The present invention relates in general to a tissue marker system, a method of deploying a tissue marker, and a tissue marker. A specific embodiment of the subject marker is compatible with magnetic resonance imaging (MRI) and is visible under MRI. In another embodiment, various components of the subject marker system are compatible with MRI such that the marker can be deployed under MRI.
Tissue markers are used in medicine to mark a suspicious lesion for surgical planning or for follow-up diagnostics. Markers are placed or deployed into tissue and remain in the tissue for a period of time. In order for markers not to move, markers are often clamped or stapled into tissue to hold them in place. Such markers which are clamped or stapled into tissue are sometimes called clips. In surgical planning, clips can be used to mark an area to be extracted. In follow-up diagnostics clips can be used to mark a suspicious lesion for long-term surveillance. Several clips are known from the literature.
U.S. Pat. No. 6,261,302 discloses an applier for initially delivering a biopsy marker to a surgical biopsy site and subsequently deploying the marker at the site. The applier includes an elongated flexible tube having a distal end; a ferrule fixed to the distal end of the flexible tube, the ferrule having a forming surface thereon adapted to reconfigure the biopsy marker from an original open configuration to a closed configuration when the biopsy marker has been delivered to the surgical site; and a marker holder at the ferrule for holding the biopsy marker at the distal end of the flexible tube in the original open position.
U.S. Pat. No. 6,228,055 discloses a device for marking a particular tissue area. The device includes: a discrete marker element and an apparatus for remotely delivering the marker element from outside the human body to the particular tissue area, using an aided visualization device wherein the device is adapted to be employed in combination with a medical instrument which transports the device to the selected tissue location and draws a vacuum to isolate and retain tissue at the selected location.
U.S. Ser. No. 09/776,125 (U.S. Patent Application Publication No. 2001/0034528) discloses a device for marking a particular tissue, which includes an apparatus including a member being adapted to receive a deployment actuator connector, where the deployment actuator connector has a predetermined failure point in the distal region of the deployment actuator connector such that the proximal portion of the deployment actuator connector being adapted to be severed from the distal portion at the predetermined failure point upon further activation of the deployment actuator after abutment of the marker element against a stop designed into the member distal region.
U.S. Pat. No. 5,989,265 discloses a device for pinpointing lesions detected in a breast and an apparatus for positioning a pinpointing device. The device includes an anchor and at least one wire different from and attached to the anchor and of sufficient length for implantation of the anchor within the breast and includes an anchor having a plurality of flexible and elastic strands and a wire different from and attached to the strands at first ends of the strands and of sufficient length for implantation of the anchor within the breast. The apparatus includes a pinpointing device and at least one wire different from and attached to the anchor and of sufficient length for implantation of the anchor within the breast.
U.S. Pat. No. 5,902,310 discloses a method and apparatus for marking a particular tissue area, involving a marking apparatus, a marker element applier, or a method of marking tissue, each incorporating a pull wire or pulling on a pull wire. The apparatus includes a pull wire having a distal end and a proximal end, the marker element being attached to the distal end of the pull wire.
U.S. Pat. No. 6,511,498 discloses a surgical device for anchoring a thread or wire to a bone having a hole bored therein. The surgical device includes a deformable tubular sleeve which is capable of deforming between a first stretched position of low cross section and a second folded position of greater cross section, and a thread whose middle part is in the form of a closed loop passing through the deformable tubular sleeve. The deformable tubular sleeve is able to slide on the thread within the limits of the closed loop.
U.S. Pat. No. 6,425,903 discloses an implantable marker for implantation of tissue of a surgical patient. The implantable marker has a base, a first leg including a first camming marker surface, a second leg including a second camming marker surface, and a first camming marker surface notch located on the first camming marker surface and a second camming marker surface notch located on the second camming marker surface.
U.S. application Ser. No. 10/028,753 (U.S. Patent Application Publication No. US2002/0083951) discloses an implantable identification marker and a method for implanting an identification marker including an electronic device enclosed within a biocompatible material isolating the device from body fluids of the animal.
U.S. Pat. No. 5,941,890 discloses an implantable marker for implantation of tissue of a surgical patient. The implantable marker has a base, a first leg including a first camming marker surface, a second leg including a second camming marker surface, and a first reverse cleat protruding from the first camming marker surface and a second reverse cleat protruding from the second camming marker surface.
These clips can lose their position if unintentionally loosened or the mechanism used to attach to the tissue is disturbed. There is a need for a marker which can hold its position in tissue even when the marker is disturbed or loosened. There is also a need for a method and an apparatus for deploying a marker which can hold its position in tissue even when the marker is disturbed or loosened.
