Tissue product made using laser engraved structuring belt

Information

  • Patent Grant
  • 10619309
  • Patent Number
    10,619,309
  • Date Filed
    Wednesday, August 23, 2017
    6 years ago
  • Date Issued
    Tuesday, April 14, 2020
    4 years ago
Abstract
A tissue product including a laminate of at least two plies of a multi-layer tissue web, the tissue product having a softness value (HF) of 92.0 or greater, a lint value of 4.5 or less, and an Sdr of greater than 3.0.
Description
FIELD OF THE INVENTION

This disclosure relates to fabrics or belts for a papermaking machine, and in particular to fabrics or belts that include polymeric layers and that are intended for use on papermaking machines for the production of tissue products.


BACKGROUND

Tissue manufacturers that can deliver the highest quality product at the lowest cost have a competitive advantage in the marketplace. A key component in determining the cost and quality of a tissue product is the manufacturing process utilized to create the product. For tissue products, there are several manufacturing processes available including conventional dry crepe, through air drying (TAD), or “hybrid” technologies such as Valmet's NTT and QRT processes, Georgia Pacific's ETAD, and Voith's ATMOS process. Each has differences as to installed capital cost, raw material utilization, energy cost, production rates, and the ability to generate desired attributes such as softness, strength, and absorbency.


Conventional manufacturing processes include a forming section designed to retain the fiber, chemical, and filler recipe while allowing the water to drain from the web. Many types of forming sections, such as inclined suction breast roll, twin wire C-wrap, twin wire S-wrap, suction forming roll, and Crescent formers, include the use of forming fabrics.


Forming fabrics are woven structures that utilize monofilaments (such as yarns or threads) composed of synthetic polymers (usually polyethylene, polypropylene, or nylon). A forming fabric has two surfaces, the sheet side and the machine or wear side. The wear side is in contact with the elements that support and move the fabric and are thus prone to wear. To increase wear resistance and improve drainage, the wear side of the fabric has larger diameter monofilaments compared to the sheet side. The sheet side has finer yarns to promote fiber and filler retention on the fabric surface.


Different weave patterns are utilized to control other properties such as: fabric stability, life potential, drainage, fiber support, and clean-ability. There are three basic types of forming fabrics: single layer, double layer, and triple layer. A single layer fabric is composed of one yarn system made up of cross direction (CD) yarns (also known as shute yarns) and machine direction (MD) yarns (also known as warp yarns). The main issue for single layer fabrics is a lack of dimensional stability. A double layer forming fabric has one layer of warp yarns and two layers of shute yarns. This multilayer fabric is generally more stable and resistant to stretching. Triple layer fabrics have two separate single layer fabrics bound together by separated yarns called binders. Usually the binder fibers are placed in the cross direction but can also be oriented in the machine direction. Triple layer fabrics have further increased dimensional stability, wear potential, drainage, and fiber support than single or double layer fabrics.


The manufacturing of forming fabrics includes the following operations: weaving, initial heat setting, seaming, final heat setting, and finishing. The fabric is made in a loom using two interlacing sets of monofilaments (or threads or yarns). The longitudinal or machine direction threads are called warp threads and the transverse or machine direction threads are called shute threads. After weaving, the forming fabric is heated to relieve internal stresses to enhance dimensional stability of the fabric. The next step in manufacturing is seaming. This step converts the flat woven fabric into an endless forming fabric by joining the two MD ends of the fabric. After seaming, a final heat setting is applied to stabilize and relieve the stresses in the seam area. The final step in the manufacturing process is finishing, whereby the fabric is cut to width and sealed.


There are several parameters and tools used to characterize the properties of the forming fabric: mesh and count, caliper, frames, plane difference, open area, air permeability, void volume and distribution, running attitude, fiber support, drainage index, and stacking. None of these parameters can be used individually to precisely predict the performance of a forming fabric on a paper machine, but together the expected performance and sheet properties can be estimated. Examples of forming fabrics designs can be viewed in U.S. Pat. Nos. 3,143,150, 4,184,519, 4,909,284, and 5,806,569.


