This invention relates generally to devices and methods for ligating tissue, such as the left atrial appendage, using surgically, minimally invasive or intravascular approaches, and to handles for actuating such devices.
Atrial fibrillation is a common problem that afflicts millions of patients. Atrial fibrillation often results in the formation of a thrombus, or clot, in the appendage of the left atrium. This presents a problem, inasmuch as the thrombus can dislodge and embolize to distant organs, which may result in adverse events such as a stroke. For this reason, most patients with atrial fibrillation are treated with one or more blood thinners to help prevent the formation of a thrombus. Blood thinners, however, can present health risks of their own, especially in the elderly. These risks, such as bleeding, often require a user to make significant lifestyle changes.
Several methods have been developed to address the potential problem of thrombus formation in the left atrial appendage. One such method includes suturing the left atrial appendage along the base or ostial neck where it joins the atrial chamber. In this way, blood flow into the atrial appendage is cut off, eliminating the risk of thrombus formation therein. This is typically done through open-heart surgery, which limits the availability of the procedure to those who are at a particularly high risk, or who are otherwise undergoing an open-heart procedure. In addition, open-heart surgery requires general anesthesia and has a number of well-known risks, making it less desirable.
Other methods have also been investigated. These methods include methods of stapling the base of the appendage and methods of filling the appendage with a space occupying or occluding member. Stapling is not preferred given the fragility of the appendage and its tendency to rupture, while occlusion devices may not effectively prevent all blood flow into the appendage.
Additional devices and methods for closing the left atrial appendage or other suitable tissues would therefore be desirable. In particular, devices and methods for closing the left atrial appendage using minimally invasive, intravascular, or a combination of these techniques, would be desirable in order to avoid the need for opening the chest. Of course, additional devices for use in open surgical procedures are desirable as well, especially when those devices offer additional advantages over standard devices.
Described here are devices for closing one or more tissues, and mechanisms for controlling these devices. Generally, the devices described here comprise a snare loop assembly, wherein the snare loop assembly comprises a snare and a suture loop, an elongate body, and a mechanism for controlling the snare loop assembly which may be mounted on a handle. In some variations the snare loop assembly may comprise a retention member that may releasably couple the suture loop and the snare. In other variations the devices comprise one or more force-reducing suture locks to help prevent the suture loop from inadvertently disengaging from the snare loop assembly.
Generally, the elongate body may be attached to the handle and may comprise one or more lumens. In some variations, the elongate body comprises one lumen. In another variation, the elongate body comprises two lumens. In still another variation, the elongate body comprises three or more lumens. In some variations, the elongate body may comprise one or more pieces of separation tubing, which may alter the size or shape of one or more lumens, or may divide one or more lumens into two or more sub-lumens. Additionally, in some variations the elongate body may comprise a tip portion. In some variations, the tip portion may be formed separately from the elongate body and may be attached thereto. In other variations, the tip portion may be formed integrally with the elongate body. The tip portion may have any suitable number of lumens or sub-lumens passing therethrough. In some variations, the tip portion may at least partially house one or more pieces of separation tubing. In some variations, the tip portion comprises a knot-receiving recess for at least temporarily housing a suture knot of a suture loop. In some of these variations, the tip portion may comprise one or more elements that may eject a suture knot from a knot-receiving recess. In some of these variations, a balloon or other expandable structure may be expanded in knot-receiving recess to a eject suture knot therefrom. In other variations, a pusher may be used to eject a suture knot from the knot-receiving recess.
In some variations, the devices may comprise one or more suture management elements to hold a portion of the suture loop within the elongate body. In still other variations, the devices comprise one or more suture hooks. In some variations, the one or more suture hooks comprise one or more springs attached thereto. In some of these variations, the one or more springs may be disposed concentrically around a snare of the snare loop assembly. In other variations, separation tubing may be used to hold excess suture within the elongate body. In some of these variations, the closure device may further comprise a suture tube for releasably holding a length of suture. The suture tube may be configured such that suture held within suture tube may tear or otherwise break through a portion of the suture tube when the suture loop is tightened. In some variations, one end of the suture tube may be attached to separation tubing and the other end of the suture tube may be attached to one or more components of the snare loop assembly (e.g., a snare, a retention member, a suture lock, or the like). In some variations, the suture tube may comprise one or more grooves or cuts on a side thereof. In other variations, the suture tube may comprise one or more strengthening members disposed therein.
In other variations, the closure device may comprise a pulley suture. In some of these variations, the pulley suture may be looped around or doubled over a portion of a suture loop. In other variations, the pulley suture may be temporarily attached to a portion of a suture loop via one or more deformable elements. In some variations, one end of the pulley suture may be temporarily or permanently attached to a snare via a suture lock. Another end of the pulley suture may be attached to one or more components of the device handle. In some of these variations, an end of the pulley suture may be attached to a suture fob. In some of these variations, an end of a suture loop may be attached to the same suture fob.
The handles described here may have any suitable configuration of elements or combination of elements. In some variations, the handle comprises one or more device introducers. In some of these variations, the device introducer may be a guidewire introducer. In other variations, the handle may comprise a strain relief portion, which may help prevent the handle from disengaging with the rest of the closure device. In still other variations, the handle may comprise one or more elements configured to tighten a suture loop. Tightening a suture loop may remove excess suture from the suture loop, release a suture loop from a snare loop assembly, or ligate a target tissue. For example, in some variations, this element is a snare control. In other variations, this element is a suture knob. In some variations, the devices may be actuated and controlled without an actual handle. In some of these variations, one or more devices or systems may be used to control the device, such as a surgical master-slave system utilizing a user-operated computer.
Also described here are methods for closing one or more tissues. In some variations, the methods comprise introducing a closure device into a body, where the closure device comprises a snare loop assembly having an opened configuration and a closed configuration and comprising a snare and a suture loop, where the suture loop has slack when the snare loop assembly is in its closed configuration. The snare loop assembly may be advanced in its closed configuration to a target tissue, opened to its open configuration, advanced over the target tissue, and closed around the target tissue. The slack from the suture loop may then be removed, and the suture tightened to disengage the suture loop from the snare loop assembly and ligate the target tissue. It should be appreciated that the closure device of these methods may be any suitable closure device as described hereinthroughout. In some variations, the method may comprise placing an expandable structure in the left atrial appendage to help position the snare loop assembly. In other variations, the method may comprise placing an expandable structure in or near an entrance to the left atrial appendage to help position the snare loop assembly. In some variations, one or more expandable structures may be released inside of and maintained in the left atrial appendage. In other variations, one or more embolic or haemostatic materials may be delivered to the left atrial appendage to help form a bolus or occlusive structure therein.
FIGS. 12 and 13A-13C illustrate two variations of snare loop assemblies suitable for use with the closure devices described here.
Described here are closure devices, handles for actuating closure devices, and methods for closing tissues using one or more closure devices. Generally, the closure devices comprise a snare loop assembly comprising a snare and a suture loop, such as those described in U.S. patent application Ser. No. 12/055,213, entitled “Devices, Systems, and Methods for Closing the Left Atrial Appendage” and filed on Mar. 5, 2008, which is incorporated by reference herein in its entirety. The devices described here may be suitable for use with minimally invasive access to the left atrial appendage (e.g., through a small incision above, beneath or through the rib cage, through an incision in the costal cartilage or the xiphoid, through a port, through the vasculature, etc.).
Generally, the closure devices described here comprise an elongate body, and a snare loop assembly. In some variations the closure devices may further comprise a handle. A handle or other control mechanism (e.g., a surgical master-slave robotic system) may be used to control and actuate the snare loop assembly through the elongate body, as will be explained in more detail below. The snare loop assembly, in turn, may be used to temporarily or permanently close, tighten, ligate or other restrict tissue. To achieve this, the snare loop assembly may be changed between a delivery, or “closed,” configuration and a deployed, or “open,” configuration, and vice versa, as will be described in more detail below. Placing the snare loop assembly in a closed configuration may allow for low-profile advancement of the snare loop assembly to a target location, or may allow the snare loop assembly to close around a target tissue. Conversely, placing a snare loop assembly in an open configuration may allow the snare loop assembly to be placed around one or more target tissues, or may allow the snare loop assembly to release one or more target tissues previously closed by the snare loop assembly.
In use, a distal end of an elongate body may be advanced into the body toward a target tissue (e.g., the left atrial appendage). This advancement may be done in a minimally invasive manner. During advancement, the snare loop assembly may be in a closed configuration to help prevent the snare loop assembly from snagging or catching on tissue or other obstructions. Once the distal end of the elongate body has reached a location at or near the target tissue, the snare loop assembly may be opened to a deployed configuration. The snare loop assembly may then be advanced, moved, or otherwise manipulated to encircle at least a portion of the target tissue. The snare loop assembly may then be closed around the encircled tissue to close, ligate, or otherwise restrict the target tissue. The snare loop assembly may be re-opened, repositioned, and re-closed as necessary. In some instances, a suture loop (not shown) or other restricting device may be tightened and released from the closure device to maintain the target tissue in a closed fashion. To remove the closure device from the body, the snare loop assembly may again be opened to release the target tissue (it should be appreciated that the suture loop or other closure device may remain in place) such that the snare loop assembly and elongate body may be withdrawn. Once the target tissue is released, the snare loop assembly may be closed to facilitate low-profile withdrawal.
The closure devices may contain one or more additional features, as will be described in more detail below. In some variations, the snare loop assembly comprises one or more force-reducing suture locks. These elements, as will be described in more detail below, may act to releasably or permanently connect various components of the snare loop assembly while reducing forces that are transmitted to one or more portions of the snare loop assembly. In other variations, the closure device may comprise one or more features that helps maintain at least a portion of the suture loop inside of the elongate body when the device is in an opened and/or closed configuration. In some of these variations, the closure device may comprise a suture hook that engages a portion of the snare loop assembly. In other variations, the elongate body may comprise one or more pieces of separation tubing. This separation tubing may further comprise a suture tube attached thereto for releasably holding at least a portion of the suture loop. In still other variations, the elongate body may comprise a pulley suture that engages one or more portions of the snare loop assembly. Each of these features will be described in more detail below, and it should be appreciated that the closure devices described here may comprise any combination of these features.
Snare Loop Assembly
As mentioned above, the snare loop assemblies of the closure devices described here may be used to temporarily close or restrict one or more target tissues. Generally the snare loop assembly comprises a snare, a suture loop, and a retention member at least temporarily connecting the snare and the suture loop. The snare loop assembly may also comprise one or more force-reducing suture locks, as will be described in more detail below.
Snare
In variations of snare loop assemblies comprising a snare, the snare may be at least partially moveable to change a snare loop assembly between open and closed configurations. Generally, a portion of the snare may be housed in the elongate body, and another portion of the snare may extend outside of the distal end of the elongate body to at least partially define the aperture of the snare loop assembly. In some variations, one end of the snare is fixed relative to one or more portions of the closure device, while the other end may be advanced or retracted through the elongate body. Movement of the free end of snare may change the amount of the snare loop assembly that is disposed outside of elongate body, and thus change the size of the aperture defined thereby. Specifically, advancement of the snare through the elongate body may increase the size of the snare loop assembly aperture, while retraction of the snare may decrease the size of the snare loop assembly aperture to close the snare loop assembly. The free end of the snare may be manipulated in any suitable manner. In some variations, the snare may be attached directly to one or more portions of the handle, as will be described in more detail below. In other variations, a hypotube, rod, or other rigid structure may be attached to the free end of the snare. This structure may in turn be moved by the handle, which may help facilitate advancement or withdrawal of the snare through the elongate body.
In variations where one end of the snare is fixed relative to the closure device, the snare may be fixed to any suitable portion of the device. For example, in some variations one end of the snare may be fixedly held in, on, or near a tip of the elongate body. In other variations, the fixed end of the snare may be affixed in one or more lumens of the elongate body. In still other variations, the fixed end of snare may be at least temporarily attached to the device's handle. Although one end of the snare may be temporarily fixed relative to the closure device, it should be appreciated that this fixed end may be configured to be releasable and/or moveable. Configuring the fixed end of the snare to be releasable and/or movable may serve a number of useful functions. In some instances, temporary or permanent device failure may result in the moveable portion of the snare becoming stuck or caught. In these instances, it may be necessary to release the fixed end in order to allow the closure device to release ensnared tissue. In other instances, it may be desirable to move the free end in order to provide for adjustment of the snare using both ends.
When one end of the snare is configured to be temporarily fixed relative to the elongate body, the end of snare may be released from its fixed relation in any suitable manner. For example, in some variations, an end of the snare may be temporarily held in a fixed manner by a frangible member.
The attachment of snare (1600) to frangible member (1604) may help temporarily lock the end of snare (1600) in place. The proximal end (not shown) of frangible member (1604) may be temporarily attached in a fixed manner to one or more portions of the device handle (not shown). Because the proximal end of the frangible member (1604) is held in place, the frangible member (1604) may prevent the snare from being pulled distally out of the end of the elongate body (1602). Additionally, the cross-sectional area of first section (1610) may be different from the cross-sectional area of the second section (1612) such that the end of snare (1600) is unable to pass from first section (1610) into second section (1612). In this way, the snare (1600) is prevented from moving proximally into the elongate body (1602). Additionally, in some variations, at least a portion of snare (1600) and first section (1610) may have non-circular cross sections (e.g., oval, triangle, square, polygon, or shape with irregular geometry) such that the snare (1614) housed within first section (1610) may unable to rotate relative to first section (1610). Because the end of snare (1600) is prevented from moving proximally, distally, or rotating relative to first section (1610) of first sub-lumen (1606), the end of snare may be effectively immobilized relative to the elongate body (1602).
Frangible member (1604) may be configured such that application of a sufficient force to frangible member (1604) is sufficient to break the attachment between frangible member (1604) and snare (1600). To release snare (1600) from its fixed position, a user may pull on the proximal end of frangible member (1604) directly or indirectly (e.g., via one or more handle components). Because the snare (1600) is prevented from moving proximally into second section (1612), sufficient proximal force applied to the frangible member (1604) may act to break the engagement between frangible member (1604) and snare (1600), thereby releasing the snare (1600) as shown in
The snares described here may be made of any suitable material or combination of materials. For example, in some variations the snare may be made from a shape-memory material, such as a shape-memory alloy (e.g., a nickel titanium alloy, etc.), or may be made from stainless steel, polyester, nylon, polyethylene, polypropylene, combinations thereof, and the like. In variations where the snare is made from the shape-memory material, the snare may be configured to take on a particular shape or configuration when the snare loop assembly is placed in an open configuration, but may still be at least partially withdrawn into the elongate body to place the snare loop assembly in a closed configuration. For example, as shown in
Suture Loop
The snare loop assemblies described here may also comprise a suture loop for maintaining tissue in a closed manner. Generally, the suture loop may be releasably attached to the snare, for example, via a retention member, as will be described in more detail below. Furthermore, the suture loop may comprise a suture knot, but need not. This suture knot may be any suitable knot, including, but not limited to, a slip knot (e.g., a one-way slip knot). In some variations, as will be described in more detail below, at least a portion of the knot may be held within the tip of elongate body. In other variations, the suture knot may be temporarily held in fixed relation to the elongate body, as will be described in more detail below.
