A tissue integration device includes a biocomposite mixture of a polymer and a homogenously distributed tissue growth-promoting medium for the purpose of facilitating and speeding controlled tissue formation and integration across and within the tissue integration device. Specifically disclosed are methods for manufacturing such devices, for example, but in no way limited to, tissue integration devices or the like.
Many surgical procedures require the use of internal tethering of damaged bone or other tissue in order to fix the bone or tissue in position to address a misalignment, instability, and/or to promote the healing process, for example allowing bone or tendon regrowth at a damaged area. To facilitate such tethering it is often necessary to employ some form of bone or tissue anchor or fixation device to serve as a fixed point to which a suture may be anchored, to allow a tendon or ligament to be sutured and secured to the bone. For instance, when performing a rotator cuff repair or the like, the device may be threaded into a suitable hole formed in a section of bone and secured by a suture to achieve fixation of tendons or ligaments to the respective bone. Fixation or tissue repair devices may also be used to enable additional surgical apparatus to be secured as required.
Such fixation or tissue repair devices may take many forms. For example, an externally threaded bone screw or buttons or plugs are used for soft tissue repair such as upper and lower extremities, pins or darts for meniscal repair or small bone fracture fixation, plates for cranio maxilla facial fracture fixation, nails for fracture fixation, scaffolds for dental or bone grafts, tacks for implant, scaffolds for osteonecrosis, etc.
Commercially produced surgical fixation tools such as screws, pins, anchors, etc. are typically injection molded from a suitable material such as a polymer or the like. These injection molded parts can be manufactured from a single resin or a polymer mixture, which is typically in the form of resin combined with a growth promoting medium, for example tricalcium phosphate (TCP) or any other suitable alternative. In many instances and prior-art devices the polymer employed is biodegradable and when combined with a bioactive material effectively promotes bone or tissue ingrowth thus accelerating the healing process. Despite the development of three-dimensional scaffolds that combine biodegradability and bioactive substances to promote tissue and bone growth at the site of injury, the single biggest challenge has been to improve the mechanical strength of these devices. Better mechanical strength can result in devices with much less material in the human body and further allows addition of more features in these devices, such as optimized structures with pores, vented holes, etc.
One aspect of the present disclosure relates to a tissue integration device. The tissue integration device can be produced by forming a polymer mixture into a shape. The polymer mixture can comprise a polymer resin and a growth-promoting medium. Next, at least one polymer comprising the polymer resin can be oriented in at least one direction. The shaped polymeric material can then be formed into the tissue integration device.
Another aspect of the present disclosure relates to a tissue integration device. The tissue integration device can be produced by forming a polymer mixture into a shape. The polymer mixture can comprise a polymer resin and a growth-promoting medium. Next, at least one polymer comprising the polymer resin can be oriented in at least one direction. When the polymer is oriented, the polymer chains become more aligned in the direction of orientation and improve the mechanical properties of the shaped polymeric mixture or material. The shaped polymeric material can then be formed into the tissue integration device. One or more line-of-sight pores can be formed in the tissue integration device. The one or more line-of-sight pores are sized and dimensioned to promote tissue ingrowth when the tissue integration device is implanted in a subject.
Another aspect of the present disclosure relates to a method for forming a tissue integration device. The method can comprise the steps of: forming a polymer mixture that includes a polymer resin and a growth-promoting medium; processing the polymer mixture into a shape selected from the group consisting of a plaque, a sheet, a film and a strip; orienting at least one polymer comprising the polymer resin in at least one direction; annealing the shaped polymer mixture; cutting the annealed, shaped polymer mixture into at least one strip; wrapping the at least one strip around a mandrel to form a tube of concentric annular layers; compressing the layers together to laminate the layers; and optionally forming one or more pores in the tissue integration device, wherein the one or more pores are sized and dimensioned to promote tissue ingrowth when the tissue integration device is implanted in a subject.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate various example systems, methods, and so on, that illustrate various example embodiments of aspects of the present disclosure. It will be appreciated that the illustrated element boundaries (e.g., boxes, groups of boxes, or other shapes) in the figures represent one example of the boundaries. One of ordinary skill in the art will appreciate that one element may be designed as multiple elements or that multiple elements may be designed as one element. An element shown as an internal component of another element may be implemented as an external component and vice-versa. Furthermore, elements may not be drawn to scale.