In a conventional dry crepe process, after web formation and drainage (to around 35% solids) in the forming section (assisted by centripetal force around the forming roll and, in some cases, vacuum boxes), a web is transferred from the forming fabric to a press fabric upon which the web is pressed between a rubber or polyurethane covered suction pressure roll and Yankee dryer. The press fabric is a permeable fabric designed to uptake water from the web as it is pressed in the press section. It is composed of large monofilaments or multi-filamentous yarns, needled with fine synthetic batt fibers to form a smooth surface for even web pressing against the Yankee dryer. Removing water via pressing reduces energy consumption.


In a conventional TAD process, rather than pressing and compacting the web, as is performed in conventional dry crepe, the web undergoes the steps of imprinting and thermal pre-drying. Imprinting is a step in the process where the web is transferred from a forming fabric to a structured fabric (or imprinting fabric) and subsequently pulled into the structured fabric using vacuum (referred to as imprinting or molding). This step imprints the weave pattern (or knuckle pattern) of the structured fabric into the web. This imprinting step increases softness of the web, and affects smoothness and the bulk structure. The manufacturing method of an imprinting fabric is similar to a forming fabric (see U.S. Pat. Nos. 3,473,576, 3,573,164, 3,905,863, 3,974,025, and 4,191,609 for examples) except for an additional step if an overlaid polymer is utilized.


Imprinting fabrics with an overlaid polymer are disclosed in U.S. Pat. Nos. 5,679,222, 4,514,345, 5,334,289, 4,528,239 and 4,637,859. Specifically, these patents disclose a method of forming a fabric in which a patterned resin is applied over a woven substrate. The patterned resin completely penetrates the woven substrate. The top surface of the patterned resin is flat and openings in the resin have sides that follow a linear path as the sides approach and then penetrate the woven structure.


U.S. Pat. Nos. 6,610,173, 6,660,362, 6,998,017, and European Patent No. EP 1 339 915 disclose another technique for applying an overlaid resin to a woven imprinting fabric.


After imprinting, the web is thermally pre-dried by moving hot air through the web while it is conveyed on the structured fabric. Thermal pre-drying can be used to dry the web to over 90% solids before the web is transferred to a steam heated cylinder. The web is then transferred from the structured fabric to the steam heated cylinder though a very low intensity nip (up to 10 times less than a conventional press nip) between a solid pressure roll and the steam heated cylinder. The portions of the web that are pressed between the pressure roll and steam cylinder rest on knuckles of the structured fabric; thereby protecting most of the web from the light compaction that occurs in this nip. The steam cylinder and an optional air cap system, for impinging hot air, then dry the sheet to up to 99% solids during the drying stage before creping occurs. The creping step of the process again only affects the knuckle sections of the web that are in contact with the steam cylinder surface. Due to only the knuckles of the web being creped, along with the dominant surface topography being generated by the structured fabric, and the higher thickness of the TAD web, the creping process has much smaller effect on overall softness as compared to conventional dry crepe. After creping, the web is optionally calendered and reeled into a parent roll and ready for the converting process. Some TAD machines utilize fabrics (similar to dryer fabrics) to support the sheet from the crepe blade to the reel drum to aid in sheet stability and productivity. Patents which describe creped through air dried products include U.S. Pat. Nos. 3,994,771, 4,102,737, 4,529,480, and 5,510,002.


The TAD process generally has higher capital costs as compared to a conventional tissue machine due to the amount of air handling equipment needed for the TAD section. Also, the TAD process has a higher energy consumption rate due to the need to burn natural gas or other fuels for thermal pre-drying. However, the bulk softness and absorbency of a paper product made from the TAD process is superior to conventional paper due to the superior bulk generation via structured fabrics, which creates a low density, high void volume web that retains its bulk when wetted. The surface smoothness of a TAD web can approach that of a conventional tissue web. The productivity of a TAD machine is less than that of a conventional tissue machine due to the complexity of the process and the difficulty of providing a robust and stable coating package on the Yankee dryer needed for transfer and creping of a delicate a pre-dried web.