In variations where the suture loop comprises a slip knot, suture may be advanced or withdrawn through the slip knot to change the size of suture loop. In some instances where the suture knot is held within or against a tip of elongate body, the suture knot may not move while the size of suture loop is changed. This may help prevent the closure device from damaging tissue, as will be described in more detail below.
In some variations, the suture loop further comprises a unidirectional locking structure. In these variations, the unidirectional locking structure may be any structure capable of being advanced along the suture in one direction, but resisting movement in a second direction. In these variations, the locking structure may be advanced over a portion of the suture loop to help lock a suture knot in place. For example, in some variations the unidirectional locking structure may comprise a bead which is placed at least partially around the suture. In these variations, the bead may comprise one or more teeth or projections that allow for the bead to be advanced along the suture in one direction, but prevents or resists movement in the opposite direction. The locking structure may be advanced via one of the closure devices described here, or may be advanced by a separate device after the suture loop has been released from the closure device.
Suture loop may be made from any suitable material useful in exclusion or closure. For example, it may be made of a biodegradable material (e.g., polylactic acid, polyglycolic acid, polylactic-co-glycolic acid, etc.), or may be made of a non-biodegradable material (e.g., metal, steel, polyester, nylon, propylene, silk, combinations thereof and the like).
When the suture loop is tightened to close tissue, it may be possible for tissue to be pulled into the suture knot of the suture loop. If too much tissue is pulled into suture knot, the suture knot may clog or jam in a way that prevents the suture loop from being further tightened. In some variations the suture loop may comprise one or more pledgets or tube sections to help shield a portion of the suture knot.
Retention Member
Elongate Body
As mentioned briefly above, the elongate body of the closure devices described here may connect the distal end of the snare loop assembly and the handle or actuating mechanism while still allowing for control of the snare loop assembly through the elongate body. Specifically, at least a portion of some of the snare loop assembly components may be housed within elongate body, and may be connected to the handle through the elongate body. In some variations, at least a portion of the elongate body may be flexible, which may help facilitate navigation of the elongate body in and through tissue.
In other variations, one or more pre-curved tubes or mandrels may be inserted into elongate body (2100) to create one or more curved sections. In still other variations, one or more pull wires may be disposed in, on, or around elongate body (2100) and may cause elongate body (2100) to flex or bend when one or more of the pull wires is pulled, pushed or otherwise manipulated. It should be further understood that any of the devices described here may be configured for steerability, or may be configured for robotic use (e.g., configured for use with one or more robotic or otherwise automated devices).
Lumens
The elongate bodies described here may have any suitable number of lumens. It should be appreciated that when the term “lumen” is used herein, it may be used to describe any bore or passageway extending through a length of the elongate body or other portion of the closure device. It should be appreciated that a lumen need not be entirely enclosed (i.e., the lumen may comprise one or more slots, slits, gaps or other openings along some or all of the length of the lumen). Elongate body may comprise one, two, three, four, or five or more lumens. Some or all of the lumens may extend entirely through the elongate body (i.e., from the proximal end of the elongate body to the distal end of the elongate body). Other lumens may pass through only a portion of the elongate body (e.g., from one end to an intermediate point along the elongate body, or between two intermediate points along the elongate body). For example, in the variation shown in
The various components of the snare loop assembly may be housed within any lumen or lumens of the elongate body. For example, in some variations, all components of the snare loop assembly may be housed in a single lumen. In other variations, different portions of the snare loop assembly may be at least partially housed in different lumens. For example, in some variations, the elongate body may comprise at least two lumens. In these variations, the free end of suture loop may pass to the handle portion through a first lumen, while the free end of the snare may pass to the handle portion through a second lumen. In variations where the suture loop has excess suture housed within the elongate body, as described in more detail below, this excess suture may be housed in any suitable lumen. For example, in some variations, the excess suture may be held in the same lumen as the free end of the suture loop, in the same lumen as the free end of the snare, or in an altogether different lumen.
In some instances, one or more of the lumens of the elongate body may be at least partially divided into one or more sub-lumens. Specifically, a lumen may be split into two or more sub-lumens along a portion of the length of that lumen. In some of these variations, a piece of separation tubing may be used to divide a lumen into two or more sub-lumens.
It should be appreciated that although shown in
In other variations, a piece of separation tubing may include one or more grooves or channels. These grooves or channels may form a fully-enclosed sub-lumen when placed inside of a lumen of an elongate body. For example,
In some variations it may desirable to configure the separation tubing to allow one or more components of the snare loop assembly to be released therethrough. For example, in some instances a portion of the suture loop may be threaded through two or more lumens/channels of a section of separation tubing, as will be described in more detail below. In order to release the suture loop from the device, it may be necessary to remove any excess suture from separation tubing without undoing or breaking the suture loop. Thus, in some variations, the separation tubing may comprise one or more separation regions (not shown) between two or more lumens, channels, or combinations thereof. The separation regions may be constructed in any suitable manner, such as those described above with respect to the retention members. For example, in some variations the separation region may comprise a perforated region adapted to perforate and allow suture to pull therethrough as the suture loop is tightened. Alternatively, in some variations the separation region may be a thin-walled or other type of weakened region that may be configured to tear or otherwise break upon the application of force from a suture or other device component.
Tips
The elongate body generally comprises a tip portion at the distal end thereof. In some variations, the tip of the elongate body may be formed separately from the elongate body, and may be attached to the body during assembly of the device. In other variations the tip portion may be formed integrally with the elongate body as a unitary device. The tip portion may serve a number of useful functions for closure device. In some instances, the tip may be configured to be atraumatic, which may act to reduce the risk of damaging tissue as the proximal end of the elongate body is moved within the body. In other instances, the tip may allow certain portions of the snare to pass through elongate body while holding other portions in place relative to elongate body, as will be described in more detail below.
The tip portion may have the same number of lumens as the elongate body, but need not. Indeed, in some variations, the tip portion may divide one or more lumens of the elongate body into two or more sub-lumens. In some of these variations, the tip portion may house at least one portion of a piece of separation tubing. In other variations, the tip portion may alter the size or shape of one or more lumens of the elongate body.
In some variations, one sub-lumen may be configured to at least partially house a suture knot of the suture loop. For example, second sub-lumen (2306) shown in
In variations where the tip of an elongate body comprises a knot-receiving recess, it may be desirable to eject or move the suture knot from the recess during or prior to tightening of the suture loop. Moving a suture knot out of the recess may improve the ability of the suture loop to tighten around tissue by improving knot placement relative to tissue. A suture knot may be displaced from the recess in any suitable manner. For example,
In other variations of the closure devices described here, the tip portion may comprise a distal recess.
Closure device (2512) may further comprise separation tubing (2520) that may be disposed partially in third sub-lumen (2510) of tip (2500) and second lumen (2518) of elongate body (2514), and may divide the lumen into sub-lumens (2522) and (2524). Also shown in
Suture knot (2538) may be housed in distal recess (2504). Additionally, second sub-lumen (2508) of tip (2500) and sub-lumen (2522) of separation tubing (2520) may be sized such that suture knot (2538) is unable to pass into either sub-lumen, thereby preventing suture knot (2538) from being pulled or pushed into the elongate body (2514). Additionally, by placing the ends of the suture knots against the entrances to these sub-lumens, the suture loop (2530) may be tightened around tissue while minimizing the amount of tissue that may be pulled into suture knot (2538) as the suture loop (2530) is tightened.
Excess-Suture Management
In operation of the closure devices, it may be desirable to be able to open and close a snare loop assembly without prematurely releasing the suture loop from the snare assembly. Because the size of the continuous aperture defined by the snare loop assembly changes as the snare loop assembly is opened and closed, it may be necessary for the size of the suture loop to change in order to accommodate this change in aperture size and to prevent the suture from being prematurely released from the snare loop assembly. In some variations, opening the snare loop assembly may pull suture through a slip knot to increase the size of the suture loop. This may, however, provide sufficient force to the suture loop to cause the suture to break or sever. To help prevent this undesirable outcome, the suture loop may be sized such that the suture loop is as large as or larger than the size of the aperture defined by the snare loop assembly when the snare loop assembly is in an open configuration. Thus, when the snare loop assembly is opened to a deployed configuration, the suture loop can assume a similar size without needing to advance additional suture through the suture knot. Pre-sizing the suture loop to such a size, however, may result in extra slack in the suture loop when the snare loop assembly is in a closed configuration. To help prevent the excess suture from getting entangled with or caught on anatomical structures, instruments, or other obstructions, some or all of the slack in the suture loop may be held inside of the elongate body when the snare loop assembly is opened and/or closed.
As such, the closure devices described here may comprise one or more excess-suture management features, which may be used in any suitable manner. In some instances, the feature may be configured to apply a force to the excess suture when the device is an open and/or a closed configuration. This force may act to pull the excess suture into the elongate body or may temporarily prevent excess suture from exiting the elongate body. Additionally, this force may act to prevent the excess suture from knotting or bunching up, which may potentially affect device performance. The following is a discussion of a number of different potential suture management features suitable for use for the closure devices described here. It should be appreciated that the closure devices described here may comprise any combination of these suture management features.
Suture Hooks
In some variations, a suture hook may be used to hold the excess suture within the elongate body.
In some variations the proximal end of the suture hook may be able to move relative to the elongate body when snare is advanced from or withdrawn through or within the elongate body.
When snare (1008) is advanced and snare loop assembly is opened, suture loop (1012) may pull suture hook (1010) toward the distal end of the elongate body (1002) to release some of the excess suture from the elongate body (1002) or to allow some of the excess suture to advance within the elongate body (1002). In some variations, suture hook (1010) comprises a spring (1014). Spring (1014) may stretch when suture hook (1010) moves toward the distal end of the elongate body (1002). Conversely, closing the snare loop assembly may reduce the force applied to suture hook (1010) by suture loop (1012), which may allow the return force of the spring (1014) to pull suture hook (1010) proximally. This, in turn, may pull any excess suture back into or through a portion of elongate body (1002). Because excess suture is released from elongate body (1002) when the snare loop assembly is opened and withdrawn into elongate body (1002) when snare loop assembly is closed, the suture loop (1012) may be maintained at the same size as the snare loop assembly. Additionally, because the excess suture is doubled back into the elongate body when held by suture hook (1010), suture hook (1010) need only to be configured to move half as much as snare (1008) in order to maintain the suture loop (1012) at the same size as snare loop assembly.
It should be appreciated that although shown in
In variations where excess suture from suture loop (1012) is held within the elongate body by suture hook (1010), an additional step may be required to release suture loop (1012) from snare loop assembly. Once snare loop assembly is advanced over a target tissue and closed over the tissue, there may be excess suture from suture loop (1012) held in the elongate body by suture hook (1010). Before suture loop (1012) can be released from the snare loop assembly, this slack may first need to be removed. To achieve this, the excess suture may be pulled through a suture knot (not shown) to reduce the size of suture loop (1012). In some variations, suture hook (1010) may be configured to deform once sufficient force is applied thereto. Furthermore, in some variations suture hook (1010) comprises a stop (1016) that prevents suture hook (1010) from moving distally beyond a certain point. Thus, as suture is withdrawn through suture knot and the size of suture loop (1012) decreases, suture loop (1012) places an increasing force on suture hook (1010). Suture hook (1010) may move toward the distal end the elongate body (1002) until stop (1016) engages interconnect (1006). It should be noted that stop (1016) may engage any suitable structure in closure device (1000). When stop (1016) engages interconnect (1006), suture hook (1010) is held in place and eventually the force applied by suture loop (1012) may cause the end of suture hook (1010) to deform and release the remaining excess suture.
After suture loop (1012) has been released from suture hook (1010) and the excess suture has been removed from suture loop (1012), any additional suture that is pulled through suture knot may begin to release suture loop (1012) from the snare loop assembly. If the snare loop assembly is closed around tissue before releasing suture loop (1012), any excess suture may be held within the elongate body (1002). Thus, any excess suture removed from the suture loop (1012) is housed within the elongate body (1002). Because this suture is housed within the elongate body (1002), it will not rub against or otherwise make contact with tissue disposed outside of the elongate body (1002). Additionally, as the suture loop (1012) is released from the snare loop assembly, the suture is released directly into contact with the tissue. Thus, a user may both remove excess suture from the suture loop (1012) and release the suture loop (1012) from the snare loop assembly without rubbing or sliding against the tissue. Because tissue may be damaged when suture slides or rubs against tissue, the closure devices described here may help minimize damage caused to tissue in this way. Once the suture loop (1012) is completely separated from the snare loop assembly, it may be tightened to ligate the target tissue.
As shown in
In some variations, the closure device may be configured to help prevent the suture hook from tangling with snare.
Sleeve (1114) may also act to help prevent tangling between suture hook (1112) and snare (1108). Sleeve (1114) may have two or more lumens. Suture hook (1112) may pass through one lumen, while snare (1108) may pass through a separate lumen. In some variations, sleeve (1114) may be attached to snare (1108). Sleeve (1114) may be attached in any suitable manner (e.g., bonding, welding, mechanical attachment, etc.). In these variations, sleeve (1114) may act as a stop to help release suture loop (1116) from suture hook (1112). As excess suture is removed from suture loop (1116), as described above, spring (1110) may stretch until it comes into contact with sleeve (1114). Once in contact with sleeve, spring (1110) may be held in place while the force exerted on suture hook (1112) by suture loop (1116) may cause suture hook (1112) to deform, and may thereby release suture loop (1116) from suture hook (1112).
Separation Tubing
In some instances it may be desirable to maintain excess suture within the elongate body without the need for a suture hook. Under certain circumstances, as a portion of the elongate body is advanced into or through the body, one or more portions of the elongate body may bend or flex to allow the snare loop assembly to reach a target location. Bending or flexing the elongate body, however, may impede movement of the suture hook or spring, which may potentially impede the snare hook's ability to maintain excess suture loop within the elongate body. Thus, it may be desirable to have a suture maintenance feature that is located in a distal portion of the elongate body.
As such, in some variations of the closure devices described here, one or more pieces of separation tubing may be used to help maintain excess suture within the elongate body, and may thereby limit the exposure or release of excess suture out of the elongate body.
When separation tubing is employed to maintain excess suture within elongate body, it may be necessary for the separation tubing to comprise one or more separation regions to release the excess suture from the elongate body. These separation regions, as described in more detail above, may allow suture to pass therethrough during release of the suture loop. Specifically, as excess suture is removed from the suture loop (i.e., as suture is pulled through the suture knot to tighten the suture loop), the suture may be pulled through the separation regions, allowing the excess suture to span the space between the sub-lumens of the separation tubing.