The present disclosure will now be described with reference to the accompanying drawings, in which:
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of skill in the art to which the present disclosure pertains.
In the context of the present disclosure, the singular forms “a,” “an” and “the” can include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” as used herein, can specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof.
As used herein, the term “and/or” can include any and all combinations of one or more of the associated listed items.
As used herein, phrases such as “between X and Y” and “between about X and Y” can be interpreted to include X and Y.
As used herein, phrases such as “between about X and Y” can mean “between about X and about Y.”
As used herein, phrases such as “from about X to Y” can mean “from about X to about Y.”
It will be understood that when an element is referred to as being “on,” “attached” to, “connected” to, “coupled” with, “contacting,” etc., another element, it can be directly on, attached to, connected to, coupled with or contacting the other element or intervening elements may also be present. In contrast, when an element is referred to as being, for example, “directly on,” “directly attached” to, “directly connected” to, “directly coupled” with or “directly contacting” another element, there are no intervening elements present. It will also be appreciated by those of skill in the art that references to a structure or feature that is disposed “adjacent” another feature may have portions that overlap or underlie the adjacent feature.
Spatially relative terms, such as “under,” “below,” “lower,” “over,” “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms can encompass different orientations of the apparatus in use or operation in addition to the orientation depicted in the figures. For example, if the apparatus in the figures is inverted, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features.
It will be understood that, although the terms “first,” “second,” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. Thus, a “first” element discussed below could also be termed a “second” element without departing from the teachings of the present disclosure. The sequence of operations (or steps) is not limited to the order presented in the claims or figures unless specifically indicated otherwise.
As used herein, the terms “subject” and “patient” can be used interchangeably and refer to any warm-blooded organism including, but not limited to, human beings, pigs, rats, mice, dogs, goats, sheep, horses, monkeys, apes, rabbits, cattle, etc.
As used herein, the term “tissue” in the context of a tissue integration device can refer to any biological tissue, such as bone, cartilage, tendon, connective tissue, or muscle that a tissue integration device can be fixed onto and/or into.
As used herein, the term “tissue integration device” can include any device or combination of devices formed according to the methods of the present disclosure. Such devices can have a variety of forms including, but not limited to, a suture anchor, a surgical screw, a tack, a pin, a rod or the like, in addition to a bone or tissue scaffold.
As used herein, the term “polymer resin” can refer to a macroscopic mass of material comprising a plurality of polymer molecules, as opposed to the individual microscopic polymer molecules.
As used herein, the term “line-of-sight”, when referring to pores formed in the tissue integration devices of the present disclosure, can refer to pores that form an unobstructed and visible path between inner and outer surfaces of a tissue integration device according to the present disclosure.
As used herein, the terms “homogenously distributed” or “homogenous distribution” can refer to a material (e.g., a polymer mixture) or device (e.g., a tissue integration device) that has uniform physical properties (e.g., mechanical strength) and/or chemical properties with substantially the same composition throughout.
As used herein, the term “stem cell” can refer to a cell that can undergo self-renewal (i.e., progeny with the same differentiation potential) and also produce progeny cells that are more restricted in differentiation potential. Within the context of the invention, a stem cell would also encompass a more differentiated cell that has de-differentiated, for example, by nuclear transfer, by fusion with a more primitive stem cell, by introduction of specific transcription factors, or by culture under specific conditions. One example of a stem cell is a mesenchymal stem cell (MSC). Other examples of stem cells that may be used as part of the devices and methods disclosed herein are described in U.S. Patent Application Publication No. 2011/0020292 A1 to Van't Hof.
