 86 (
Although shown and described as including the pusher assembly 56 (
With particular reference to
With reference to
The tissue guide 184 of the replaceable cartridge assembly 180 extends distally from a base portion 182a of a housing 182 of the replaceable cartridge assembly 180 is fixed to the base portion 182a. The tissue guide 184 includes a tissue piercing tip 184a. During operation of the stapling instrument 10 (
Referring now to
The tissue guide 284 of the replaceable cartridge assembly 280 includes a notch 285. The notch 285 is configured to receive a portion of an L-shaped projection 262 extending from an anvil assembly 260 to releasable retain the tissue guide 284 in an extended position (
With reference now to
The tissue guide member 384 of the replaceable cartridge assembly 380 includes a tissue guide portion 384a and a base portion 384b. The tissue guide portion 384a extends parallel to the base portion 384b and may be integrally formed, as shown, or may be formed separately and secured together in any suitable manner. The tissue guide member 384 is slidable secured to a base portion 382a of the replaceable cartridge assembly 380. The base portion 384b of the tissue guide member 384 defines a pair of opposed cutouts 385 (
With particular reference to
As the replaceable cartridge assembly 380 is slid into the fully loaded position (
With particular reference to
With reference to
With reference now to
With reference to
With particular reference to
Referring to
With reference to
With reference to
Turning to
As shown in
Referring now to
As illustrated in
With reference to
It will be understood that various modifications may be made to the embodiments disclosed herein. For example, the components of the surgical stapling instrument can be formed of any material suitable for surgical use and having the required strength characteristics. Therefore, the above description should not be construed as limiting, but merely as exemplifications of embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2020/074175 | 2/3/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2021/155483 | 8/12/2021 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1158111 | Ahlheim | Oct 1915 | A |
2891250 | Hirata | Jun 1959 | A |
3080564 | Strekopitov et al. | Mar 1963 | A |
3252643 | Strekopov et al. | May 1966 | A |
3269630 | Fleischer | Aug 1966 | A |
3275211 | Hirsch et al. | Sep 1966 | A |
3315863 | O'Dea | Apr 1967 | A |
3494533 | Green et al. | Feb 1970 | A |
3589589 | Akopov | Jun 1971 | A |
3692224 | Astafiev et al. | Sep 1972 | A |
3795034 | Strekopytov et al. | Mar 1974 | A |
3822818 | Strekopytov et al. | Jul 1974 | A |
3935981 | Akopov et al. | Feb 1976 | A |
3949923 | Akopov et al. | Apr 1976 | A |
4047654 | Alvarado | Sep 1977 | A |
4216891 | Behlke | Aug 1980 | A |
4244372 | Kapitanov et al. | Jan 1981 | A |
4272002 | Moshofsky | Jun 1981 | A |
4273281 | Smith | Jun 1981 | A |
4296881 | Lee | Oct 1981 | A |