It should be appreciated that any suitable piece of separation tubing as described in more detail above may be used to maintain excess suture within the elongate body. It should also be appreciated that separation tubing may be used in conjunction with a suture hook, as described above, or one or more additional excess-suture management features. For example, in some instances separation tubing may be used in conjunction with one or more suture tubes. Generally, a suture tube has a first end that may be connected to the separation tubing, a second end that may be connected to a portion of the snare loop assembly, and may temporarily hold excess suture therein. The suture tube may be made from any suitable material (e.g., pebax, tecothane, nylon, or the like), and may be comprise one or more separation regions which may allow the excess suture to be removed from the suture tube.
When placed in lumen (2700), suture tube (2705) may double back upon itself at bend (2718). In this way, the portion of suture loop (2714) temporarily housed in suture tube (2705) may be held in the doubled-back suture tube (2705), which may help prevent the excess suture held within lumen (2700) from bunching. The position of bend (2718) may move as the snare loop assembly is changed between opened and closed configurations. Additionally, in some instances the suture tube (2705) may have a tendency to return to an unbent shape, which may also give the suture tube (2705) tendency to twist and kink at points other than bend (2718). As such, suture tube may comprise one or more features that may help reduce twisting or kinking. For example, in some variations, tube comprises a plurality of cut or slits that may act as relief areas.
In other variations, the suture tube may comprise one or more strengthening members that may affect the rigidity of one or more portions of the suture tube.
Pulley Suture
In still other variations, the snare loop assembly may comprise a second suture, a pulley suture, that may engage a portion of the suture loop to help hold excess suture. Generally, one end of the pulley suture may be fixedly attached to a portion of the closure device (e.g., the handle or the elongate body) while the other end may be temporarily or permanently attached to the snare loop assembly. In some variations, the body of the pulley suture may be looped around or doubled back over a portion of suture loop to help hold a portion of the suture loop in the elongate body.
As mentioned above, one end (not shown) of pulley suture (3002) may be fixedly attached to a portion of the handle (e.g., a suture fob, as will be described in more detail below) while the other end may be temporarily attached to snare (3012) via second suture lock (3018) (suture locks will be described in more detail below). Pulley suture (3002) may also be doubled-back over a portion of suture loop (3010) between knot (3024) and second suture lock (3018), as shown in
In order to release the suture loop (3010) from the closure device (3000), it may be necessary to terminate the engagement between the pulley suture (3002) and suture loop (3010). This engagement may be terminated in any manner. In some variations the pulley suture may be released from suture lock and removed from the elongate body by pulling on one end of the pulley suture (3002). Indeed, pulley suture (3002) may be configured to pull out of or otherwise separate from the second suture lock (3018) upon application of a certain force to the pulley suture. As shown in
In order to release pulley suture (3002) from snare (3008), one end of pulley suture (3002) may be attached to one or more portions of the device's handle. For example,
To release the engagement between pulley suture (1504) and the suture loop (1506), the suture loop (1506) may be pulled away from the pulley suture (1504). This may be done in any suitable manner, such as, for example, tightening the suture loop (1506) or pulling one end of pulley suture (1504) relative to the suture loop (1506). As the suture loop (1506) and pulley suture (1504) are pulled away from each other, the two sutures may apply one or more forces to the deformable link (1508). These forces may cause the deformable link (1508) to deform, which may release the engagement between the suture loop (1506) and pulley suture (1504).
Force Reduction
In some instances, when a suture hook or other suture maintenance feature pulls and holds excess suture in an elongate body, it may exert one or more forces on the suture loop. This force applied to the suture loop may, in some instances, cause the suture loop to prematurely disengage from the snare loop assembly. This is illustrated in
In order to prevent this problem, the snare loop assembly may comprise one or more suture locks.
Generally, second lumen (1318) of force-reducing element (1306) may be configured to compress at least a portion of suture loop (1308). Because suture generally comprises a braided material disposed around a strength member, portions of a suture may be compressed without significantly affecting its strength. Second lumen (1318) may have a cross-sectional area that is smaller than the cross-sectional area of the suture. Thus, a portion of suture loop (1308) may be advanced through or otherwise placed in the second lumen (1318), and the narrow cross-sectional area of second lumen (1318) may act to compress the portion of suture loop (1308) disposed within second lumen, as shown in
Compression of a portion of suture loop (1308) may help prevent suture loop (1308) from prematurely releasing from snare loop assembly (1302). As described above with respect to
Force-reducing suture lock (1306) may comprise one or more slits (1320) or other openings. These slits may allow suture loop (1308) to pass therethrough when it is ready to be deployed. These slits may have any suitable configuration, such as those described in U.S. patent application Ser. No. 12/055,213. Generally, once suture loop (1308) is tightened to remove excess suture from suture loop (1308), the suture loop (1308) may be tightened further, which may cause a portion of the suture loop (1308) to pass through the slit or other opening. As suture passes through the slit, suture loop (1308) may be released from force-reducing suture lock (1306).
In some variations, a force-reducing suture lock may be made from one or more pieces of shrink tubing. In these variations, a portion of the snare and the suture loop may be threaded through one or more lumens of the shrink tubing. One or more stimuli (e.g., heat) may be applied to the shrink tubing, which may cause the shrink tubing to get smaller. This reduction in size may act to hold and connect suture loop and snare.
Handles
Handles or proximal controls that are capable of facilitating removal of excess suture from a suture loop and releases of suture loop from snare loop assembly are provided. Handles having one or more ergonomic features or configurations to help facilitate and improve the use thereof are also described herein.
While shown in
Additionally, while shown in
While handle (300) is shown in
Furthermore, while shown in
Once the snare loop assembly is properly closed, suture fob (310) may be detached from the handle to tighten the suture loop (not shown). As suture fob (310) is pulled away from handle (300), suture fob (310) may pull suture through a suture knot (knot shown) to tighten the suture loop. As the suture loop is tightened, any excess suture held in the elongate body may be removed from the suture loop. Once this slack has been removed, the user may continue to pull suture fob (310) to disengage the suture loop from the snare loop assembly. Once disengaged from the snare loop assembly, the suture loop may be further tightened to ligate the enclosed tissue. The direct connection of suture fob (310) to suture (318) may provide tactile feedback to the operator to indicate the various stages of a closing procedure. More specifically, a user may experience different resistances when pulling suture fob (310) that may correspond to different stages of suture loop tightening. For example, a user may experience a given resistance when removing excess suture (318) from the suture loop. In variations where the closure device comprises a suture hook (not shown), the resistance may change when the suture (318) is released from the suture hook. Additionally, the resistance may change once all of the excess suture has been removed from the suture loop, once the suture loop starts being released from the snare loop assembly, and once the suture loop is completely released from the snare loop assembly.
Additionally, in some variations it may be desirable to ensure that a user may only apply a given force to the suture loop. If a suture loop is tightened too much, it may damage the ensnared tissue. As such, in some variations a suture fob (310) may be configured to break away from suture (318) upon application of a predetermined force (for example, between about 8 lbs and about 10 lbs) to suture fob (310). In this way, the device may be configured such that a user may tighten a suture loop using a suture fob (310) without damaging the ensnared tissue, as the suture fob (310) may be configured to separate from the suture prior to damaging tissue.
Suture (318) may additionally include one or more visual markers (e.g., a colored coating) to indicate when the excess suture (318) has been removed from the suture loop. For example, a portion of suture (318) may have a colored marker located a certain distance from suture fob (310). The distance between the colored marker and the suture fob (310) may correspond to the amount of excess suture in the suture loop when the snare loop assembly is closed. A user may then pull suture (318) out of handle (300) using suture fob (310). When the colored marker becomes visible outside of handle (300) (or through a window in handle (300)), a user may know that the excess suture has been removed. Because the amount of excess suture may be dependent on the size of the loop formed by snare loop assembly, and because the size of the loop formed by snare loop assembly may be changed by snare control (308), in some instances the one or more visual markers on the suture (318) may correspond to one or more visual markers on snare control (308).
Additionally, suture (318) may be connected to suture fob (310) in any suitable manner. In some variations, such as that shown in
In some instances, it may be desirable to remove at least a portion of the excess suture without having to first disengage the suture fob. For example,
In the variation shown in
In some variations, a suture fob control has one or more features to help facilitate actuation of the suture fob control.
In other variations, a handle may have one or more alternative mechanisms to help remove excess suture from a suture loop.
In other variations, a user may not be able to rotate suture knob (706) beyond a certain point. This feature may prevent a user from over-tightening the suture loop or unintentionally releasing the suture loop from the snare loop assembly. In some of these variations, the amount that suture knob (706) is able to rotate may correspond to the amount of excess suture in the suture loop. Generally, by only allowing a user to rotate a suture knob (706) a given distance, a user may know that they have removed a predetermined amount of suture from the suture loop. Depending on the configuration of handle (700), a user knows that all excess suture has removed from the suture loop, and the suture loop is ready to be released from the snare loop assembly. The suture fob (704) may then be released from the handle, and used to release suture loop from the snare loop assembly. Suture fob (704) may be released from handle (700) in any suitable way. In some variations, one or more buttons, knobs, or other controls may be actuated to release suture knob (704) from handle (700). By only allowing a user to rotate a suture knob (706) a given amount, the steps of tightening the suture loop and releasing the suture loop may be divided into two discrete steps, and thus a user does not to release the suture loop immediately after removing excess suture therefrom. This gives a user the ability to remove excess suture from the suture loop, and then to release the suture loop at his or her leisure. This in turn may provide an additional level of freedom to the user, who may want to attend to other matters between tightening the suture and releasing it from the snare loop assembly.
In some variations, a suture knob may be disengaged from the handle to act as a suture fob.
Once the suture knob (804) has been rotated to remove excess suture from the suture loop, the suture knob may be disengaged from handle (800) to act as a suture fob, as described above. In some variations, suture knob (804) may automatically disengage from handle (800) once suture knob (804) has been rotated a certain amount. In some of these variations, suture knob (804) may comprise threading (not shown) that may engage handle (800). When suture knob (804) is rotated a certain amount, it may become “unscrewed” and release suture knob (804) from handle (800). In other variations, suture knob (804) may automatically disengage from handle (800) when the suture loop is subjected to a pre-determined force. In some of these variations, as the suture loop is tightened, it may pull one or more switches, levers, or other controls that disengages suture knob (804) from handle (800). In still other variations, the handle (800) may comprise one or more buttons, knobs, or levers that may be activated to release the suture knob (804) from the handle (800). Additionally, while shown in
Also provided here are ergonomically-improved handles. In some variations, the handle bodies may be shaped to contour to one or more portions of a user's hand. In other variations, the handles described here may have widths greater than their heights. These variations may have any suitable height to width rations, including, but not limited to about 1:1.5, about 1:2, about 1:2.5, about 1:3, or the like. When a user places one of these handles down on a surface, he or she may be more likely to place it on the wider base as opposed to one of the narrower sides. This may be beneficial in preventing device complications, such as rotation of the snare loop assembly, elongate body, or handle during a procedure, which may either damage the target tissue or interfere with the functioning of the closure device. If a user is less likely to place a handle on one of its narrower sides when setting the handle on a tray or another surface, then he or she may be less likely to overly rotate the handle during a procedure.
In other variations, the handle may comprise one or more protrusions that may help ensure the device is laid down with a particular orientation.
Although the foregoing invention has, for the purposes of clarity and understanding been described in some detail by way of illustration and example, it will be apparent that certain changes and modifications may be practiced, and are intended to fall within the scope of the appended claims. Additionally, it should be appreciated that the closure devices described here may comprise any combination of device components and features described above.
Methods
Methods for closing the left atrial appendage are also described here. It should be appreciated that any of the devices described above may be used in conjunction with one or more of the methods described here or those described in U.S. patent application Ser. No. 12/055,213. Generally, methods described here comprise accessing the left atrial appendage. Once access has been achieved, a closure device (such as those described above) may be advanced to the left atrial appendage. In some variations, the closure devices may be advanced and positioned with the help of one or more guide devices and/or one or more stabilizing/positioning devices (e.g., an expandable member or the like). The closure device may be used to ensnare and close the left atrial appendage. A suture loop or other closure element may be tightened and released from the closure device to hold the left atrial appendage in closed configuration. The closure device may be withdrawn, and a portion of the suture may be severed. These steps will be described in more detail below.
As mentioned above, some variations of the methods described here may comprise gaining access to the left atrial appendage. In some variations, the methods for closing the left atrial appendage include accessing the left atrial appendage from both the inside of the heart and the outside of the heart. To access the inside of the heart, the vasculature is typically used. For example, access may be obtained via one or several of the various veins or arteries (jugular, femoral, carotid, etc.). In some variations, the heart is accessed on the inside via the common femoral vein (e.g., the left common femoral vein) using a standard Seldinger technique with a needle. An introducer wire may then be advanced through the needle, followed by an introducer sheath. The introducer wire may then be removed. In some variations, a guiding catheter sheath may be placed as an alternative to an introducer sheath or the initial sheath may be replaced with a guiding catheter sheath.
Using fluoroscopy, an angiogram performed through the sheath, a catheter placed through the sheath, a guiding catheter sheath, or any combination thereof, may be performed to observe anatomical characteristics and considerations of the access route for the purpose of transseptal access into the left atrium (e.g., tortuosity, clots, devices, such as vena cava filters, etc.). Fluoroscopy, ultrasound, intracardiac echocardiography, extracardiac echocardiography, transesophageal echocardiography, or combinations thereof, may be used to help visualize transseptal access to the left atrium, and access to the left atrium may be obtained using standard trans septal access techniques.
For access to the heart from the outside, a subthoracic access point may be used. The access point is typically identified based on patient anatomical characteristics. In some variations, the access point may be any suitable location (e.g., intercostal access via a sternotomy, thoracostomy, or thoracotomy, right of the xiphoid process and pointed towards the patient's left shoulder, or in the costal cartilage or xiphoid process itself). Once the access point has been determined, a needle (e.g., a 17G Tuohy needle) may be advanced using standard pericardiocentsesis techniques under fluoroscopic guidance. After access to the pericardium has been obtained, a guidewire may be advanced through the needle under fluoroscopic visualization within the pericardiac sac. The needle may then be removed. Access to the pericardial space has thus been obtained.
In other variations, the left atrial appendage may be closed off using the systems and devices described here without performing both access procedures as described above. For example, in some variations the methods comprise advancing a first guide having a proximal end and a distal end into the left atrial appendage, through the left atrial appendage, and out of the left atrial appendage, such that one of the proximal or distal ends is within the vasculature, and one of the proximal or distal ends is within the subthoracic space.