One aspect of the present disclosure includes a method 10 (
At Step 12 of the method 10, a polymer mixture is formed. In some instances, the polymer mixture can be referred to herein as a “biocomposite” or a “polymer blend”. The polymer mixture can be formed by mixing a polymer resin and a tissue growth-promoting medium or bio-ceramic. The polymer resin can include at least one natural or synthetic polymer that is bio-absorbable or non-absorbable. Non-limiting examples of polymers can include polylactides (e.g., poly(lactic acid) (PLA), poly L lactic acid (PLLA), or PLDLA 7030), ultra-high-molecular-weight polyethylene (UHMWPE), polyether ether ketone (PEEK), polyurethanes (PU), polytetrafluoroethylene (PTFE), polydioxanone (PDO), poly(epsilon-caprolactone) (PCL), polyorthoester, poly(2-hydroxy-ethyl-methacrylate (PHEMA), polyhydroxy butyrate (PHB), and combinations or mixtures thereof.
The tissue growth-promoting medium or bio-ceramic can include any agent, moiety, or compound capable of promoting tissue ingrowth. Non-limiting examples of tissue growth-promoting media or bio-ceramics can include, but are not limited to, hydroxyapatite (HA), bioactive glasses (BGs), α-tricalcium phosphate (aTCP), β-tricalcium phosphate (βTCP), their derivatives and combinations thereof.
The ratio of the polymer resin to the tissue growth-promoting medium or bio-ceramic in the polymer mixture (in w/w) can range from about 70%:30%, or about 75%:25%, or about 80%:20%, or about 85%:15%, or about 90%:10%, or about 95%:5%, or about 99%:1%. In one example, the ratio of the polymer resin to the tissue growth-promoting medium or bio-ceramic in the polymer mixture can be 85% w/w PLA and 15% w/w βTCP. In another example, the ratio of the polymer resin to the tissue growth-promoting medium or bio-ceramic in the polymer mixture can be 85% w/w PLLA and 15% w/w βTCP. It will be appreciated by those skilled in the art that the polymer resin can be mixed with the tissue growth-promoting medium or bio-ceramic at different ratios as desired to produce a tissue integration device of superior mechanical strength.
After forming the polymer mixture, the polymer mixture is placed in a mold (
Next, at Step 14, the polymer mixture is removed from the mold and formed into a shaped polymer mixture using one or combination of known processing techniques, such as casting, injection molding, extrusion, transfer molding, thermoforming, rotational molding, blow molding, and the like (
At Step 16, at least one polymer comprising the polymer resin in the shaped polymer mixture is subjected to a orienting or a stretching step. Orienting the polymer, including polymer chains that make up the polymer resin, in the shaped polymer mixture improves the mechanical properties (e.g., torsional strength, tensile strength and elongation) and structural properties (e.g., orientation and crystallinity) thereof. The terms “orienting” and “stretching” can be used interchangeably herein and refer to establishing the optimal or maximum or desired or highest stretch ratio target for a polymer. The highest stretch ratio refers to a ratio where the polymer is stretched to its breaking point, whereas the optimal or maximum or desired stretch ratio is a ratio at which the polymer comprising the polymer resin is stretched to almost its breaking point. The stretch ratio target for a given polymer is derived by taking each polymer/material in isolation and challenging the capabilities of that polymer/material until almost its breaking point. Specifically, the polymer is converted into a thin film and then stretched under defined conditions of temperature, speed (stretch rate) and draw-forces. The maximum stretch ratio of a shaped polymer mixture is also dependent on (i) the quality of the film, i.e., free from nicks/cuts, micro cracks, air entrapments/holes, uniform film thickness, and quality film homogeneity before stretching, and (ii) target thickness of the shaped polymer mixture after stretching. For example, if the desired target thickness of a shaped polymer mixture after stretching is 0.05 mm, and its thickness before stretching is 1 mm, then the stretch ratio is calculated as follows:
√(Pre-Stretched Film thickness/Finished Target Bi-Axially Stretched film thickness)*√(1/0.05)=4.47×4.47(19.98)
When the shaped polymer mixture is stretched in only one direction, i.e., along its x-axis, then the shaped polymer mixture is said to be stretched uniaxially. When the shaped polymer mixture is stretched along both the x-axis and the y-axis, then the shaped polymeric mixture is said to be stretched biaxially (
It will be appreciated by one of ordinary skill in the art that the stretch ratio can be varied in the x and y directions to optimize mechanical properties in a given direction. In one example, a shaped polymer mixture can be stretched at least four times more along the x-axis than it is stretched along the y-axis (or vice-versa). In another example, a shaped polymer mixture can be stretched biaxially at a ratio that is not 1:1.