UCTAD (un-creped through air drying) is a variation of the TAD process in which the sheet is not creped, but rather dried up to 99% solids using thermal drying, blown off the structured fabric (using air), and then optionally calendered and reeled. U.S. Pat. No. 5,607,551 describes an uncreped through air dried product.


A process/method and paper machine system for producing tissue has been developed by the Voith company and is marketed under the name ATMOS. The process/method and paper machine system has several variations, but all involve the use of a structured fabric in conjunction with a belt press. The major steps of the ATMOS process and its variations are stock preparation, forming, imprinting, pressing (using a belt press), creping, calendering (optional), and reeling the web.


The stock preparation step of the ATMOS process is the same as that of a conventional or TAD machine. The forming process can utilize a twin wire former (as described in U.S. Pat. No. 7,744,726), a Crescent Former with a suction Forming Roll (as described in U.S. Pat. No. 6,821,391), or a Crescent Former (as described in U.S. Pat. No. 7,387,706). The former is provided with a slurry from the headbox to a nip formed by a structured fabric (inner position/in contact with the forming roll) and forming fabric (outer position). The fibers from the slurry are predominately collected in the valleys (or pockets, pillows) of the structured fabric and the web is dewatered through the forming fabric. This method for forming the web results in a bulk structure and surface topography as described in U.S. Pat. No. 7,387,706 (FIGS. 1-11). After the forming roll, the structured and forming fabrics separate, with the web remaining in contact with the structured fabric.


The web is now transported on the structured fabric to a belt press. The belt press can have multiple configurations. The press dewaters the web while protecting the areas of the sheet within the structured fabric valleys from compaction. Moisture is pressed out of the web, through the dewatering fabric, and into the vacuum roll. The press belt is permeable and allows for air to pass through the belt, web, and dewatering fabric, and into the vacuum roll, thereby enhancing the moisture removal. Since both the belt and dewatering fabric are permeable, a hot air hood can be placed inside of the belt press to further enhance moisture removal. Alternately, the belt press can have a pressing device which includes several press shoes, with individual actuators to control cross direction moisture profile, or a press roll. A common arrangement of the belt press has the web pressed against a permeable dewatering fabric across a vacuum roll by a permeable extended nip belt press. Inside the belt press is a hot air hood that includes a steam shower to enhance moisture removal. The hot air hood apparatus over the belt press can be made more energy efficient by reusing a portion of heated exhaust air from the Yankee air cap or recirculating a portion of the exhaust air from the hot air apparatus itself.


After the belt press, a second press is used to nip the web between the structured fabric and dewatering felt by one hard and one soft roll. The press roll under the dewatering fabric can be supplied with vacuum to further assist water removal. This belt press arrangement is described in U.S. Pat. Nos. 8,382,956 and 8,580,083, with FIG. 1 showing the arrangement. Rather than sending the web through a second press after the belt press, the web can travel through a boost dryer, a high pressure through air dryer, a two pass high pressure through air dryer or a vacuum box with hot air supply hood. U.S. Pat. Nos. 7,510,631, 7,686,923, 7,931,781, 8,075,739, and 8,092,652 further describe methods and systems for using a belt press and structured fabric to make tissue products each having variations in fabric designs, nip pressures, dwell times, etc., and are mentioned here for reference. A wire turning roll can be also be utilized with vacuum before the sheet is transferred to a steam heated cylinder via a pressure roll nip.