By virtue of gaining access to the left atrial appendage, one or more guides having alignment members may be advanced to the left atrial appendage. These guides may be any suitable guide, such as those described in U.S. patent application Ser. No. 12/055,213. For example, first and second guides having alignment members may be used to guide the procedure. The alignment member may be any suitable alignment member (e.g., interconnecting elements, one or more vacuum members, radiopaque or echogenic markers, members that are configured to produce an audible response, magnets, etc.). In some variations, the alignment members are magnets located at the distal ends of the guides. The magnets may be made from or comprise any suitable magnetic material, e.g., a rare earth magnet, such as neodymium-iron-boron, cobalt-samarium, or other powerful fixed magnet elements. These guides may be used for guiding additional tools and/or devices to the left atrial appendage.
For example, in some variations, a first guide may be advanced into the left atrial appendage, while the second guide may be advanced into the pericardial space adjacent to the left atrial appendage. Either of these guides may be advanced under any of a variety of visualization techniques, e.g., fluoroscopic visualization, ultrasound visualization, some combination thereof, etc. Once the first and second guide members have been advanced to the left atrial appendage, one or more positioning and/or stabilizing elements (e.g., balloons or other expandable structures) may be advanced over or in conjunction with the first guide (e.g., it may be coupled to or be part of the first guide) and into the left atrial appendage. Similarly, a closure device may be advanced over the second guide to the exterior of the left atrial appendage. It should be appreciated that the closure device may be any of the closure devices described above.
When placed in the left atrial appendage, the positioning element may be used to help position the snare loop assembly of a closure device. In some variations, an expandable structure may be inflated or otherwise expanded in or near the opening of the left atrial appendage and the snare loop assembly of the closure device may be closed around the left atrial appendage distally of the expandable structure. In these variations, the expandable structure may help position the closure device away from the Coumadin ridge. In other variations, the expandable member may be expanded inside of the left atrial appendage. In some of these variations, when the expandable member is expanded, the left atrial appendage may become distended and its shape changed from roughly conical to roughly spherical, thus better defining the junction between the left atrial appendage and left atrium. In addition, the expandable member in its expanded state may be at a pressure much greater than that of the left atrium proper, resulting in a significant differential in tension between the left atrial appendage and the left atrium. In these variations, the expandable member may help position the closure device near the base of the left atrial appendage. In still other variations, one expandable structure may be expanded in or near the opening of the left atrial appendage while a second expandable structure may be expanded inside of the left atrial appendage. In these variations, the snare loop assembly of the closure device may be closed around the left atrial appendage between the two expandable structures, which may help ensure correct device positioning.
It should be appreciated that the expandable structure may be any suitable expandable structure. In some variations, one or more the expandable structures may be a balloon or another inflatable structure. In some of these variations, the balloon or balloons may be attached to a catheter. In some variations, the balloon or inflatable structure may be configured to be detached in an expanded state inside of the left atrial appendage. In other variations, the expandable structure may comprise an expandable mesh or cage structure. This mesh may be self-expanding or mechanically expandable, and may be made from any suitable material (e.g., platinum, nitinol, stainless steel, Dacron wool, PTFE, combinations thereof, or the like). Again, the expandable mesh or cage structure may be configured to be detached in an expanded state in the left atrial appendage, but need not be.
While the expandable member is in an expanded state, the snare loop assembly may be moved to an open configuration and may be placed around a portion of the left atrial appendage. Once placed around the left atrial appendage, the snare loop assembly may be closed around the left atrial appendage. In some variations, the snare loop assembly is placed around the left atrial appendage while the balloon is in its deflated or unexpanded stated, and then the balloon is expanded after the snare loop assembly is closed. In some instances it may be desirable to confirm proper closure of the appendage prior to tightening of the suture. If closure is not adequate or otherwise not desirable, the snare loop assembly may be opened, repositioned, closed, and then confirmed once again.
Once proper closure has been affected, the suture loop may be tightened to release the suture loop from the snare loop assembly. In some variations, the snare loop assembly may then be returned to an open configuration and the suture loop may be tightened again. This may act to help ensure that the suture loop is sufficiently tightened around the left atrial appendage. In some variations, a user may re-tighten the suture loop after waiting for a period of time. This waiting period may allow tissue to readjust and settle within suture loop, which may allow for a tighter closure of tissue. This period of time may be any suitable period of time, such as, for example, greater than about 30 seconds, greater than about a minute, or greater than about 2 minutes. After releasing the suture loop from the snare loop assembly, the closure device may be withdrawn. In some variations, it may be desirable to further tighten the suture loop after the closure device has been withdrawn. This may be accomplished with one or more additional devices (e.g., a knot pusher).
It should be appreciated that some or all of the guide member or positioning elements may be removed from the left atrial appendage at any suitable point or points during the methods. For example, in some variations, some or all of these structures may be removed from the left atrial appendage after closing the snare loop assembly but prior to releasing the suture loop from the snare loop assembly. In other variations, some or all of these structures may be removed after releasing the suture loop from the snare loop assembly. The suture loop may be further tightened after some or all of these elements are removed. In still other variations, one or more expandable members may be detached and may remain in the left atrial appendage. In these variations, the expanded member may act to displace blood from the left atrial appendage and to help keep additional blood from entering the left atrial appendage. When the expandable member comprises a balloon or inflatable structure, the balloon may be filled with any suitable substance, such as, for example, saline or one or more hydrophilic polymers (e.g., hydroxyethyl methacrylate).
In yet other variations, one of the guide members or other elements placed inside of the left atrial appendage may be configured to release one or more materials to the closed left atrial appendage prior to removal. This material may act to create haemostasis or embolization of the closed left atrial appendage, which may prevent the ingress and egress of blood from the closed left atrial appendage. Examples of suitable materials include, but are not limited to gelatins (e.g., gel foam), liquid embolic agents (e.g. n-butyle-2-cyanoacrylate, ethidol), gelatin microspheres (e.g., polyvinyl alcohol acrylic microspheres), or pieces of thrombotic materials (e.g., platinum, stainless steel, Dacron wool, combinations thereof or the like).
In some variations, it may be desirable to lock the suture knot in place once the suture loop has been tightened around the left atrial appendage. In some variations, the suture knot may be locked using one or more unidirectional locking structures, as described in more detail above. In other variations, the knot may be locked in place with one or more bioglues or other biocompatible adhesives (e.g., cyanoacrylate). In still other variations, energy (e.g., RF energy, thermal energy, light energy, or the like) may be used to fuse the knot in place. In yet other variations, one or more portions of the suture knot may be configured to expand upon application of or exposure to one or more stimuli. For example, in some variations the suture may comprise collagen filaments that may be exposed to moisture when the suture is severed. Once the collagen is exposed to moisture, it may expand to lock the suture knot in place.
Once the suture loop has been properly placed, the suture may be severed in any suitable fashion, and at any suitable location along its length (i.e., from immediately adjacent to the knot at the left atrial appendage to just proximal to, or just distal to, the skin surface). In some instances it may be desirable to sever the suture at the knot itself (e.g., in instances where it is desirable to release tension on the suture entirely). The suture may be severed in any suitable manner, such as for example by mechanically cutting, or by the application of energy. For example, the suture may be severed with the application of light energy, thermal energy, RF energy, electrical energy, magnetic energy, electromagnetic energy, kinetic energy, chemical energy, and combinations of any of the above.
This application claims priority to U.S. Provisional Patent Application Ser. No. 61/165,828, filed on Apr. 1, 2009, which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3496932 | Prisk et al. | Feb 1970 | A |
3677597 | Stipek | Jul 1972 | A |
3802074 | Hoppe | Apr 1974 | A |
3841685 | Kolodziej | Oct 1974 | A |
3999555 | Person | Dec 1976 | A |
4018229 | Komiya | Apr 1977 | A |
4030509 | Heilman et al. | Jun 1977 | A |
4078305 | Akiyama | Mar 1978 | A |
4181123 | Crosby | Jan 1980 | A |
4249536 | Vega | Feb 1981 | A |
4257278 | Papadofrangakis et al. | Mar 1981 | A |
4319562 | Crosby | Mar 1982 | A |
4596530 | McGlinn | Jun 1986 | A |
4662377 | Heilman et al. | May 1987 | A |
4765341 | Mower et al. | Aug 1988 | A |
4817608 | Shapland et al. | Apr 1989 | A |
4901405 | Grover et al. | Feb 1990 | A |
4944753 | Burgess et al. | Jul 1990 | A |
4991578 | Cohen | Feb 1991 | A |
4991603 | Cohen et al. | Feb 1991 | A |
4998975 | Cohen et al. | Mar 1991 | A |
5033477 | Chin et al. | Jul 1991 | A |
5108406 | Lee | Apr 1992 | A |
5163942 | Rydell | Nov 1992 | A |
5163946 | Li | Nov 1992 | A |
5176691 | Pierce | Jan 1993 | A |
5181123 | Swank | Jan 1993 | A |
5226535 | Rosdhy et al. | Jul 1993 | A |
5226908 | Yoon | Jul 1993 | A |
5242459 | Buelna | Sep 1993 | A |
5243977 | Trabucco et al. | Sep 1993 | A |
5269326 | Verrier | Dec 1993 | A |
5281238 | Chin et al. | Jan 1994 | A |
5300078 | Buelna | Apr 1994 | A |
5306234 | Johnson | Apr 1994 | A |
5318578 | Hasson | Jun 1994 | A |
5336229 | Noda | Aug 1994 | A |
5336252 | Cohen | Aug 1994 | A |
5385156 | Oliva | Jan 1995 | A |
5387219 | Rappe | Feb 1995 | A |
5403331 | Chesterfield et al. | Apr 1995 | A |
5405351 | Kinet et al. | Apr 1995 | A |
5417684 | Jackson et al. | May 1995 | A |
5423821 | Pasque | Jun 1995 | A |
5423830 | Schneebaum et al. | Jun 1995 | A |
5433457 | Wright | Jul 1995 | A |
5433730 | Alt | Jul 1995 | A |
5443481 | Lee | Aug 1995 | A |
5449367 | Kadry | Sep 1995 | A |
5494240 | Waugh | Feb 1996 | A |
5498228 | Royalty et al. | Mar 1996 | A |
5540711 | Kieturakis et al. | Jul 1996 | A |
5571161 | Starksen | Nov 1996 | A |
5591177 | Lehrer | Jan 1997 | A |
5609597 | Lehrer | Mar 1997 | A |
5624430 | Eton et al. | Apr 1997 | A |
5624453 | Ahmed | Apr 1997 | A |
5634895 | Igo et al. | Jun 1997 | A |
5676162 | Larson, Jr. et al. | Oct 1997 | A |