By stretching the shaped polymeric mixture, either uniaxially or biaxially, the polymer chains forming the shaped polymeric mixture are both orientated to align with the axis along which the shaped polymeric mixture is stretched, in addition to being compressed into closer proximity with one another so as to give a higher density of polymer chains. Thus, while the stretched polymeric mixture will have a reduced thickness, it will have a higher density of polymer chains, which are also “oriented”. Where the shaped polymer mixture is biaxially stretched, the chains will tend to orient themselves radially. It was surprisingly found that stretching a shaped polymer mixture biaxially provides a more uniform distribution of the tissue growth-promoting medium or bio-ceramic (e.g., βTCP) throughout the polymer mixture, in addition to imparting superior strength and load (or mechanical) characteristics to the final tissue integration device when compared to a non-oriented or non-stretched polymer mixture.
At Step 18, the stretched polymer mixture is allowed to anneal. The annealing process allows the stretched polymer mixture (e.g., the polymers) to relax to a specific target percentage. In one example, the stretched polymer mixture is subjected to a temperature of about 80° C. to about 250° C. for a period of about 30 seconds to about 5 minutes (e.g., about 2 minutes). The annealing process imparts the stretched polymer mixture with superior performance characteristics in later stages of processing.
At Step 20, the annealed and shaped polymer mixture is cut into one or more strips.
At Step 22, the fully wound mandrel 26 is placed into a suitable compression tool 32 (
The halves 34, 36 are then closed, whereafter pressure and heat are applied for a specified time to completely or fully laminate the wrapped layers of the strip 28. For example, one or more cycles of heating followed by pressure and cooling phases can be applied to the to the fully wound mandrel 26. In some instances, depending on the polymer resin comprising the polymer mixture, each cycle can be about 5-60 minutes (e.g., 20 minutes) in duration and include a temperature that ranges from about 5-300° C. (e.g., 180° C. to 200° C.) and a pressure of 5-282 N/cm2 (e.g., 60 N/cm2). The fully wound mandrel 26 can then be cooled for at least about 15 minutes following compression to permit re-alignment of the polymer chains. This step (Step F) of the method 10 produces a fully cross-laminated structure (e.g., a multi-layered tissue integration device 30). It will be appreciated that any other functional alternative to the compression tool 32 may be employed to achieve the above-described lamination. After a desired period of time, the compression tool 32 is disassembled and the resulting structure (i.e., a tissue integration device 30) removed from the cavity 38. The tissue integration device 30 is ready for surgical implantation or, as discussed below, may be further processed.
At Step 24, the method 10 can additionally or optionally include forming one or more pores 40 in the tissue integration device 30. The one or more pores 40 are sized and dimensioned to promote tissue ingrowth when the tissue integration device 30 is implanted in a subject. Step 24 involves strategic removal of material from the tissue integration device 30 by, for example, laser cutting, rotary die, perforation equipment, and/or any other suitable alternative. It will be appreciated that the shaped polymeric mixture could be initially produced with the porosity integrally formed therein, as described in PCT Publication No. WO 2015/052346 A1 to Durkin et al., thus avoiding the additional step of removing material to produce the porosity. Individual pores 40 formed in the tissue integration device 30 may vary in size and/or shape to achieve a desired functionality in the device. For example, the pores 40 may be structurally discrete or distinct from one another or, alternatively, intersect one another at one or more points. In addition, the particular distribution of the pores 40 may be varied as required.