The sheet is now transferred to a steam heated cylinder via a press element. The press element can be a through drilled (bored) pressure roll, a through drilled (bored) and blind drilled (blind bored) pressure roll, or a shoe press. After the web leaves this press element and before it contacts the steam heated cylinder, the % solids are in the range of 40-50%. The steam heated cylinder is coated with chemistry to aid in sticking the sheet to the cylinder at the press element nip and also to aid in removal of the sheet at the doctor blade. The sheet is dried to up to 99% solids by the steam heated cylinder and an installed hot air impingement hood over the cylinder. This drying process, the coating of the cylinder with chemistry, and the removal of the web with doctoring is explained in U.S. Pat. Nos. 7,582,187 and 7,905,989. The doctoring of the sheet off the Yankee, i.e., creping, is similar to that of TAD with only the knuckle sections of the web being creped. Thus, the dominant surface topography is generated by the structured fabric, with the creping process having a much smaller effect on overall softness as compared to conventional dry crepe. The web is now calendered (optional), slit, reeled and ready for the converting process.


The ATMOS process has capital costs between that of a conventional tissue machine and a TAD machine. It uses more fabrics and a more complex drying system compared to a conventional machine, but uses less equipment than a TAD machine. The energy costs are also between that of a conventional and a TAD machine due to the energy efficient hot air hood and belt press. The productivity of the ATMOS machine has been limited due to the inability of the novel belt press and hood to fully dewater the web and poor web transfer to the Yankee dryer, likely driven by poor supported coating packages, the inability of the process to utilize structured fabric release chemistry, and the inability to utilize overlaid fabrics to increase web contact area to the dryer. Poor adhesion of the web to the Yankee dryer has resulted in poor creping and stretch development which contributes to sheet handling issues in the reel section. The result is that the output of an ATMOS machine is currently below that of conventional and TAD machines. The bulk softness and absorbency is superior to conventional, but lower than a TAD web since some compaction of the sheet occurs within the belt press, especially areas of the web not protected within the pockets of the fabric. Also, bulk is limited since there is no speed differential to help drive the web into the structured fabric as exists on a TAD machine. The surface smoothness of an ATMOS web is between that of a TAD web and a conventional web primarily due to the current limitation on use of overlaid structured fabrics.


The ATMOS manufacturing technique is often described as a hybrid technology because it utilizes a structured fabric like the TAD process, but also utilizes energy efficient means to dewater the sheet like the conventional dry crepe process. Other manufacturing techniques which employ the use of a structured fabric along with an energy efficient dewatering process are the ETAD process and NTT process. The ETAD process and products are described in U.S. Pat. Nos. 7,339,378, 7,442,278, and 7,494,563. The NTT process and products are described in WO 2009/061079 A1, US Patent Application Publication No. 2011/0180223 A1, and US Patent Application Publication No. 2010/0065234 A1. The QRT process is described in US Patent Application Publication No. 2008/0156450 A1 and U.S. Pat. No. 7,811,418. A structuring belt manufacturing process used for the NTT, QRT, and ETAD imprinting process is described in U.S. Pat. No. 8,980,062 and U.S. Patent Application Publication No. US 2010/0236034.


The NTT process involves spirally winding strips of polymeric material, such as industrial strapping or ribbon material, and adjoining the sides of the strips of material using ultrasonic, infrared, or laser welding techniques to produce an endless belt. Optionally, a filler or gap material can be placed between the strips of material and melted using the aforementioned welding techniques to join the strips of materials. The strips of polymeric material are produced by an extrusion process from any polymeric resin such as polyester, polyamide, polyurethane, polypropylene, or polyether ether ketone resins. The strip material can also be reinforced by incorporating monofilaments of polymeric material into the strips during the extrusion process or by laminating a layer of woven polymer monofilaments to the non-sheet contacting surface of a finished endless belt composed of welded strip material. The endless belt can have a textured surface produced using processes such as sanding, graving, embossing, or etching. The belt can be impermeable to air and water, or made permeable by processes such as punching, drilling, or laser drilling. Examples of structuring belts used in the NTT process can be viewed in International Publication Number WO 2009/067079 A1 and US Patent Application Publication No. 2010/0065234 A1.