5676651 | Larson, Jr. et al. | Oct 1997 | A |
5678547 | Faupel et al. | Oct 1997 | A |
5681278 | Igo et al. | Oct 1997 | A |
5682906 | Sterman et al. | Nov 1997 | A |
5683364 | Zadini et al. | Nov 1997 | A |
5683445 | Swoyer | Nov 1997 | A |
5693059 | Yoon | Dec 1997 | A |
5693091 | Larson, Jr. et al. | Dec 1997 | A |
5699748 | Linskey, Jr. et al. | Dec 1997 | A |
5702430 | Larson, Jr. et al. | Dec 1997 | A |
5707336 | Rubin | Jan 1998 | A |
5716367 | Koike et al. | Feb 1998 | A |
5716392 | Bourgeois et al. | Feb 1998 | A |
5727569 | Benetti et al. | Mar 1998 | A |
5728151 | Garrison et al. | Mar 1998 | A |
5735877 | Pagedas | Apr 1998 | A |
5741281 | Martin | Apr 1998 | A |
5752526 | Cosgrove | May 1998 | A |
5766151 | Valley et al. | Jun 1998 | A |
5766216 | Gangal et al. | Jun 1998 | A |
5766217 | Christy | Jun 1998 | A |
5769863 | Garrison | Jun 1998 | A |
5779727 | Orejola | Jul 1998 | A |
5792151 | Heck et al. | Aug 1998 | A |
5797870 | March et al. | Aug 1998 | A |
5797929 | Andreas et al. | Aug 1998 | A |
5797946 | Chin | Aug 1998 | A |
5799661 | Boyd et al. | Sep 1998 | A |
5810845 | Yoon | Sep 1998 | A |
5823946 | Chin | Oct 1998 | A |
5827216 | Igo et al. | Oct 1998 | A |
5840059 | March et al. | Nov 1998 | A |
5855586 | Habara et al. | Jan 1999 | A |
5865791 | Whayne et al. | Feb 1999 | A |
5871531 | Struble | Feb 1999 | A |
5873876 | Christy | Feb 1999 | A |
5879375 | Larson, Jr. et al. | Mar 1999 | A |
5882299 | Rastegar et al. | Mar 1999 | A |
5893869 | Barnhart et al. | Apr 1999 | A |
5895298 | Faupel et al. | Apr 1999 | A |
5897586 | Molina | Apr 1999 | A |
5900433 | Igo et al. | May 1999 | A |
5906620 | Nakao et al. | May 1999 | A |
5908429 | Yoon | Jun 1999 | A |
5908435 | Samuels | Jun 1999 | A |
5910124 | Rubin | Jun 1999 | A |
5910129 | Koblish et al. | Jun 1999 | A |
5921994 | Andreas et al. | Jul 1999 | A |
5924424 | Stevens et al. | Jul 1999 | A |
RE36269 | Wright | Aug 1999 | E |
5941819 | Chin | Aug 1999 | A |
5961440 | Schweich, Jr. et al. | Oct 1999 | A |
5964699 | Rullo et al. | Oct 1999 | A |
5968010 | Waxman et al. | Oct 1999 | A |
5972013 | Schmidt | Oct 1999 | A |
5984866 | Rullo et al. | Nov 1999 | A |
5984917 | Fleischman et al. | Nov 1999 | A |
5991668 | Leinders et al. | Nov 1999 | A |
5997525 | March et al. | Dec 1999 | A |
6006122 | Smits | Dec 1999 | A |
6010531 | Donlon et al. | Jan 2000 | A |
6015382 | Zwart et al. | Jan 2000 | A |
6045570 | Epstein et al. | Apr 2000 | A |
6048329 | Thompson et al. | Apr 2000 | A |
6059750 | Fogarty et al. | May 2000 | A |
6067942 | Fernandez | May 2000 | A |
6071281 | Burnside et al. | Jun 2000 | A |
6081738 | Hinohara et al. | Jun 2000 | A |
6083153 | Rullo et al. | Jul 2000 | A |
6090042 | Rullo et al. | Jul 2000 | A |
6095968 | Snyders | Aug 2000 | A |
6110170 | Taylor et al. | Aug 2000 | A |
6120431 | Magovern et al. | Sep 2000 | A |
6132438 | Fleischman et al. | Oct 2000 | A |
6148230 | KenKnight | Nov 2000 | A |
6149595 | Seitz et al. | Nov 2000 | A |
6152144 | Lesh et al. | Nov 2000 | A |
6152920 | Thompson et al. | Nov 2000 | A |
6152936 | Christy et al. | Nov 2000 | A |
6155968 | Wilk | Dec 2000 | A |
6157852 | Selmon et al. | Dec 2000 | A |
6161543 | Cox et al. | Dec 2000 | A |
6162195 | Igo et al. | Dec 2000 | A |
6167889 | Benetti | Jan 2001 | B1 |
6199556 | Benetti et al. | Mar 2001 | B1 |
6200303 | Verrior et al. | Mar 2001 | B1 |
6206004 | Schmidt et al. | Mar 2001 | B1 |
6224584 | March et al. | May 2001 | B1 |
6231518 | Grabek et al. | May 2001 | B1 |
6237605 | Vaska et al. | May 2001 | B1 |
6241667 | Vetter et al. | Jun 2001 | B1 |
6258021 | Wilk | Jul 2001 | B1 |
6266550 | Selmon et al. | Jul 2001 | B1 |
6280415 | Johnson | Aug 2001 | B1 |
6283127 | Sterman et al. | Sep 2001 | B1 |
6290674 | Roue et al. | Sep 2001 | B1 |
6293906 | Vanden Hoek et al. | Sep 2001 | B1 |
6296630 | Altman et al. | Oct 2001 | B1 |
6311692 | Vaska et al. | Nov 2001 | B1 |
6311693 | Sterman et al. | Nov 2001 | B1 |
6314962 | Vaska et al. | Nov 2001 | B1 |
6314963 | Vaska et al. | Nov 2001 | B1 |
6319201 | Wilk | Nov 2001 | B1 |
6333347 | Hunter et al. | Dec 2001 | B1 |
6346074 | Roth | Feb 2002 | B1 |
6379366 | Fleischman et al. | Apr 2002 | B1 |
6423051 | Kaplan et al. | Jul 2002 | B1 |
6474340 | Vaska et al. | Nov 2002 | B1 |
6485407 | Alferness et al. | Nov 2002 | B2 |
6488689 | Kaplan et al. | Dec 2002 | B1 |
6494211 | Boyd et al. | Dec 2002 | B1 |
6551303 | Van Tassel et al. | Apr 2003 | B1 |
6561969 | Frazier et al. | May 2003 | B2 |
6592552 | Schmidt | Jul 2003 | B1 |
6610055 | Swanson et al. | Aug 2003 | B1 |
6610072 | Christy et al. | Aug 2003 | B1 |
6613062 | Leckrone et al. | Sep 2003 | B1 |
6632229 | Yamanouchi | Oct 2003 | B1 |
6652555 | Van Tassel et al. | Nov 2003 | B1 |
6656175 | Francischelli et al. | Dec 2003 | B2 |
6666861 | Grabek | Dec 2003 | B1 |
6692491 | Phan | Feb 2004 | B1 |
6733509 | Nobles et al. | May 2004 | B2 |
6736774 | Benetti et al. | May 2004 | B2 |
6755338 | Hahnen et al. | Jun 2004 | B2 |
6786898 | Guenst | Sep 2004 | B2 |
6789509 | Motsinger | Sep 2004 | B1 |
6830174 | Hillstead et al. | Dec 2004 | B2 |
6830576 | Fleischman et al. | Dec 2004 | B2 |
6985776 | Kane et al. | Jan 2006 | B2 |
7011671 | Welch | Mar 2006 | B2 |
7041111 | Chu | May 2006 | B2 |
7056294 | Khairkhahan et al. | Jun 2006 | B2 |
7063682 | Whayne et al. | Jun 2006 | B1 |
7063693 | Guenst | Jun 2006 | B2 |
7175619 | Koblish et al. | Feb 2007 | B2 |
7186214 | Ness | Mar 2007 | B2 |
7207988 | Leckrone et al. | Apr 2007 | B2 |
7226440 | Gelfand et al. | Jun 2007 | B2 |
7226458 | Kaplan et al. | Jun 2007 | B2 |
7264587 | Chin | Sep 2007 | B2 |
7294115 | Wilk | Nov 2007 | B1 |
7297144 | Fleischman et al. | Nov 2007 | B2 |
7309328 | Kaplan et al. | Dec 2007 | B2 |
7318829 | Kaplan et al. | Jan 2008 | B2 |
7326221 | Sakamoto et al. | Feb 2008 | B2 |
7331979 | Khosravi et al. | Feb 2008 | B2 |
7473260 | Opolski et al. | Jan 2009 | B2 |
7608091 | Goldfarb et al. | Oct 2009 | B2 |
7618425 | Yamamoto et al. | Nov 2009 | B2 |
7722641 | van der Burg et al. | May 2010 | B2 |
7828810 | Liddicoat et al. | Nov 2010 | B2 |
7846168 | Liddicoat et al. | Dec 2010 | B2 |
7905900 | Palermo et al. | Mar 2011 | B2 |
7918865 | Liddicoat et al. | Apr 2011 | B2 |
8105342 | Onuki et al. | Jan 2012 | B2 |
8157818 | Gartner et al. | Apr 2012 | B2 |
8287561 | Nunez et al. | Oct 2012 | B2 |
8469983 | Fung et al. | Jun 2013 | B2 |
8636767 | McClain | Jan 2014 | B2 |
8771297 | Miller et al. | Jul 2014 | B2 |
8795297 | Liddicoat et al. | Aug 2014 | B2 |
20010025132 | Alferness et al. | Sep 2001 | A1 |
20020017306 | Cox et al. | Feb 2002 | A1 |
20020022860 | Borillo et al. | Feb 2002 | A1 |
20020049457 | Kaplan et al. | Apr 2002 | A1 |
20020058925 | Kaplan et al. | May 2002 | A1 |
20020062136 | Hillstead et al. | May 2002 | A1 |
20020068970 | Cox et al. | Jun 2002 | A1 |
20020099390 | Kaplan et al. | Jul 2002 | A1 |
20020103492 | Kaplan et al. | Aug 2002 | A1 |
20020107531 | Schreck et al. | Aug 2002 | A1 |
20020111636 | Fleischman et al. | Aug 2002 | A1 |
20020111637 | Kaplan et al. | Aug 2002 | A1 |
20030014049 | Koblish et al. | Jan 2003 | A1 |
20030024537 | Cox et al. | Feb 2003 | A1 |
20030045900 | Hahnen et al. | Mar 2003 | A1 |
20030069577 | Vaska et al. | Apr 2003 | A1 |
20030083542 | Alferness et al. | May 2003 | A1 |
20030083674 | Gibbens, III | May 2003 | A1 |
20030109863 | Francischelli et al. | Jun 2003 | A1 |
20030120264 | Lattouf | Jun 2003 | A1 |
20030158464 | Bertolero | Aug 2003 | A1 |
20030181942 | Sutton et al. | Sep 2003 | A1 |
20030187460 | Chin et al. | Oct 2003 | A1 |
20030236535 | Onuki et al. | Dec 2003 | A1 |
20040030335 | Zenati et al. | Feb 2004 | A1 |
20040034347 | Hall et al. | Feb 2004 | A1 |
20040044361 | Frazier et al. | Mar 2004 | A1 |
20040049210 | VanTassel et al. | Mar 2004 | A1 |
20040059352 | Burbank et al. | Mar 2004 | A1 |
20040064138 | Grabek | Apr 2004 | A1 |
20040078069 | Francischelli et al. | Apr 2004 | A1 |
20040102804 | Chin | May 2004 | A1 |
20040106918 | Cox et al. | Jun 2004 | A1 |
20040111101 | Chin | Jun 2004 | A1 |
20040116943 | Brandt et al. | Jun 2004 | A1 |
20040162579 | Foerster | Aug 2004 | A1 |
20040225212 | Okerlund et al. | Nov 2004 | A1 |
20040225300 | Goldfarb et al. | Nov 2004 | A1 |
20040243176 | Hahnen et al. | Dec 2004 | A1 |
20040260273 | Wan | Dec 2004 | A1 |
20050033280 | Francischelli et al. | Feb 2005 | A1 |
20050033287 | Sra | Feb 2005 | A1 |
20050033321 | Fleischman et al. | Feb 2005 | A1 |
20050043745 | Alferness et al. | Feb 2005 | A1 |
20050085843 | Opolski et al. | Apr 2005 | A1 |
20050107824 | Hillstead et al. | May 2005 | A1 |
20050149068 | Williams et al. | Jul 2005 | A1 |
20050149069 | Bertolero et al. | Jul 2005 | A1 |
20050154376 | Riviere et al. | Jul 2005 | A1 |
20050154404 | Liddicoat | Jul 2005 | A1 |
20050165466 | Morris et al. | Jul 2005 | A1 |
20050256532 | Nayak et al. | Nov 2005 | A1 |
20060004323 | Chang et al. | Jan 2006 | A1 |
20060004388 | Whayne et al. | Jan 2006 | A1 |
20060009715 | Khairkhahan et al. | Jan 2006 | A1 |
20060020162 | Whayne et al. | Jan 2006 | A1 |
20060020271 | Stewart et al. | Jan 2006 | A1 |
20060020336 | Liddicoat | Jan 2006 | A1 |
20060034930 | Khosravi et al. | Feb 2006 | A1 |
20060100545 | Ayala et al. | May 2006 | A1 |
20060200169 | Sniffin | Sep 2006 | A1 |
20060212045 | Schilling et al. | Sep 2006 | A1 |
20060247672 | Vidlund et al. | Nov 2006 | A1 |
20060253128 | Sekine et al. | Nov 2006 | A1 |
20060253129 | Liddicoat et al. | Nov 2006 | A1 |
20070016228 | Salas | Jan 2007 | A1 |
20070027456 | Gartner et al. | Feb 2007 | A1 |
20070060951 | Shannon | Mar 2007 | A1 |
20070073313 | Liddicoat et al. | Mar 2007 | A1 |
20070083082 | Kiser et al. | Apr 2007 | A1 |
20070083225 | Kiser et al. | Apr 2007 | A1 |
20070083232 | Lee | Apr 2007 | A1 |
20070088369 | Shaw et al. | Apr 2007 | A1 |
20070100405 | Thompson et al. | May 2007 | A1 |
20070135822 | Onuki et al. | Jun 2007 | A1 |
20070149988 | Michler et al. | Jun 2007 | A1 |
20070179345 | Santilli | Aug 2007 | A1 |
20070249991 | Whayne et al. | Oct 2007 | A1 |
20070260278 | Wheeler et al. | Nov 2007 | A1 |
20070270637 | Takemoto et al. | Nov 2007 | A1 |
20070270891 | McGuckin, Jr. | Nov 2007 | A1 |
20080009843 | de la Torre | Jan 2008 | A1 |
20080033241 | Peh et al. | Feb 2008 | A1 |
20080033457 | Francischelli et al. | Feb 2008 | A1 |
20080039879 | Chin et al. | Feb 2008 | A1 |
20080097489 | Goldfarb et al. | Apr 2008 | A1 |
20080147097 | Liddicoat et al. | Jun 2008 | A1 |
20080221593 | Liddicoat et al. | Sep 2008 | A1 |
20080228265 | Spence et al. | Sep 2008 | A1 |
20080243183 | Miller et al. | Oct 2008 | A1 |
20080294174 | Bardsley et al. | Nov 2008 | A1 |
20080294175 | Bardsley et al. | Nov 2008 | A1 |
20080312664 | Bardsley et al. | Dec 2008 | A1 |
20090043317 | Cavanaugh et al. | Feb 2009 | A1 |
20090082797 | Fung et al. | Mar 2009 | A1 |
20090143791 | Miller et al. | Jun 2009 | A1 |
20090157118 | Miller et al. | Jun 2009 | A1 |
20100069925 | Friedman et al. | Mar 2010 | A1 |
20100174296 | Vakharia et al. | Jul 2010 | A1 |
20110144660 | Liddicoat et al. | Jun 2011 | A1 |
20130144311 | Fung et al. | Jun 2013 | A1 |
Number | Date | Country |
---|---|---|
0 598 219 | May 1994 | EP |
0 598 219 | May 1994 | EP |
0 598 219 | May 1994 | EP |
1 010 397 | Jun 2000 | EP |
1 506 142 | Apr 1978 | GB |
7-296645 | Nov 1995 | JP |
7-299073 | Nov 1995 | JP |
11-507262 | Jun 1999 | JP |
2001-120560 | May 2001 | JP |
2002-540901 | Dec 2002 | JP |
2003-225241 | Aug 2003 | JP |
2004-000601 | Jan 2004 | JP |
2005-110860 | Apr 2005 | JP |
2005-296645 | Oct 2005 | JP |
2005-531360 | Oct 2005 | JP |
2007-504886 | Mar 2007 | JP |
WO-9401045 | Jan 1994 | WO |
WO-9404079 | Mar 1994 | WO |
WO-9408514 | Apr 1994 | WO |
WO-9640356 | Dec 1996 | WO |
WO-9711644 | Apr 1997 | WO |
WO-9743957 | Nov 1997 | WO |
WO-0061202 | Oct 2000 | WO |
WO-2004002327 | Jan 2004 | WO |
WO-2004066828 | Aug 2004 | WO |
WO-2004066828 | Aug 2004 | WO |
WO-2005034767 | Apr 2005 | WO |
WO-2005034767 | Apr 2005 | WO |
WO-2005034802 | Apr 2005 | WO |
WO-2005034802 | Apr 2005 | WO |
WO-2006110734 | Oct 2006 | WO |
WO-2006115689 | Nov 2006 | WO |
WO-2007056502 | May 2007 | WO |
WO-2008036408 | Mar 2008 | WO |
WO-2008036408 | Mar 2008 | WO |
WO-2008091612 | Jul 2008 | WO |