The subject invention pertains to a tissue marker. The subject invention also relates to methods and apparatus for deploying a tissue marker. In a specific embodiment, the subject marker is magnetic resonance imaging (MRI) compatible. The subject tissue marker can be visible under CT and/or ultrasound. In additional embodiment, various components of the subject marker deploying apparatus are MRI compatible. A specific marker in accordance with the subject invention is flexible such that the marker has an equilibrium shape, which the marker will have when deployed in tissue to be marked, and an elongated shape, which the marker can be bent into to be inserted into a marker needle.
In a specific embodiment, the subject invention utilizes a freestanding marker clip, or marker, which is released by pushing the marker out of the end of an insertion tube, or marker needle. Advantageously, the freestanding marker is not attached to anything protruding from the patient once the marker is positioned. In a specific embodiment, the subject invention involves pushing a marker out of the distal end of an insertion tube with a plunger, or ejecting rod. Although, the ejecting rod can be flexible the ejecting rod is sufficiently stiff to push the marker out of the marker needle. In a specific embodiment, the marker employed by subject invention is a circular ring shaped marker, which can be elongated in order to be positioned within the insertion tube.
To mark the tissue, the subject clip can be positioned next to a lesion like a tag. A marker having a bigger diameter than the lesion can be used and can surround the lesion in one or more dimensions like a cage. This cage can describe the position and size of the lesion and can, if desired, include a safety-margin. Surrounding the lesion makes the surgical or minimal invasive procedure to take out or destroy the lesion much more effective, as the size, position, and shape of the lesion can be discerned by the size, position, and shape of one or more markers used to appropriately mark the lesion.
The subject method and apparatus for deploying a marker can utilize a plurality of markers that can be identified with respect to each other. In an embodiment, two or more markers that can be distinguished from each other can be deployed. Such markers can be differentiated from each other via, for example, the size of the markers, the shape of the markers, and/or the characteristics of the markers under MRI or other imaging modality. The subject clip can also be modified to improve visibility of the marker under ultrasound. In specific embodiments, the subject marker can be coated with chemicals and/or bioactive materials. Such chemicals and/or bioactive materials can impact the therapy provided to the patient.
In a specific embodiment, the subject marker can be modified to enhance visibility under MRI. Such modification can include the incorporation of a microcoil with the marker that can be imaged under MRI such that the marker can be found much faster under MRI than without the microcoil. In an embodiment, the microcoil can be incorporated in an implantable plastic capsule that is implanted in the marker.
The invention may be more completely understood in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawings, in which:
While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
The subject invention relates to methods and apparatus for positioning a tissue marker in human or animal tissue. The subject invention also pertains to a tissue marker. Preferably, the subject tissue markers are visible under one or more imaging modalities such as, but not limited to, x-ray, ultrasound, and magnetic resonance imaging (MRI). In a specific embodiment, the subject marker is visible under magnetic resonance imaging (MRI).
In a specific embodiment, the subject invention incorporates a marker needle, an ejecting rod, and a tissue marker. The marker needle can penetrate the tissue to be marked such that the distal tip of the marker needle is positioned at the tissue location to be marked. The tissue marker can be inserted into the marker needle so as to be in an elongated position inside the marker needle. The marker can be inserted into the marker needle before or after positioning the marker needle. In a preferred embodiment, the marker is inserted into the marker needle prior to the marker needle penetrating the tissue to be marked. Once the marker needle is positioned such that a distal end of the marker needle is at the site to be marked by the tissue marker and the marker is inserted into the marker needle, the ejecting rod can slide within the marker needle and push the tissue marker out the distal end of the marker needle. The tissue marker returns to its equilibrium shape as it is pushed out of the marker needle. The tip of the marker is shaped, and the body of the marker is designed, so that the marker circumvents the tissue to be marked as the marker returns to its equilibrium shape while being ejected out of the marker needle. In a specific embodiment, the tip of the tissue needle is shaped to that the tissue marker penetrates the surrounding tissue as it is pushed out of the marker needle and continues to penetrate the tissue as the marker returns to its equilibrium shape and is pushed entirely out of the marker needle. The tissue marker is then securely positioned at the desired site in the human or animal tissue and can be used to locate the site under, for example, MRI.
In another specific embodiment, the subject marker apparatus can be adapted such that the marker needle, or insertion tube, can be inserted into a guidance tube which is positioned in the tissue. The distal end of the additional guidance tube can be positioned near the location to be marked such that the marker needle is inserted into the guidance tube and can deploy the marker out the distal end of the guidance tube. In this embodiment, the marker needle and ejecting rod can be flexible enough to follow the path of the guidance tube, which need not be straight. In addition, the distal tip of the marker needle can be flat, or have an alternative shape which may assist the deployment of the marker. In contrast, referring to
With one or more clips, or markers, of different sizes and/or shapes it is possible to create a 3 dimensional cage around the lesion that can include a safety margin for the surgical or minimally invasive treatment. This can provide much better control of the tissue that is taken out and can allow a caregiver to work with very small safety margins without leaving tumor behind. The blades of the cutting device can be guided by the structure of the clip-cage.