As shown in the aforementioned discussion of tissue papermaking technologies, the fabrics or belts utilized are critical in the development of the tissue web structure and topography which, in turn, are instrumental in determining the quality characteristics of the web such as softness (bulk softness and surfaces smoothness) and absorbency. The manufacturing process for making these fabrics has been limited to weaving a fabric (primarily forming fabrics and structured fabrics) or a base structure and needling synthetic fibers (press fabrics) or overlaying a polymeric resin (overlaid structured fabrics) to the fabric/base structure, or welding strips of polymeric material together to form an endless belt.


Conventional overlaid structures require application of an uncured polymer resin over a woven substrate where the resin completely penetrates through the thickness of the woven structure. Certain areas of the resin are cured and other areas are uncured and washed away from the woven structure. This results in a fabric where airflow through the fabric is only possible in the Z-direction. Thus, in order for the web to dry efficiently, only highly permeable fabrics can be utilized, meaning the amount of overlaid resin applied needs to be limited. If a fabric of low permeability is produced in this manner, then drying efficiency is significantly reduced, resulting in poor energy efficiency and/or low production rates as the web must be transported slowly across the TAD drums or ATMOS drum for sufficient drying. Similarly, a welded polymer structuring layer is extremely planar and provides an even surface when laminating to a woven support layer (FIG. 9), which results in little if any air channels in the X-Y plane.


SUMMARY OF THE INVENTION

An object of this invention is to provide an alternate process for manufacturing structured fabrics. It is also the purpose of this invention to provide a less complex, lower cost, higher production technique to produce these fabrics. This process can be used to produce structuring fabrics and forming fabrics.


In an exemplary embodiment, the inventive process uses extruded polymeric netting material to create the fabric. The extruded polymer netting is optionally laminated to additional layers of extruded polymer netting, woven polymer monofilament, or woven monofilaments or multi-filamentous yarns needled with fine synthetic batt fibers.


Another object of this invention is to provide a press section of a paper machine that can utilize the inventive structuring fabric to produce high quality, high bulk tissue paper. This press section combines the low capital cost, high production rate, low energy consumption advantages of the NTT manufacturing process, but improves the quality to levels that can be achieved with TAD technology.


The inventive process avoids the tedious and expensive conventional prior art process used to produce woven fabrics using a loom or the time, cost, and precision needed to produce welded fabrics using woven strips of polymeric material that need to be engraved, embossed, or laser drilled. The fabrics produced using the inventive process can be utilized as forming fabrics on any papermaking machine or as a structuring belt on tissue machines utilizing the TAD (creped or uncreped), NTT, QRT, ATMOS, ETAD or other hybrid processes.


In an exemplary embodiment, a low porosity structuring belt of the inventive design is used on a TAD machine where the air flows through the TAD drum from a hot air impingement hood or air cap. High air flow through the inventive structuring belt is not required to effectively dry the imprinted sheet, leading to lower heat demand and fuel consumption.


In an exemplary embodiment, a press section of a tissue machine can be used in conjunction with structured fabrics of this invention to produce high quality tissue with low capital and operational costs. This combination of high quality tissue produced at high productivity rates using low capital and operational costs is not currently available using conventional technologies.


According to an exemplary embodiment of the present invention, a fabric or belt for a papermaking machine comprises: a first layer that defines a web contacting surface, the first layer being made of extruded polymer and comprising: a plurality of first elements aligned in a first direction; a plurality of second elements aligned in a second direction and extending over the plurality of first elements; and a plurality of open portions defined by the plurality of first and second elements; and a second layer made of woven fabric that supports the first layer, wherein the first layer is bonded to the second layer so that the first layer extends only partially through the second layer and an interface formed between the first and second layers comprises airflow channels that extend in a plane parallel to the first and second layers.