WO-2008091612 | Jul 2008 | WO |
WO-2008121278 | Oct 2008 | WO |
WO-2009039191 | Mar 2009 | WO |
WO-2009094237 | Jul 2009 | WO |
WO-2010006061 | Jan 2010 | WO |
WO-2010006061 | Jan 2010 | WO |
WO-2010048141 | Apr 2010 | WO |
WO-2010048141 | Apr 2010 | WO |
WO-2010110530 | Oct 2010 | WO |
Entry |
---|
Afibfacts.com (Date Unknown). “Cox-Maze III: The Gold Standard Treatment for Atrial Fibrillation: Developing a Surgical Option for Atrial Fibrillation,” located at <http://www.afibfacts.com/Treatment—Options—for—Atrial—Fibrillation/Cox-Maze—III%—3a—The—Gold—Standard—Treatment—for—Atrial—Fibrillation >, last visited on Apr. 20, 2007, 4 pages. |
Al-Saady, N.M. et al. (1999). “Left Atrial Appendage: Structure, Function, and Role in Thromboembolism,” Heart 82:547-554. |
Albers, G.W. (Jul. 11, 1994). “Atrial Fibrillation and Stroke: Three New Studies, Three Remaining Questions,” Arch Intern Med 154:1443-1448. |
Alonso, M. et al. (Mar. 4, 2003). “Complications With Femoral Access in Cardiac Catheterization. Impact of Previous Systematic Femoral Angiography and Hemostasis With VasoSeal-Es® Collagen Plug,” Rev. Esp. Cardiol. 56(6):569-577. |
Aronow, W.S. et al. (Apr. 2009). “Atrial Fibrillation: The New Epidemic of the Age-ing World,” Journal of Atrial Fibrillation 1(6):337-361. |
Babaliaros, V.C. et al. (Jun. 3, 2008). “Emerging Applications for Transseptal Left Heart Catheterization: Old Techniques for New Procedures,” Journal of the American College of Cardiology 51(22):2116-2122. |
Bath, P.M.W. et al. (2005). “Current Status of Stroke Prevention in Patients with Atrial Fibrillation,” European Heart Journal Supplements 7(Supplement C):C12-C18. |
Benjamin, B.A. et al. (1994). “Effect of Bilateral Atrial Appendectomy on Postprandial Sodium Excretion in Conscious Monkeys,” Society for Experimental Biology and Medicine 2006:1 page. |
Beygui, F. et al. (2005, e-pub. Oct. 21, 2005). “Multimodality Imaging of Percutaneous Closure of the Left Atrial Appendage,” Clinical Vignette, 1 page. |
Bisleri, G. et al. (Jun. 3, 2005). “Innovative Monolateral Approach for Closed-Chest Atrial Fibrillation Surgery,” The Annals of Thoracic Surgery 80:e22-e25. |
Björk, V.O. et al. (Aug. 1961). “Sequelae of Left Ventricular Puncture with Angiocardiography,” Circulation 24:204-212. |
Blackshear, J.L. et al. (Feb. 1996). “Appendage Obliteration to Reduce Stroke in Cardiac Surgical Patients With Atrial Fibrillation,” Ann. Thorac. Surg. 61(2), 13 pages. |
Blackshear, J.L. et al. (Oct. 1, 2003). “Thorascopic Extracardiac Obliteration of the Left Atrial Appendage for Stroke Risk Reduction in Atrial Fibrillation,” J. Am. Coll. Cardiol. 42(7):1249-1252. |
Bonanomi, G. et al. (Jan. 1, 2003). “Left Atrial Appendectomy and Maze,” Journal of the American College of Cardiology 41(1):169-171. |
Bonow, R.O. et al. (1998). “Guidelines for the Management of Patients With Valvular Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Patients With Valvular Heart Disease),” Journal of the American Heart Association 98:1949-1984. |
Botham, R.J. et al. (May 1959). “Pericardial Tamponade Following Percutaneous Left Ventricular Puncture,” Circulation 19:741-744. |
Brock, R. et al. (1956). “Percutaneous Left Ventricular Puncture in the Assessment of Aortic Stenosis,” Thorax 11:163-171. |
Burke, R.P. et al. (1992). “Improved Surgical Approach to Left Atrial Appendage Aneurysm,” Journal of Cardiac Surgery 7(2):104-107. |
Canaccord Adams (Aug. 11, 2008). “A-Fib: Near a Tipping Point,” 167 pages. |
Chung, M.K. (Jul. 2003). “Current Clinical Issues in Atrial Fibrillation,” Cleveland Clinic Journal of Medicine 70(Supp. 3):S6-S11. |
Coffin, L.H. (Jun. 1985). “Use of the Surgical Stapler to Obliterate the Left Atrial Appendage,” Surgery, Gynecology & Obstetric 160:565-566. |
Connolly, S.J. (Sep. 7, 1999). “Preventing Stroke in Atrial Fibrillation: Why Are So Many Eligible Patients Not Receiving Anticoagulant Therapy?” Canadian Medical Association 161(5):533-534. |
Costa, R. et al. (2006). “Bi-Atrial Subxiphoid Epicardial Pacemaker in Superior Vena Cava Syndrome,” Arq. Bras. Cardiol. 87:e45-e47. |
Cox, J.L. et al. (Apr. 1991). “The Surgical Treatment of Atrial Fibrillation: IV. Surgical Technique,” J. Thorac. Cardiovasc. Surg. 101(4):584-592. |
Cox, J.L. et al. (Aug. 1995). “Modification of the Maze Procedure for Atrial Flutter and Atrial Fibrillation I. Rationale and Surgical Results,” J. Thorac. Cardiovasc. Surg. 110(2):473-484. |
Cox, J.L. et al. (Aug. 1995). “Modification of the Maze Procedure for Atrial Flutter and Atrial Fibrillation II. Surgical Technique of the Maze III Procedure,” J. Thorac. Cardiovasc. Surg. 110(2):485-495. |
Cox, J.L. et al. (Nov. 1999). “Impact of the Maze Procedure on the Stroke Rate in Patients with Atrial Fibrillation,” J. Thorac. Cardiovasc. Surg. 118:833-840. |
Cox, J.L. et al. (2004). “The Role of Surgical Intervention in the Management of Atrial Fibrillation,” Texas Heart Institute Journal 31 (3):257-265. |
Crystal, E. et al. (Jan. 2003). “Left Atrial Appendage Occlusion Study (LAAOS): A Randomized Clinical Trial of Left Atrial Appendage Occlusion During Routine Coronary Artery Bypass Graft Surgery for Long-term Stroke Prevention,” Am Heart J 145(1):174-178. |
D'Avila, A. et al. (Apr. 2003). “Pericardial Anatomy for the Interventional Electrophysiologist,” Journal of Cardiovascular Electrophysiology 14(4):422-430. |
D'Avila, A. et al. (Nov. 2007). “Experimental Efficacy of Pericardial Instillation of Anti-inflammatory Agents During Percutaneous Epicardial Catheter Ablation to Prevent Postprocedure Pericarditis,” Journal of Cardiovascular Electrophysiology 18(11):1178-1183. |
Demaria, A.N. et al. (Dec. 17, 2003). “Highlights of the Year JACC 2003,” Journal of the American College of Cardiology 42(12):2156-2166. |
Deneu, S. et al. (Jul. 11, 1999). “Catheter Entrapment by Atrial Suture During Minimally Invasive Port-access Cardiac Surgery,” Canadian Journal of Anesthesia 46(10):983-986. |
Deponti, R. et al. (Mar. 7, 2006). “Trans-Septal Catheterization in the Electrophysiology Laboratory: Data From a Multicenter Survey Spanning 12 Years,” Journal of the American College of Cardiology 47(5):1037-1042. |
Donal, E. et al. (Sep. 2005). “The Left Atrial Appendage, a Small, Blind-Ended Structure: A Review of Its Echocardiographic Evaluation and Its Clinical Role,” Chest 128(3):1853-1862. |
Donnino, R. et al. (2007). “Left Atrial Appendage Thrombus Outside of a ‘Successful’ Ligation,” European Journal of Echocardiography pp. 1-2. |
Dullum, M.K.C. et al. (1999). “Xyphoid MIDCAB: Report of the Technique and Experience with a Less Invasive MIDCAB Procedure,” Heart Surgery Forum 2(1):77-81. |
Feinberg, W.M. et al. (Mar. 13, 1995). “Prevalence, Age Distribution, and Gender of Patients With Atrial Fibrillation,” Arch Intern Med 155:469-473. |
Fieguth, H.G. et al. (1997). “Inhibition of Atrial Fibrillation by Pulmonary Vein Isolation and Auricular Resection-Experimental Study in a Sheep Model,” European Journal of Cardio-Thoracic Surgery 11:714-721. |
Final Office Action mailed on Jun. 22, 2009, for U.S. Appl. No. 10/963,371, filed on Oct. 11, 2004, 11 pages. |
Final Office Action mailed on Apr. 14, 2010, for U.S. Appl. No. 11/600,671, filed on Nov. 15, 2006, 7 pages. |
Final Office Action mailed on Jul. 21, 2010, for U.S. Appl. No. 11/400,714, filed on Apr. 7, 2006, 10 pages. |
Fisher, D.C. et al. (Dec. 1998). “Large Gradient Across a Partially Ligated Left Atrial Appendage,” Journal of the American Society of Echocardiography 11(12):1163-1165. |
Friberg, L. et al. (2006). “Stroke Prophylaxis in Atrial Fibrillation: Who Gets it and Who Does Not?” European Heart Journal 27:1954-1964. |
Friedman, P.A. et al. (Aug. 2009). “Percutaneous Epicardial Left Atrial Appendage Closure: Preliminary Results of an Electrogram Guided Approach,” Journal of Cardiovascular Electrophysiology 20(8):908-915. |
Fuster, V. et al. (Oct. 2001). “ACC/AHA/ESC Guidelines for the Management of Patients with Atrial Fibrillation,” European Heart Journal 22(20):1852-1923. |
Garcia-Fernandez, M.A. et al. (Oct. 1, 2003). “Role of Left Atrial Appendage Obliteration in Stroke Reduction in Patients With Mitral Valve Prosthesis,” Journal of the American College of Cardiology 42(7):1253-1258. |
Gardiner, G.A. Jr. et al. (Apr. 1986). “Complications of Transluminal Angioplasty,” Radiology 159:201-208. |
Gillinov, A.M. (2007). “Advances in Surgical Treatment of Atrial Fibrillation,” Stroke 38(part 2):618-623. |
Gilman, R.A. et al. (Apr. 1963). “Direct Left Ventricular Puncture,” California Medicine 98(4):200-203. |
Goodwin, W.E. et al. (Nov. 1950). “Translumbar Aortic Puncture and Retrograde Catheterization of the Aorta in Aortography and Renal Arteriography,” Annals of Surgery 132(5):944-958. |
Gottlieb, L.K. et al. (Sep. 12, 1994). “Anticoagulation in Atrial Fibrillation,” Arch Intern Med. 154:1945-1953. |
Graffigna, A. et al. (1993). “Surgical Treatment of Wolff-Parkinson-White Syndrome: Epicardial Approach Without the Use of Cardiopulmonary Bypass,” J. Card. Surg. 8:108-116. |
Haissaguerre, M. et al. (Nov. 2005). “Catheter Ablation of Long-Lasting Persistent Atrial Fibrillation: Clinical Outcome and Mechanisms of Subsequent Arrhythmias,” Journal of Cardiovascular Electrophysiology 16(11):1138-1147. |
Halperin, J.L. et al. (Aug. 1988). “Atrial Fibrillation and Stroke: New Ideas, Persisting Dilemmas,” Journal of the American Heart Association 19(8):937-941. |
Halperin, J.L. et al. (Oct. 1, 2003). “Obliteration of the Left Atrial Appendage for Prevention of Thromboembolism,” Journal of the American College of Cardiology 42(7):1259-1261. |
Hammill, S.C. (May 2006). “Epicardial Ablation: Reducing the Risks,” J. Cardiovasc. Electrophysiol. 17:550-552. |
Hara, H. et al. (Jan. 2008). “Percutaneous Left Atrial Appendage Obliteration,” JACC: Cardiovascular Imagin 1(1):92-93. |
Hart, R.G. et al. (Nov. 2, 1999). “Atrial Fibrillation and Thromboembolism: A Decade of Progress in Stroke Prevention,” Annals of Internal Medicine 131(9):688-695. |
Hart, R.G. et al. (2001). “Atrial Fibrillation and Stroke: Concepts and Controversies,” Stroke 32:803-808. |
Hart, R.G. (Sep. 11, 2003). “Atrial Fibrillation and Stroke Prevention,” The New England Journal of Medicine 349(11):1015-1016. |
Healey, J.S. et al. (Oct. 2003). “Surgical Closure of the Left Atrial Appendage for the Prevention of Stroke: A Randomized Pilot Trial of Safety and Efficacy (The Left Atrial Appendage Occlusion Study—LAAOS),” presented at The Canadian Cardiovascular Congress 2003, Toronot, Canada, Abstract No. 666, 2 pages. |
Healey, J.S. et al. (Aug. 2005). “Left Atrial Appendage Occlusion Study (LAAOS): Results of a Randomized Controlled Pilot Study of Left Atrial Appendage Occlusion During Coronary Bypass Surgery in Patients at Risk for Stroke,” American Heart Journal 150(2):288-293. |
Hein, R. et al. (2005). “Patent Foramen Ovale and Left Atrial Appendage: New Devices and Methods for Closure,” Pediatric Cardiology 26(3):234-240. |
Heist, E.K. et al. (Nov. 2006). “Analysis of the Left Atrial Appendage by Magnetic Resonance Angiography in Patients with Atrial Fibrillation,” Heart Rhythm 3(11):1313-1318. |
Ho, I. et al. (Apr. 24, 2007). “Percutaneous Epicardial Mapping Ablation of a Posteroseptal Accessory Pathway,” Circulation 115:e418-e421. |
Ho, S.Y. et al. (Nov. 1999). “Anatomy of the Left Atrium: Implications for Radiofrequency Ablation of Atrial Fibrillation,” Journal of Cardiovascular Electrophysiology 10(11):1525-1533. |
Hoit, B.D. et al. (Jan. 1993). “Altered Left Atrial Compliance After Atrial Appendectomy. Influence on Left Atrial and Ventricular Filling,” Circulation Research 72(1):167-175. |
Inoue, Y. et al. (Jul.-Aug. 1997). “Video Assisted Thoracoscopic and Cardioscopic Radiofrequency Maze Ablation,” Asaio Journal 43(4):334-337, Abstract Only. |
International Search Report mailed on Jun. 1, 2010, for PCT Application No. PCT/US2010/029668, filed on Apr. 1, 2010, 1 page. |
Jaïs, P. et al. (2003). “Radiofrequency Ablation for Atrial Fibrillation,” European Society of Cardiology 5(Supplement H):H34-H39. |
Johnson, W.D. et al. (2000). “The Left Atrial Appendage: Our Most Lethal Human Attachment! Surgical Implications,” Euro. J. Cardiothoracic. Surg. 17:718-722. |