4305539 | Korolkov et al. | Dec 1981 | A |
4354628 | Green | Oct 1982 | A |
4378901 | Akopov et al. | Apr 1983 | A |
4383634 | Green | May 1983 | A |
4402444 | Green | Sep 1983 | A |
4415112 | Green | Nov 1983 | A |
D273513 | Spreckelmeier | Apr 1984 | S |
4442964 | Becht | Apr 1984 | A |
4470533 | Schuler | Sep 1984 | A |
4475679 | Fleury, Jr. | Oct 1984 | A |
4485811 | Chernousov et al. | Dec 1984 | A |
4506670 | Crossley | Mar 1985 | A |
4506671 | Green | Mar 1985 | A |
4508253 | Green | Apr 1985 | A |
4522327 | Korthoff et al. | Jun 1985 | A |
4527724 | Chow et al. | Jul 1985 | A |
4530453 | Green | Jul 1985 | A |
4550870 | Krumme et al. | Nov 1985 | A |
4566620 | Green et al. | Jan 1986 | A |
4568009 | Green | Feb 1986 | A |
4573622 | Green et al. | Mar 1986 | A |
4580712 | Green | Apr 1986 | A |
4585153 | Failla et al. | Apr 1986 | A |
4589582 | Bilotti | May 1986 | A |
4602634 | Barkley | Jul 1986 | A |
4605001 | Rothfuss et al. | Aug 1986 | A |
4605004 | Di Giovanni et al. | Aug 1986 | A |
4606344 | Di Giovanni | Aug 1986 | A |
4606345 | Dorband et al. | Aug 1986 | A |
4607636 | Kula et al. | Aug 1986 | A |
4612933 | Brinkerhoff et al. | Sep 1986 | A |
4617928 | Alfranca | Oct 1986 | A |
4632290 | Green et al. | Dec 1986 | A |
4665916 | Green | May 1987 | A |
4684051 | Akopov et al. | Aug 1987 | A |
4714187 | Green | Dec 1987 | A |
4715520 | Roehr, Jr. et al. | Dec 1987 | A |
4728020 | Green et al. | Mar 1988 | A |
4767044 | Green | Aug 1988 | A |
4788978 | Strekopytov et al. | Dec 1988 | A |
4802614 | Green et al. | Feb 1989 | A |
4805823 | Rothfuss | Feb 1989 | A |
4819853 | Green | Apr 1989 | A |
4848637 | Pruitt | Jul 1989 | A |
4869414 | Green et al. | Sep 1989 | A |
4881544 | Green et al. | Nov 1989 | A |
4881545 | Isaacs et al. | Nov 1989 | A |
4915100 | Green | Apr 1990 | A |
4930503 | Pruitt | Jun 1990 | A |
4938408 | Bedi et al. | Jul 1990 | A |
4941623 | Pruitt | Jul 1990 | A |
4951861 | Schulze et al. | Aug 1990 | A |
4964559 | Deniega et al. | Oct 1990 | A |
5005754 | Van Overloop | Apr 1991 | A |
5018657 | Pedlick et al. | May 1991 | A |
5071052 | Rodak et al. | Dec 1991 | A |
5100042 | Gravener et al. | Mar 1992 | A |
5116349 | Aranyi | May 1992 | A |
5137198 | Nobis et al. | Aug 1992 | A |
5172845 | Tejeiro | Dec 1992 | A |
5190203 | Rodak | Mar 1993 | A |
5219111 | Bilotti et al. | Jun 1993 | A |
5240163 | Stein et al. | Aug 1993 | A |
5344060 | Gravener et al. | Sep 1994 | A |
5368599 | Hirsch et al. | Nov 1994 | A |
5405073 | Porter | Apr 1995 | A |
5413267 | Solyntjes et al. | May 1995 | A |
5439155 | Viola | Aug 1995 | A |
5452836 | Huitema et al. | Sep 1995 | A |
5458279 | Plyley | Oct 1995 | A |
5462215 | Viola et al. | Oct 1995 | A |
5464144 | Guy et al. | Nov 1995 | A |
5465894 | Clark et al. | Nov 1995 | A |
5470006 | Rodak | Nov 1995 | A |
5470008 | Rodak | Nov 1995 | A |
5470009 | Rodak | Nov 1995 | A |
5497934 | Brady et al. | Mar 1996 | A |
5503320 | Webster et al. | Apr 1996 | A |