According to at least one exemplary embodiment, the interface between the first and second layers comprises bonded and non-bonded portions.


According to at least one exemplary embodiment, the first layer extends into the second layer by an amount of 30 μm or less.


According to at least one exemplary embodiment, the first layer has a thickness of 0.25 mm to 1.7 mm.


According to at least one exemplary embodiment, the first layer has a thickness of 0.4 mm to 0.75 mm.


According to at least one exemplary embodiment, the first layer has a thickness of 0.5 mm to 0.6 mm.


According to at least one exemplary embodiment, the plurality of open portions repeat across the first layer in both machine and cross directions at regular intervals.


According to at least one exemplary embodiment, the plurality of open portions are rectangular-shaped open portions.


According to at least one exemplary embodiment, the rectangular-shaped open portions are defined by sides with a length of 0.25 mm to 1.0 mm.


According to at least one exemplary embodiment, the rectangular-shaped open portions are defined by sides with a length of 0.4 mm to 0.75 mm.


According to at least one exemplary embodiment, the rectangular-shaped open portions are defined by sides with a length of 0.5 mm to 0.7 mm.


According to at least one exemplary embodiment, the plurality of open portions are square-shaped open portions.


According to at least one exemplary embodiment, the plurality of open portions are circular-shaped open portions.


According to at least one exemplary embodiment, the diameter of the circular-shaped open portions is 0.25 mm to 1.0 mm.


According to at least one exemplary embodiment, the diameter of the circular-shaped open portions is 0.4 mm to 0.75 mm.


According to at least one exemplary embodiment, the diameter of the circular-shaped open portions is 0.1 mm to 0.7 mm.


According to at least one exemplary embodiment, the plurality of second elements extend above the plurality of first elements by an amount of 0.05 mm to 0.40 mm.


According to at least one exemplary embodiment, the plurality of second elements extend above the plurality of first elements by an amount of 0.1 mm to 0.3 mm.


According to at least one exemplary embodiment, the plurality of second elements extend above the plurality of first elements by an amount of 0.1 mm to 0.2 mm.


According to at least one exemplary embodiment, the plurality of second elements have a width of 0.1 mm to 0.5 mm.


According to at least one exemplary embodiment, the plurality of second elements have a width of 0.2 mm to 0.4 mm.


According to at least one exemplary embodiment, the plurality of second elements have a width of 0.25 mm to 0.3 mm.


According to at least one exemplary embodiment, the plurality of first elements have a thickness of 0.15 mm to 0.75 mm.


According to at least one exemplary embodiment, the plurality of first elements have a thickness of 0.3 mm to 0.6 mm.


According to at least one exemplary embodiment, the plurality of first elements have a thickness of 0.4 mm to 0.6 mm.


According to at least one exemplary embodiment, the plurality of first elements have a width of 0.25 mm to 1.0 mm.


According to at least one exemplary embodiment, the plurality of first elements have a width of 0.3 mm to 0.5 mm.


According to at least one exemplary embodiment, the plurality of first elements have a width of 0.4 mm to 0.5 mm.


According to at least one exemplary embodiment, the first layer is made of polymer or copolymer.


According to at least one exemplary embodiment, the first layer is made of an extruded netting tube.


According to at least one exemplary embodiment, the extruded netting tube is stretched to orient the polymer or copolymer.


According to at least one exemplary embodiment, the first layer is made of a perforated sheet.


According to at least one exemplary embodiment, the perforated sheet is stretched to orient the polymer or copolymer.


According to at least one exemplary embodiment, the perforated sheet is seamed using thermal, laser, infrared or ultraviolet seaming.


According to at least one exemplary embodiment, the second layer comprises woven polymeric monofilaments.


According to at least one exemplary embodiment, the second layer comprises woven monofilaments or multi-filamentous yarns needled with fine synthetic batt fibers.


According to at least one exemplary embodiment, the second layer has a 5 shed weave with a non-numerical warp pick sequence.