Jongbloed, M.R.M. et al. (2005). “Clinical Applications of Intracardiac Echocardiography in Interventional Procedures,” Heart 91:981-990. |
Kamohara, K. et al. (Aug. 2006). “Evaluation of a Novel Device for Left Atrial Appendage Exclusion: The Second-generation Atrial Exclusion Device,” The Journal of Thoracic and Cardiovascular Surgery 132(2):340-346. |
Kanderian, A.S. et al. (2008). “Success of Surgical Left Atrial Appendage Closure: Assessment by Transesophageal Echocardiography,” Journal of the American College of Cardiology 52(11):924-929. |
Kato, H. et al. (Aug. 1, 1996). “Evaluation of Left Atrial Appendage Stasis in Patients With Atrial Fibrillation Using Transesophageal Echocardiography With an Intravenous Albumin-Contrast Agent,” The American Journal of Cardiology 78:365-369. |
Katz, E.S. et al. (Aug. 2000). “Surgical Left Atrial Appendage Ligation is Frequently Incomplete: A Transesophageal Echocardiographic Study,” Journal of the American College of Cardiology 36(2):468-471. |
Kenner, H.M. et al. (Dec. 1966). “Intrapericardial, Intrapleural, and Intracardiac Pressures During Acute Heart Failure in Dogs Studied without Thoracotomy,” Circulation Research 19:1071-1079. |
Kerut, E.K. et al. (Jul. 2008). “Anatomy of the Left Atrial Appendage,” Echocardiography 25(6):669-673. |
Khargi, K. et al. (2005). “Surgical Treatment of Atrial Fibrillation: A Systematic Review,” European Journal of Cardiothoracic Surgery 27:258-265. |
Kim, K.B. et al. (Jan. 1998). “Effect of the Cox Maze Procedure on the Secretion of Atrial Natriuretic Peptide,” J. Thorac. Cardiovasc. Surg. 115(1):139-146; discussion 146-147. |
Kistler, P.M. et al. (May 2007). “The Left Atrial Appendage: Not Just an Innocent Bystander,” J. Cardiovasc Electrophysiol 18(5):465-466. |
Klein, H. et al. (Apr. 1990). “The Implantable Automatic Cardioverter-Defibrillator,” Herz 15(2):111-125, Abstract Only. |
Kolb, C. et al. (Feb. 2004). “Incidence of Antitachycardia Therapy Suspension Due to Magnet Reversion in Implantable Cardioverter Defibrillators,” Pace 27:221-223. |
Krikorian, J.G. et al. (Nov. 1978). “Pericardiocentesis,” Am. J. Med. 65(5):808-814. |
Krum, D. et al. (2004). “Visualization of Remnants of the left Atrial Appendage Following Epicardial Surgical Removal,” Heart Rhythm 1:249. |
Lacomis, J.M. et al. (Oct. 2003). “Multi-Detector Row CT of the Left Atrium and Pulmonary Veins before Radio-frequency Catheter Ablation for Atrial Fibrillation,” Radio Graphics 23:S35-S48. |
Lacomis, J.M. et al. (2007, e-pub. Oct. 17, 2007). “Dynamic Multidimensional Imaging of the Human Left Atrial Appendage,” Europace 9:1134-1140. |
Lee, R. et al. (1999). “The Closed Heart MAZE: A Nonbypass Surgical Technique,” The Annals of Thoracic Surgery 67:1696-1702. |
Levinson, M.L. et al. (1998). “Minimally Invasive Atrial Septal Defect Closure Using the Subxyphoid Approach,” Heart Surg. Forum 1(1):49-53, Abstract Only. |
Lewis, D.R. et al. (1999). “Vascular Surgical Intervention for Complications of Cardiovascular Radiology: 13 Years' Experience in a Single Centre,” Ann. R. Coll. Surg. Engl. 81:23-26. |
Li, H. (2007). “Magnet Decoration, Beautiful But Potentially Dangerous for Patients with Implantable Pacemakers or Defibrillators,” Heart Rhythm 4(1):5-6. |
Lindsay, B.D. (1996). “Obliteration of the Left Atrial Appendage: A Concept Worth Testing,” The Annals of Thoracic Surgery 61:515. |
Lip, G.Y.H. et al. (Jun. 2001). “Thromboprophylaxis for Atrial Flutter,” European Heart Journal 22(12):984-987. |
Lustgarten, D.L. et al. (May/Jun. 1999). “Cryothermal Ablation: Mechanism of Tissue Injury and Current Experience in the Treatment of Tachyarrhythmias,” Progress in Cardiovascular Diseases 41(6):481-498. |
Macris, M. et al. (Jan. 1999). “Minimally Invasive Access of the Normal Pericardium: Initial Clinical Experience with a Novel Device,” Clin. Cardiol. 22(Suppl. I):I-36-I-39. |
Maisch, B. et al. (Jan. 1999). “Intrapreicardial Treatment of Inflammatory and Neoplastic Pericarditis Guided by Pericardioscopy and Epicardial Biopsy—Results from a Pilot Study,” Clin. Cardiol. 22(Supp. I):I-17-I-22. |
Mannam, A.P. et al. (Apr. 1, 2002). “Safety of Subxyphoid Pericardial Access Using a Blunt-Tip Needle,” The American Journal of Cardiology 89:891-893. |
Mattox, K.L. et al. (May 1997). “Newer Diagnostic Measure and Emergency Management,” Ches Surg Clin N Am. 7(2):213-226, Abstract Only. |
McCarthy, P.M. et al. (2008). “Epicardial Atrial Fibrillation Ablation,” Chapter 23 in Contemporary Cardiology: Atrial Fibrillation, From Bench to Bedside, Natale, A. et al. eds., Humana Press,: Totowa, NJ, pp. 323-332. |
McCaughan, J.J. Jr., et al. (Nov. 1957). “Aortography Utilizing Percutaneous Left Ventricular Puncture,” located at <http://www.archsurg.com>, last visited on Apr. 7, 2009, 73:746-751, Abstract Only. |
McClelland, R.R. (1978). “Congenital Aneurysmal Dilatation of the Left Auricle Demonstrated by Sequential Cardiac Blood-Pool Scintiscanning,” J. Nucl. Med. 19(5):507-509. |
Melo, J. et al. (Apr. 21, 2008). “Surgery for Atrial Fibrillation in Patients with Mitral Valve Disease: Results at Five Years from the International Registry of Atrial Fibrillation Surgery,” The Journal of Thoracic and Cardiovascular Surgery 135(4):863-869. |
Miller, P.S.J. et al. (Feb. 2005). “Are Cost Benefits of Anticoagulation for Stroke Prevention in Atrial Fibrillation Underestimated?” Stroke 36:360-366. |
Miyasaka, Y. et al. (Jul. 11, 2006). “Secular Trends in Incidence of Atrial Fibrillation in Olmsted County, Minnesota, 1980 to 2000, and Implications on the Projections for Future Prevalence,” Circulation 114:119-125. |
Morris, J.J. Jr. (1979). “Transvenous versus Transthoracic Cardiac Pacing,” Chapter 16 in Cardiac Pacins: A Concise Guide to Clinical Practice, pp. 239-245. |
Mráz, T. et al. (Apr. 2007). “Role of Echocardiography in Percutaneous Occlusion of the left Atrial Appendage,” Echocardiography 24(4):401-404. |
Naclerio, E.A. et al. (1979). “Surgical Techniques for Permanent Ventricular Pacing,” Chapter 10 in Cardiac Pacing: A Concise Guide to Clinical Practice, pp. 145-168. |
Nakai, T. et al. (May 7, 2002). “Percutaneous Left Atrial Appendage Occlusion (PLAATO) for Preventing Cardioembolism: First Experience in Canine Model,” Circulation 105:2217-2222. |
Nakajima, H. et al. (2004). “Consequence of Atrial Fibrillation and the Risk of Embolism After Percutaneous Mitral Commissurotomy: The Necessity of the Maze Procedure,” The Annals of Thoracic Surgery 78:800-806. |
Non-Final Office Action mailed on Mar. 13, 2008 for U.S. Appl. No. 10/963,371, filed on Oct. 11, 2004, 13 pages. |
Non-Final Office Action mailed on Aug. 6, 2008 for U.S. Appl. No. 10/963,371, filed on Oct. 11, 2004, 14 pages. |
Non-Final Office Action mailed on Jun. 26, 2009, for U.S. Appl. No. 11/600,671, filed on Nov. 15, 2006, 9 pages. |
Non-Final Office Action mailed on Dec. 30, 2009, for U.S. Appl. No. 11/400,714, filed on Apr. 7, 2006, 8 pages. |
Non-Final Office Action mailed on Jul. 22, 2010, for U.S. Appl. No. 12/037,802, filed on Feb. 26, 2008, 10 pages. |
Non-Final Office Action mailed on Nov. 15, 2010, for U.S. Appl. No. 12/055,213, filed on Mar. 25, 2008, 18 pages. |
Notice of Allowance mailed on Sep. 17, 2010, for U.S. Appl. No. 10/963,371, filed on Oct. 11, 2004, 7 pages. |
Notice of Allowance mailed on Sep. 17, 2010, for U.S. Appl. No. 11/600,671, filed on Nov. 15, 2006, 7 pages. |
Odell, J.A. et al. (1996). “Thorascopic Obliteration of the Left Atrial Appendage: Potential for Stroke Reduction?” Ann. Thorac. Surg. 61:565-569. |
O'Donnell, M. et al. (2005). “Emerging Therapies for Stroke Prevention in Atrial Fibrillation,” European Heart Journal 7(Supplement C):C19-C27. |
Omran, H. et al. (1997). “Left Atrial Appendage Function in Patients with Atrial Flutter,” Heart 78:250-254. |
Onalan, O. et al. (2005). “Nonpharmacologic Stroke Prevention in Atrial Fibrillation,” Expert Rev. Cardiovasc. Ther. 3(4):619-633. |
Onalan, O. et al. (2007). “Left Atrial Appendage Exclusion for Stroke Prevention in Patients With Nonrheumatic Atrial Fibrillation,” Stroke 38(part 2):624-630. |
Ostermayer, S. et al. (2003). “Percutaneous Closure of the Left Atrial Appendage,” Journal of Interventional Cardiology 16(6):553-556. |
Ota, T. et al. (2006). “Epicardial Atrial Ablation Using a Novel Articulated Robotic Medical Probe Via a Percutaneous Subxiphoid Approach,” National Institute of Health 1(6):335-340. |
Ota, T. et al. (Oct. 2007). “Impact of Beating Heart left Atrial Ablation on Left-sided Heart Mechanics,” The Journal of Thoracic and Cardiovascular Surgery 134:982-988. |
Pennec, P-Y. et al. (2003). “Assessment of Different Procedures for Surgical Left Atrial Appendage Exclusion,” The Annals of Thoracic Surgery 76:2167-2168. |
Perk, G. et al. (Aug. 2009). “Use of Real Time Three-Dimensional Transesophageal Echocardiography in Intracardiac Catheter Based Interventions,” J. Am Soc Echocardiogr 22(8):865-882. |
Pollick C. (Feb. 2000). “Left Atrial Appendage Myopathy,” Chest 117(2):297-308. |
Poulsen, T.S. et al. (Feb. 15, 2005). “Is Aspirin Resistance or Female Gender Associated With a High Incidence of Myonecrosis After Nonurgent Percutaneous Coronary Intervention?” J. Am. Coll. Cardiol. 45(4):635-636. |
Reznik, G. et al. (Oct. 1992). “Percutaneous Endoscopic Implantation of Automatic Implantable Cardioverter/Defibrillator (AICD): An Animal Study of a New Nonthoracotomy Technique,” J. Laparoendosc. Surg. 2(5):255-261, Abstract Only. |
Robicsek, F. (1987). “Closed-Chest Decannulation of Transthoracically Inserted Aortic Balloon Catheter without Grafting,” Journal of Cardiac Surgery 2(2):327-329. |
Ross, J. Jr. et al. (Jun. 3, 2008). “Transseptal Left Heart Catheterization: A 50-Year Odyssey,” Journal of the American College of Cardiology 51(22):2107-2115. |
Rubin, D.N. et al. (Oct. 1, 1996). “Evaluation of Left Atrial Appendage Anatomy and Function in Recent-Onset Atrial Fibrillation by Transesophageal Echocardiography,” Am J Cardiol 78:774-778. |
Ruchat, P. et al. (2002). “Off-pump Epicardial Compartmentalization for Ablation of Atrial Fibrillation,” Interactive Cardio Vascular and Thoracic Surgery 1:55-57. |
Salzberg, S.P. et al. (2008). “Surgical Left Atrial Appendage Occlusion: Evaluation of a Novel Device with Magnetic Resonance Imaging,” European Journal of Cardiothoracic Surgery 34:766-770. |
Sapp, J. et al. (Dec. 2001). “Electrophysiology and Anatomic Characterization of an Epicardial Accessory Pathway,” Journal of Cardiovascular Electrophysiology 12(12):1411-1414. |
Scharf, C. et al. (2005). “Catheter Ablation for Atrial Fibrillation: Pathophysiology, Techniques, Results and Current Indications,” Continuous Medical Education 8:53-61. |
Scherr, D. et al. (Apr. 2009). “Incidence and Predictors of left Atrial Thrombus Prior to Catheter Ablation of Atrial Fibrillation,” Journal of Cardiovascular Electrophysiology 20(4):379-384. |
Schmidt, H. et al. (Sep. 2001). “Prevalence of Left Atrial Chamber and Appendage Thrombi in Patients With Atrial Flutter and Its Clinical Significance,” Journal of the American College of Cardiology 38(3):778-784. |
Schneider, B. et al. (2005, e-pub. Aug. 22, 2005). “Surgical Closure of the Left Atrial Appendage—A Beneficial Procedure?” Cardiology 104:127-132. |
Schweikert, R.A. et al. (Sep. 16, 2003). “Percutaneous Pericardial Instrumentation for Endo-Epicardial Mapping of Previously Failed Ablation,” Circulation 108:1329-1335. |
Schweikert, R.A. et al. (2005). “Epicardial Access: Present and Future Applications for Interventional Electrophysiologists,” Chapter 25 in New Arrhythmia Technolgies, Wang, P.J. ed., Blackwell Publishing, pp. 242-256. |
Seferovic, P. et al. (Jan. 1999). “Initial Clinical Experience with the PerDUCER® Device: Promising New Tool in the Diagnosis and Treatment of Pericardial Disease,” Clin. Cardiol. 22(Supp I):I-30-I-35. |
Sengupta, P.P. et al. (2005). “Transoesophageal Echocardiography,” Heart 91:541-547. |
Sharada, K. et al. (2005). “Non-Surgical Transpericardial Catheter Ablation of Post-Infarction Ventricular Tachycardia,” Indian Heart J 57:58-61. |
Sievert, H. et al. (Apr. 23, 2002). “Percutaneous Left Atrial Appendage Transcatheter Occlusion to Prevent Stroke in High-Risk Patients With Atrial Fibrillation,” Circulation 105:1887-1889. |