5509596 | Green et al. | Apr 1996 | A |
5542594 | Mckean et al. | Aug 1996 | A |
5547117 | Hamblin et al. | Aug 1996 | A |
5558266 | Green et al. | Sep 1996 | A |
5571285 | Chow et al. | Nov 1996 | A |
5579978 | Green et al. | Dec 1996 | A |
5580067 | Hamblin et al. | Dec 1996 | A |
5603443 | Clark et al. | Feb 1997 | A |
5605272 | Witt et al. | Feb 1997 | A |
5605273 | Hamblin et al. | Feb 1997 | A |
5607094 | Clark et al. | Mar 1997 | A |
5615820 | Viola | Apr 1997 | A |
5641111 | Ahrens et al. | Jun 1997 | A |
5678748 | Plyley et al. | Oct 1997 | A |
5697543 | Burdorff | Dec 1997 | A |
5706997 | Green et al. | Jan 1998 | A |
5706998 | Plyley et al. | Jan 1998 | A |
5732871 | Clark et al. | Mar 1998 | A |
5735445 | Vidal et al. | Apr 1998 | A |
5794834 | Hamblin et al. | Aug 1998 | A |
5810240 | Robertson | Sep 1998 | A |
5855311 | Hamblin et al. | Jan 1999 | A |
5878937 | Green et al. | Mar 1999 | A |
5893506 | Powell | Apr 1999 | A |
5894979 | Powell | Apr 1999 | A |
5964394 | Robertson | Oct 1999 | A |
6045560 | McKean et al. | Apr 2000 | A |
6638285 | Gabbay | Oct 2003 | B2 |
6805273 | Bilotti et al. | Oct 2004 | B2 |
6817508 | Racenet et al. | Nov 2004 | B1 |
6988650 | Schwemberger et al. | Jan 2006 | B2 |
7070083 | Jankowski | Jul 2006 | B2 |
7134587 | Schwemberger et al. | Nov 2006 | B2 |
7147139 | Schwemberger et al. | Dec 2006 | B2 |
7147140 | Wukusick et al. | Dec 2006 | B2 |
7204404 | Nguyen et al. | Apr 2007 | B2 |
7207472 | Wukusick et al. | Apr 2007 | B2 |
7210609 | Leiboff et al. | May 2007 | B2 |
7237708 | Guy et al. | Jul 2007 | B1 |
7275674 | Racenet et al. | Oct 2007 | B2 |
RE40237 | Bilotti et al. | Apr 2008 | E |
7407076 | Racenet et al. | Aug 2008 | B2 |
7431190 | Hoffman | Oct 2008 | B2 |
7522854 | Kinouchi et al. | Apr 2009 | B2 |
7549563 | Mather et al. | Jun 2009 | B2 |
7568605 | Kruszynski | Aug 2009 | B2 |
7641092 | Kruszynski et al. | Jan 2010 | B2 |
7717312 | Beetel | May 2010 | B2 |
7731073 | Wixey et al. | Jun 2010 | B2 |
7735704 | Bilotti | Jun 2010 | B2 |
7766207 | Mather et al. | Aug 2010 | B2 |
7810690 | Bilotti et al. | Oct 2010 | B2 |
7828188 | Jankowski | Nov 2010 | B2 |
7886953 | Schwemberger et al. | Feb 2011 | B2 |
8016176 | Kasvikis et al. | Sep 2011 | B2 |
8029520 | Korvick et al. | Oct 2011 | B2 |
8033439 | Racenet et al. | Oct 2011 | B2 |
8070038 | Kostrzewski | Dec 2011 | B2 |
8231041 | Marczyk et al. | Jul 2012 | B2 |
8292904 | Popovic et al. | Oct 2012 | B2 |
8328064 | Racenet et al. | Dec 2012 | B2 |
8360296 | Zingman | Jan 2013 | B2 |
8424738 | Kasvikis | Apr 2013 | B2 |
8499994 | D'Arcangelo | Aug 2013 | B2 |
8596515 | Okoniewski | Dec 2013 | B2 |
8627994 | Zemlok et al. | Jan 2014 | B2 |
8646673 | Bilotti et al. | Feb 2014 | B2 |
8757467 | Racenet et al. | Jun 2014 | B2 |
8936185 | Racenet et al. | Jan 2015 | B2 |
8955732 | Zemlok et al. | Feb 2015 | B2 |
8967446 | Beardsley et al. | Mar 2015 | B2 |
9022273 | Marczyk et al. | May 2015 | B1 |