According to at least one exemplary embodiment, the second layer has a mesh of 10 to 30 frames/cm.


According to at least one exemplary embodiment, the second layer has a mesh of 15 to 25 frames/cm.


According to at least one exemplary embodiment, the second layer has a mesh of 17 to 22 frames/cm.


According to at least one exemplary embodiment, the second layer has a count of 5 to 30 frames/cm.


According to at least one exemplary embodiment, the second layer has a count of 10 to 20 frames/cm.


According to at least one exemplary embodiment, the second layer has a count of 15 to 20 frames/cm.


According to at least one exemplary embodiment, the second layer has a caliper of 0.5 mm to 1.5 mm.


According to at least one exemplary embodiment, the second layer has a caliper of 0.5 mm to 1.0 mm.


According to at least one exemplary embodiment, the second layer has a caliper of 0.5 mm to 0.75 mm.


According to at least one exemplary embodiment, the second layer is bonded to the first layer by thermal, ultrasonic, ultraviolet or infrared welding.


According to at least one exemplary embodiment, the second layer is bonded to the first layer with a 20% to 50% contact area.


According to at least one exemplary embodiment, the second layer is bonded to the first layer with a 20% to 30% contact area.


According to at least one exemplary embodiment, the second layer is bonded to the first layer with a 25% to 30% contact area.


According to at least one exemplary embodiment, the fabric or belt has an air permeability of 20 cfm to 300 cfm.


According to at least one exemplary embodiment, the fabric or belt has an air permeability of 100 cfm to 250 cfm.


According to at least one exemplary embodiment, the fabric or belt has an air permeability of 200 cfm to 250 cfm.


According to at least one exemplary embodiment, the fabric or belt is a structuring fabric configured for use on a papermaking machine.


According to at least one exemplary embodiment, the papermaking machine is a Through Air Dried, ATMOS, NTT, QRT or ETAD tissue making machine.


According to at least one exemplary embodiment, the fabric or belt is a forming fabric configured for use on a papermaking machine.


According to at least one exemplary embodiment, the plurality of second elements extend below the plurality of first elements.


According to at least one exemplary embodiment, the plurality of second elements extend below the plurality of first elements by less than 0.40 mm.


According to at least one exemplary embodiment, the plurality of second elements extend below the plurality of first elements by 0.1 mm to 0.3 mm.


According to at least one exemplary embodiment, the plurality of second elements extend below the plurality of first elements by 0.1 mm to 0.2 mm.


According to at least one exemplary embodiment, the first direction is substantially parallel to a machine cross direction.


According to at least one exemplary embodiment, the second direction is substantially parallel to a machine direction.


According to at least one exemplary embodiment, the first direction is substantially parallel to a machine direction.


According to at least one exemplary embodiment, the second direction is substantially parallel to a machine cross direction.


A fabric or belt for a papermaking machine according to an exemplary embodiment of the present invention comprises: a first layer that defines a web contacting surface, the first layer being made of extruded polymer and comprising: a plurality of first elements aligned in a first direction; a plurality of second elements aligned in a second direction and extending over the plurality of first elements; and a plurality of open portions defined by the plurality of first and second elements; and a second layer made of woven fabric that supports the first layer, wherein the first layer is bonded to the second layer so as to form an interface between the first and second layers that comprises bonded and unbonded portions and airflow channels that extend in a plane parallel to the first and second layers.


According to at least one exemplary embodiment, the first layer extends only partially through the second layer.


According to at least one exemplary embodiment, the first layer extends into the second layer by an amount of 30 μm or less.


A fabric or belt for a papermaking machine according to an exemplary embodiment of the present invention comprises: a first layer that defines a web contacting surface, the first layer comprising a plurality of grooves aligned substantially in the machine direction; and a second layer made of woven fabric that supports the first layer, wherein the first layer is bonded to the second layer so as to form an interface between the first and second layers that comprises bonded and unbonded portions and airflow channels that extend in a plane parallel to the first and second layers.