Singer, D.E. et al. (Sep. 2004). “Antithrombotic Therapy in Atrial Fibrillation: The Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy,” Chest 126(3):429S-456S. |
Smith, P.W. et al. (Nov. 1956). “Diagnosis of Mitral Regurgitation by Cardioangiography,” Circulation 14:847-853. |
Soejima, K. et al. (2004). “Subxiphoid Surgical Approach for Epicardial Catheter-Based Mapping and Ablation in Patients With Prior Cardiac Surgery or Difficult Pericardial Access,” Circulation 110:1197-1201. |
Sosa, E. et al. (1996). “A New Technique to Perform Epicardial Mapping in the EP Laboratory,” J. Cardiovasc. Electrophysiol. 7(6):531-536. |
Sosa, E. et al. (Mar. 1998). “Endocardial and Epicardial Ablation Guided by Nonsurgical Transthoracic Epicardial Mapping to Treat Recurrent Ventricular Tachycardia,” J. Cardiovasc. Elecytophysiol. 9(3):229-239. |
Sosa, E. et al. (Dec. 14, 1999). “Different Ways of Approaching the Normal Pericardial Space,” Circulation 100(24):e115-e116. |
Sosa, E. et al. (Jul. 15, 2002). “Gaining Access to the Pericardial Space,” The American Journal of Cardiology 90:203-204. |
Sosa, E. et al. (Apr. 2005). “Epicardial Mapping and Ablation Techniques to Control Centricular Tachycardia,” Journal of Cardiovasc. Electrphsiol. 16(4):449-452. |
Sparks, P.B. et al. (2001). “Is Atrial Flutter a Risk Factor for Stroke?” Journal of the American College of Cardiology 38(3):785-788. |
Spodick, D.H. (Nov. 1970). “Medical History of the Pericardium,” The American Journal of Cardiology 26:447-454. |
Stewart, J.M. et al. (Apr. 1992). “Bilateral Atrial Appendectomy Abolishes Increased Plasma Atrial Natriuretic Peptide Release and Blunts Sodium and Water Excretion During Volume Loading in Conscious Dogs,” Circulation Research 70(4):724-732. |
Stewart, S. (1974). “Placement of the Sutureless Epicardial Pacemaker Lead by the Subxiphoid Approach,” Ann. of Thoracic Surg. 18(3):308-313. |
Stoddard, M.F. et al. (1995). “Left Atrial Appendage Thrombus is not Uncommon in Patients with Acute Atrial Fibrillation and a Recent Embolic Event: A Transesophageal Echocardiographic Study,” J. Am. Coll. Cardiol. 25:452-459, Abstract Only. |
Stokes, K. (Jun. 1990). “Implantable Pacing Lead Technology,” IEEE Engineering in Medicine and Biology pp. 43-49. |
Stöllberger, C. et al. (2000). “Is the Left Atrial Appendage Our Most Lethal Attachment?” European Journal of Cardio-Thoracic Surgery 18:625-626. |
Stöllberger, C. et al. (Dec. 2003). “Elimination of the Left Atrial Appendage to Prevent Stroke or Embolism?: Anatomic, Physiologic, and Pathophysiologic Considerations,” 124(6):2356-2362. |
Stöllberger, C. et al. (2006). “Stroke Prevention by Means of Epicardial Occlusion of the Left Atrial Appendage,” Journal of Thoracic and Cardiovascular Surgery 132(1):207-208. |
Stöllberger, C. et al. (2007). “Arguments Against Left Atrial Appendage Occlusion for Stroke Prevention,” Stroke 38:e77. |
Stöllberger, C. et al. (2007). “Leave the Left Atrial Appendage Untouched for Stroke Prevention!” Journal of Thoracic and Cardiovascular Surgery 134(2):549-550. |
Su, P. et al. (Sep. 2008, e-pub. May 8, 2007). “Occluding the Left Atrial Appendage: Anatomical Considerations,” Heart 94(9):1166-1170. |
Subramanian, V.A. (Jun. 1997). “Less Invasive Arterial CABG on a Beating Heart,” Ann. Thorac. Surg. 63(6 Suppl.):S68-S71. |
Subramanian, V.A. et al. (Dec. 1997). “Minimally Invasive Direct Coronary Artery Bypass Grafting: two-Year Clinical Experience,” Ann. Thorac. Surg. 64(6):1648-1653, Abstract Only. |
Suehiro, S. et al. (1996). “Echocardiography-Guided Pericardiocentesis With a Needle Attached to a Probe,” Ann. Thoracic Surg. 61:741-742. |
Sun, F. et al. (Feb. 2006). “Subxiphoid Access to Normal Pericardium with Micropuncture Set: Technical Feasibility Study in Pigs,” Radiology 238(2):719-724. |
Szili-Torok, T. et al. (2001). “Transseptal Left heart Catheterisation Guided by Intracardiac Echocardiography,” Heart 86:e11-e15. |
Tabata, T. et al. (Feb. 1, 1998). “Role of Left Atrial Appendage in left Atrial Reservoir Function as Evaluated by Left Atrial Appendage Clamping During Cardiac Surgery,” The American Journal of Cardiology 81:327-332. |
Tomar, M. et al. (Jul.-Aug. 2006). “Transcatheter Closure of Fossa Ovalis Atrial Septal Defect: A Single Institutional Experience,” Indian Heart Journal 58(4):325-329. |
Troughton, R.W. et al. (Feb. 28, 2004). “Pericarditis,” The Lancet 363:717-727. |
Ulicny K.S. et al. (Jun. 1992). “Conjoined Subrectus Pocket for Permanent Pacemaker Placement in the Neonate,” Ann Thorac Surg. 53(6):1130-1131, Abstract Only. |
Valderrabano, M. et al. (Sep. 2004). “Percutaneous Epicardial Mapping During Ablation of Difficult Accessory Pathways as an Alternative to Cardiac Surgery,” Heart Rhythm 1(3):311-316. |
Von Korn, H. et al. (2006). “Simultaneous Combined Interventional Percutaneous Left Atrial Auricle and Atrial Septal Defect Closure,” Heart 92:1462. |
Wang, T.J. et al. (Aug. 27, 2003). “A Risk Score for Predicting Stroke or Death in Individuals With New-Onset Atrial Fibrillation in the Community,” American Medical Association 290(8):1049-1056. |
Watkins, L. et al. (Nov. 1982). “Implantation of the Automatic Defibrillator: The Subxiphoid Approach,” Ann. of Thoracic Surg. 34(5):515-520. |
W.L. Gore & Associates (Aug. 11, 2006). “Gore Helex™ Septal Occluder,” located at <http://www.fda.gov/cdrh/pdf5/p050006a.pdf>, last visited on Jun. 14, 2007, 3 pages. |
Wolber, T. et al. (Jan. 2007). “Potential Interference of Small Neodymium Magnets with Cardiac pacemakers and Implantable Cardioverter-defibrillators,” Heart Rhythm 4(1):1-4. |
Wolf, P.A. et al. (Oct. 1978). “Epidemiologic Assessment of Chronic Atrial Fibrillation and Risk of Stroke: The Fiamingham Study,” Neurology 28:973-977. |
Wolf, P.A. et al. (Aug. 1991). “Atrial Fibrillation as an Independent Risk Factor for Stroke: The Framingham Study,” Stroke 22(8):983-988. |
Wolf, P.A. et al. (Feb. 9, 1998). “Impact of Atrial Fibrillation on Mortality, Stroke, and Medical Costs,” Arch Intern Med 158:229-234. |
Wong, J.W.W. et al. (2006). “Impact of Maze and Concomitant Mitral Valve Surgery on Clinical Outcomes,” The Annals of Thoracic Surgery 82:1938-1947. |
Wongcharoen, W. et al. (Sep. 2006). “Morphologic Characteristics of the Left Atrial Appendage, Roof, and Septum: Implications for the Ablation of Atrial Fibrillation,” Journal of Cardiovascular Electrophysiology 17(9):951-956. |
Wood, M.A. (Jan. 2006). “Precutaneous Pericardial Instrumentation in the Electrophysiology Laboratory: A Case of Need,” Heart Rhythm 3(1):11-12. |
Written Opinion of the International Searching Authority mailed on Jun. 1, 2010, for PCT Application No. PCT/US2010/029668, filed on Apr. 1, 2010, 8 pages. |
Wudel, J.H. et al. (Apr. 3, 2008). “Video-Assisted Epicardial Ablation and left Atrial Appendage Exclusion for Atrial Fibrillation: Extended Follow-Up,” The Annals of Thoracic Surgery 85:34-38. |
Wyse, D.G. et al. (Dec. 5, 2002). “Of ‘Left Atrial Appendage Amputation, Ligation, or Occlusion in Patients with Atrial Fibrillation’,” N Engl J Med 347(23):1825-1833, Abstract Only. |
Yamada, Y. et al. (Aug. 2006). “Video-Assisted Thoracoscopy to Treat Atrial Tachycardia Arising from Left Atrial Appendage,” Journal of Cardiovascular Electrophysiology 17(8):895-898. |
Zapolanski, A. et al. (May 2008). “Safe and Complete Exclusion of the left Atrial Appendage, A Simple Epicardial Approach,” Innovations 3(3):161-163. |
Zenati, M.A. et al. (Sep. 2003). “Left Heart Pacing Lead Implantation Using Subxiphoid Videopericardioscopy,” Journal of Cariodvascular Electrophysiology 14(9):949-953. |
Zenati, M.A. et al. (2004). “Mechanical Function of the Left Atrial Appendage Following Epicardial Bipolar Radiofrequency Ablation,” Cardiothoracic Techniques and Technologies X, Abstract 121A, p. 176. |
Zenati, M.A. et al. (2005). “Modification of the Left Atrial Appendage,” Chapter 12 in Innovative Management of Atrial Fibrillation, Schwartzman, David ed., Blackwell Science Ltd., 5 pages. |
Chinese Office Action mailed on Dec. 4, 2013 for Chinese Patent Application No. 201080023899.9, filed on Apr. 1, 2010, 4 pages. |
Final Office Action mailed on Apr. 26, 2011, for U.S. Appl. No. 12/037,802, filed Feb. 26, 2008, 9 pages. |
Final Office Action mailed on Sep. 20, 2011, for U.S. Appl. No. 12/212,511, filed Sep. 17, 2008, 8 pages. |
Final Office Action mailed on Oct. 28, 2011, for U.S. Appl. No. 12/055,213, filed Mar. 25, 2008, 15 pages. |
Final Office Action mailed on May 4, 2012, for U.S. Appl. No. 12/363,359, filed Jan. 30, 2009, 10 pages. |
Final Office Action mailed on May 16, 2012, for U.S. Appl. No. 12/363,381, filed Jan. 30, 2009, 8 pages. |
Final Office Action mailed on Jul. 11, 2012, for U.S. Appl. No. 13/033,532, filed Feb. 23, 2011, 8 pages. |
Final Office Action mailed on Jul. 24, 2012, for U.S. Appl. No. 12/212,511, filed Sep. 17, 2008, 6 pages. |
Final Office Action mailed on Oct. 18, 2012, for U.S. Appl. No. 12/124,023, filed May 20, 2008, 15 pages. |
Final Office Action mailed on Nov. 8, 2013, for U.S. Appl. No. 12/037,802, filed Feb. 26, 2008, 15 pages. |
Japanese Office Action mailed on Dec. 17, 2013, for Japanese Patent Application No. 2012-503714, filed on Apr. 1, 2010, 4 pages. |
Non-Final Office Action mailed on Feb. 17, 2011, for U.S. Appl. No. 12/212,511, filed Sep. 17, 2008, 14 pages. |
Non-Final Office Action mailed on Apr. 28, 2011, for U.S. Appl. No. 12/055,213, filed Mar. 25, 2008, 20 pages. |
Non-Final Office Action mailed on Oct. 27, 2011, for U.S. Appl. No. 12/363,359, filed Jan. 30, 2009, 11 pages. |
Non-Final Office Action mailed on Nov. 9, 2011, for U.S. Appl. No. 12/363,381, filed Jan. 30, 2009, 10 pages. |
Non-Final Office Action mailed on Dec. 22, 2011, for U.S. Appl. No. 13/033,532, filed Feb. 23, 2011, 8 pages. |
Non-Final Office Action mailed on Mar. 7, 2012, for U.S. Appl. No. 12/124,023, filed May 20, 2008, 13 pages. |
Non-Final Office Action mailed on Apr. 2, 2012, for U.S. Appl. No. 12/212,511, filed Sep. 17, 2008, 5 pages. |
Non-Final Office Action mailed on Sep. 18, 2013, 2011, for U.S. Appl. No. 12/055,213, filed Mar. 25, 2008, 15 pages. |
Non-Final Office Action mailed on May 31, 2013, for U.S. Appl. No. 12/124,023, filed May 20, 2008, 14 pages. |
Notice of Allowance mailed on Nov. 24, 2010, for U.S. Appl. No. 11/400,714, filed Apr. 7, 2006, 8 pages. |
Notice of Allowance mailed on Feb. 22, 2013, for U.S. Appl. No. 12/212,511, filed Sep. 17, 2008, 8 pages. |
Notice of Allowance mailed on Mar. 18, 2013, for U.S. Appl. No. 12/212,511, filed Sep. 17, 2008, 6 pages. |
Notice of Allowance mailed on Mar. 4, 2014, for U.S. Appl. No. 12/055,213, filed Mar. 25, 2008, 9 pages. |
Australian Office Action mailed on Mar. 28, 2014 for Australian Patent Application No. 2010232589, filed on Apr. 1, 2010, four pages. |
Chinese Office Action mailed on Jun. 25, 2014, for Chinese Patent Application No. 201080023899.9, filed on Apr. 1, 2010, 5 pages. |
Final Office Action mailed on Nov. 14, 2014, for U.S. Appl. No. 12/363,359, filed Jan. 30, 2009, 10 pages. |
Final Office Action mailed on Aug. 12, 2014, for U.S. Appl. No. 13/033,532, filed Feb. 23, 2011, 6 pages. |
Non-Final Office Action mailed on Apr. 2, 2014, for U.S. Appl. No. 13/033,532, filed Feb. 23, 2011, 8 pages. |
Non-Final Office Action mailed on Jun. 17, 2014, for U.S. Appl. No. 12/363,359, filed Jan. 30, 2009, 7 pages. |
Notice of Allowance mailed on Apr. 1, 2014, for U.S. Appl. No. 12/363,381, filed Jan. 30, 2009, 9 pages. |
Notice of Allowance mailed on Dec. 29, 2014, for U.S. Appl. No. 12/363,381, filed Jan. 30, 2009, 9 pages. |
Notice of Allowance mailed on Apr. 3, 2014, for U.S. Appl. No. 12/037,802, filed Feb. 26, 2008, 8 pages. |
Notice of Allowance mailed on Nov. 18, 2014, for Australian Patent Application No. 2010232589, filed on Apr. 1, 2010, 3 pages. |
Japanese Office Action mailed on Aug. 4, 2015, for Japanese Patent Application No. 2014-179551, filed on Apr. 1, 2010, 2 pages. |
Non-Final Office Action mailed on Sep. 10, 2015, for U.S. Appl. No. 12/363,359, filed Jan. 30, 2009, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20110087247 A1 | Apr 2011 | US |
Number | Date | Country | |
---|---|---|---|
61165828 | Apr 2009 | US |