9125651 | Mandakolathur Vasudevan et al. | Sep 2015 | B2 |
9192382 | Kostrzewski | Nov 2015 | B2 |
9192387 | Holsten et al. | Nov 2015 | B1 |
9480474 | Ji et al. | Nov 2016 | B2 |
9566066 | Kasvikis | Feb 2017 | B2 |
9579102 | Holsten et al. | Feb 2017 | B2 |
9655619 | Zhang et al. | May 2017 | B2 |
9662111 | Holsten et al. | May 2017 | B2 |
9668736 | Holsten et al. | Jun 2017 | B2 |
9675349 | Holsten et al. | Jun 2017 | B2 |
9675350 | Holsten et al. | Jun 2017 | B2 |
9675356 | Racenet et al. | Jun 2017 | B2 |
9814460 | Kimsey et al. | Nov 2017 | B2 |
9888923 | Chen et al. | Feb 2018 | B2 |
9962159 | Heinrich et al. | May 2018 | B2 |
10004504 | Bryant | Jun 2018 | B2 |
10085754 | Sniffin et al. | Oct 2018 | B2 |
10194913 | Nalagatla et al. | Feb 2019 | B2 |
20040164123 | Racenet et al. | Aug 2004 | A1 |
20050145672 | Schwemberger | Jul 2005 | A1 |
20050247752 | Kelly et al. | Nov 2005 | A1 |
20050247753 | Kelly et al. | Nov 2005 | A1 |
20060163312 | Viola et al. | Jul 2006 | A1 |
20060201992 | Racenet et al. | Sep 2006 | A1 |
20070187456 | Viola et al. | Aug 2007 | A1 |
20080093415 | Bilotti | Apr 2008 | A1 |
20090302093 | Kasvikis | Dec 2009 | A1 |
20100048988 | Pastorelli et al. | Feb 2010 | A1 |
20130206813 | Nalagatla | Aug 2013 | A1 |
20160249914 | Zhang et al. | Sep 2016 | A1 |
20160249923 | Hodgkinson et al. | Sep 2016 | A1 |
20160270784 | Wheeler et al. | Sep 2016 | A1 |
20160270790 | Jankowski | Sep 2016 | A1 |
20160270793 | Carter et al. | Sep 2016 | A1 |
20160278779 | Jankowski | Sep 2016 | A1 |
20170014134 | Chen et al. | Jan 2017 | A1 |
20170027571 | Nalagatla et al. | Feb 2017 | A1 |
20170027572 | Nalagatla et al. | Feb 2017 | A1 |
20170027573 | Nalagatla et al. | Feb 2017 | A1 |
20170027574 | Nalagatla et al. | Feb 2017 | A1 |
20170128149 | Heinrich et al. | May 2017 | A1 |
20170189022 | Adams et al. | Jul 2017 | A1 |
20170238923 | Holsten et al. | Aug 2017 | A1 |
20170238924 | Holsten et al. | Aug 2017 | A1 |
20170265861 | Holsten et al. | Sep 2017 | A1 |
20180008261 | Racenet et al. | Jan 2018 | A1 |
20180049739 | Kasvikis | Feb 2018 | A1 |
20180153544 | Maddur Shankarsetty | Jun 2018 | A1 |
20180221024 | Heinrich et al. | Aug 2018 | A1 |
Number | Date | Country |
---|---|---|
106923874 | Jul 2017 | CN |
107106169 | Aug 2017 | CN |
108024810 | May 2018 | CN |
108472039 | Aug 2018 | CN |
108472040 | Aug 2018 | CN |
666057 | Aug 1995 | EP |
3187128 | Jul 2017 | EP |
3329862 | Jun 2018 | EP |
2005193034 | Jul 2005 | JP |
2010259792 | Nov 2010 | JP |
Entry |
---|
Japanese Office Action dated Oct. 24, 2023, issued in corresponding JP Appln. No. 2022-547073, 7 pages. |
International Search Report and Written Opinion dated Oct. 28, 2020, issued in corresponding international application No. PCT/CN2020/074175, 12 pages. |
Extended European Search Report dated Dec. 19, 2023, issued in corresponding EP Application No. 20917522, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20230052972 A1 | Feb 2023 | US |