In some instances, the pores 40 can extend from an exterior surface 42 (
The line-of-sight pores 40 can be formed in the tissue integration device 30 to permit organized intersections between two or more of the pores, thereby providing a high degree of controlled connectivity amongst the pores. The high degree of connectivity facilitates tissue ingrowth as it provides a large surface area to promote cell adhesion and growth. As shown in the exploded region of
Because the method 10 disclosed herein facilitates increased mechanical strength in the produced tissue integration devices, more material can be removed to form interconnected pores 40, larger vented holes, etc., while still meeting the strength requirements of the device 30. This is unlike conventional tissue integration devices, which are injection molded and thus lose significant mechanical strength upon removal of material therefrom. The ability of the present method 10 to provide controlled porosity can not only speed healing and improve the quality of tissue deposited at the implant site, but also permit tissue formation (e.g., vasculature) with sufficient vascularity to sustain viable tissue (e.g., in a patient suffering from osteonecrosis). Advantageously, tissue integration devices 30 formed by the present method 10 can have large vented holes, for example, which permit bone marrow and blood to readily flow through the device and promote tissue ingrowth while still maintaining the mechanical strength required for high stress clinical applications.
Exemplary embodiments of tissue integration devices 30 formed according to the method 10 are illustrated in
The following examples are for the purpose of illustration only and are not intended to limit the scope of the claims, which are appended hereto.
Commercially available, medical grade polymer material that is bio-absorbable is mixed or blended with a tissue growth-promoting medium (e.g., βTCP) at a ratio of 85% w/w polymer to 15% w/w tissue growth-promoting medium and compounded into a pellet form. The blended polymer mixture is then cast into a film or fed into an extruder through a hopper and conveyed forward by a feeding screw, where it is forced through a die to convert the pellets into a continuous polymer mixture. Heating elements applied to the polymer mixture soften and melt the mixture. The resulting polymer mixture produced by the die is cooled by blown air or water bath. The polymer mixture is then compression molded at 200° C. to a thickness dependent on a mold tool and its respective cavity. The resulting polymer mixture is shaped (e.g., as a plaque or sheet) and exhibits homogenously distributed βTCP. The shaped polymer mixture is then subjected to an orientation or stretching process. In order to achieve the highest level of stretching/orientation, the shaped polymer mixture is stretched biaxially (along the x- and y-axes) to a stretch ratio. The oriented polymer mixture is then annealed at temperatures ranging from 80° C. to 200° C. This step allows the polymers comprising the polymer mixture to relax after the stretching process, thereby making the polymers amenable to the subsequent processing steps. The shaped and oriented polymer mixture is then cut into at least one strip, and the cut strip (or strips) is wrapped around a mandrel and placed in the cavity of a compression tool. The wrapped mandrel is compressed at a temperature ranging from about 5° C. to about 300° C., at a pressures of up to 282N/cm2, and for a time of about 5 minutes to about 60 minutes so that the annular layers of the wound strip are laminated to each other. The laminated structure is then allowed to cool for about 5-30 minutes, whereafter a formed tissue integration device is removed from the compression tool. Thereafter, one or more pores or vented holes can be formed in the tissue integration device (e.g., using a laser machining device). The vented holes or pores, along with the homogenous distribution of βTCP, promote tissue ingrowth into the tissue integration device once implanted in a subject.
This Example illustrates a comparison between a tissue integration device prepared according to the present disclosure and a market leading predicate biocomposite device.
Methods and Materials
Comparative torsional strength, identified as a key measurement of clinical relevance, was measured between a tissue integration device prepared according to the present disclosure as a suture anchor, and a market leading predicate of equal material grade and geometry. The market leading suture anchor screw (85% PLLA/15% β-TCP; dimensions 5.5 mm ϕ×19.1 mm length) was used as a control. The control anchor screw (lot/reference #11858530) was produced by Arthrex, Inc. (Naples, Fla.). The tissue integration device was produced using a comparable material grade as the predicate, and to an identical gross geometry, with two different levels of porosity: one was equal to that of the predicate device (Tissue Integration Device 1); while the other contained a higher porosity to the predicate (Tissue Integration Device 2) (
Results
As shown in Table 1 and
From the above description of the present disclosure, those skilled in the art will perceive improvements, changes and modifications. Such improvements, changes, and modifications are within the skill of those in the art and are intended to be covered by the appended claims. All patents, patent applications, and scientific references cited herein are incorporated by reference for their teachings.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/060,181, filed Oct. 6, 2014, the entirety of which is hereby incorporated by reference for all purposes.
Number | Date | Country | |
---|---|---|---|
62060181 | Oct 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15516986 | Apr 2017 | US |
Child | 16716987 | US |