The subject method and apparatus for deploying a marker can utilize a plurality of markers that can be identified with respect to each other. For example, two or more markers that can be distinguished from each other can be deployed. Such markers can be differentiated from each other via, for example, the size of the markers, the shape of the markers, and/or the characteristics of the markers under MRI or other imaging modality. The subject clip can also be modified to improve visibility of the marker under ultrasound. In specific embodiments, the subject marker can be coated with chemicals, bioactive materials, and/or other substances. Such chemicals, bioactive materials, and/or other substances can impact the therapy provided to the patient.
In a specific embodiment, the subject marker can be modified to enhance visibility under MRI. Such modification can include the incorporation of a microcoil with the marker that can be imaged under MRI such that the marker can be found much faster under MRI than without the microcoil. In an embodiment, the microcoil can be incorporated in an implantable plastic capsule that is implanted in the marker.
In another specific embodiment employing at least two markers of different sizes, a first marker can be positioned around a lesion of a patient and one or more small clips can be positioned so as to surround the lesion, allowing the surgeon to remove the lesion with a margin of safety.
As shown in
In a specific embodiment, the diameter 15 of the body portion of the solid or hollow marker can be between about 0.1 mm and about 1.5 mm, and is preferably about 0.35 mm. The marker can be manufactured from a wire with different cross-sectional shapes, such as round, square, or twisted. The wire can be solid or hollow. In another specific embodiment, the marker can be cut from a tubular piece of material having an appropriate diameter and cross-sectional shape, such that the marker has the desired mechanical properties. In a specific embodiment, the circular marker 11 does not quite close to a circular loop, but has an opening 13. In a specific embodiment, this opening can be between about 1 mm and about 5 mm, preferably about 1.5 mm. The marker can have a distal tip 12 and a proximal tip 16. The distal tip 12 should be sharp enough to pierce the surrounding tissue as the marker is ejected from the marker needle and the proximal tip 16 should be shaped such that the ejecting rod can contact and push the proximal tip 16 of the marker so as to push the marker out of the marker needle. In a preferred embodiment, the proximal tip is blunt such that the ejecting rod can push the marker out of the marker needle without binding the marker against the side of the marker needle.
As shown in
The subject needle assembly can have one or more optional features, such as a means to suction out air or blood before ejecting the marker to enhance the likelihood that the marker is fixed to tissue and not, for example, loose inside a cavity. Circumventing the tissue can reduce, or prevent migration of the marker with respect to the tissue after placement of the marker. If the distal tip 12 of the marker is sufficiently sharp to allow piercing of the tissue by the marker tip, migration of the marker with respect to the tissue can be further reduced, or prevented.
The subject invention can utilize needles which are disposable or reusable. In a specific embodiment, various markers can be re-load in the subject marker needle.
While the above description of the invention has been presented in terms of a human subject (patient), it is appreciated that the invention may also be applicable to treating other subjects, such as mammals, organ donors, cadavers and the like.
The present invention should not be considered limited to the particular embodiments described above, but rather should be understood to cover all aspects of the invention as fairly set out in the appended claims. Various modifications, equivalent processes, as well as numerous structures to which the present invention may be applicable will be readily apparent to those skilled in the art to which the present invention is directed upon review of the present specification. The claims are intended to cover such modifications and devices.
To improve the visibility of the clips for different imaging modalities the subject marker can be MRI compatible and can incorporate a structure that can be visualized under CT and/or ultrasound as well. For example, a plastic marker in accordance with the subject invention can incorporate some metal to be visible under CT. In an embodiment, referring to
In another embodiment, chemicals can be incorporated with the marker to enhance visibility. For ultrasound visibility a coating with contrast agent (microbubbles) can be used. By using a biocompatible chemical substance to color the tissue, such as potassium permanganate, around the clip it is much easier for the surgeon to find the clip during the operation because the colored area is bigger than the clip. By using such a “color eluting clip” the surgeon can find the clip very easily because the tissue around the clip is colored.
The subject clip, or marker, can also carry chemicals that have direct therapeutic effects or make a minimal invasive treatment more effective.
This application claims the benefit of provisional patent application Ser. No. 60/525,205, filed Nov. 26, 2003, which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60525205 | Nov 2003 | US |