According to at least one exemplary embodiment, the plurality of grooves are angled 0.1% to 45% relative to the machine direction.


According to at least one exemplary embodiment, the plurality of grooves are angled 0.1% to 5% relative to the machine direction.


According to at least one exemplary embodiment, the plurality of grooves are angled 2% to 3% relative to the machine direction.


According to at least one exemplary embodiment, the plurality of grooves have a depth of 0.25 mm to 1.0 mm.


According to at least one exemplary embodiment, the plurality of grooves have a depth of 0.4 mm to 0.75 mm.


According to at least one exemplary embodiment, the plurality of grooves have a depth of 0.4 mm to 0.6 mm.


According to at least one exemplary embodiment, the plurality of grooves have a square, semicircular or tapered cross section.


According to at least one exemplary embodiment, the plurality of grooves are spaced 0.1 mm to 1.5 mm apart from each other.


According to at least one exemplary embodiment, the plurality of grooves are spaced 0.2 mm to 0.5 mm apart from each other.


According to at least one exemplary embodiment, the plurality of grooves are spaced 0.2 mm to 0.3 mm apart from each other.


According to at least one exemplary embodiment, the plurality of grooves are formed by laser drilling.


According to at least one exemplary embodiment, the fabric or belt is subjected to punching, drilling or laser drilling to achieve an air permeability of 20 cfm to 200 cfm.


According to at least one exemplary embodiment, the fabric or belt has an air permeability of 20 cfm to 100 cfm.


According to at least one exemplary embodiment, the fabric or belt has an air permeability of 10 cfm to 50 cfm.


A fabric or belt for a papermaking machine according to an exemplary embodiment of the present invention comprises: first layer that defines a web contacting surface, the first layer comprising: a plurality of first elements aligned in a cross direction, the plurality of first elements having a thickness of 0.3 mm to 0.6 mm and a width of 0.4 mm to 0.5 mm; a plurality of second elements aligned in a machine direction and extending over the plurality of first elements by an amount of 0.1 mm to 0.2 mm and having a width of 0.25 mm to 0.3 mm; and a plurality of open portions defined by the plurality of first and second elements and that repeat across the at least one nonwoven layer in both the machine and cross directions at regular intervals, the plurality of open portions being square shaped and defined by sides with a length of 0.5 mm to 0.7 mm; and a woven fabric layer that supports the at least one layer, wherein the fabric or belt has an air permeability of 20 cfm to 300 cfm.


A fabric or belt for a papermaking machine according to an exemplary embodiment of the present invention comprises: at least one layer that defines a web contacting surface, the at least one layer comprising: a plurality of first elements aligned in a cross direction, the plurality of first elements having a thickness of 0.3 mm to 0.6 mm and a width of 0.4 mm to 0.5 mm; a plurality of second elements aligned in a machine direction and extending over the plurality of first elements by an amount of 0.1 mm to 0.2 mm and having a width of 0.25 mm to 0.3 mm; and a plurality of open portions defined by the plurality of first and second elements and that repeat across the at least one layer in both the machine and cross directions at regular intervals, the plurality of open portions being circular shaped with a diameter of 0.5 mm to 0.7 mm; and a woven fabric layer that supports the at least one layer, wherein the fabric or belt has an air permeability of 20 cfm to 300 cfm.


A method of forming a tissue product according to an exemplary embodiment of the present invention comprises: depositing a nascent paper web onto a forming fabric of a papermaking machine so as to form a paper web; at least partially dewatering the paper web through a structuring fabric of a press section of the papermaking machine, wherein the structuring fabric comprises: a first layer that defines a web contacting surface, the first layer being made of extruded polymer and comprising: a plurality of first elements aligned in a first direction; a plurality of second elements aligned in a second direction and extending over the plurality of first elements; and a plurality of open portions defined by the plurality of first and second elements; and a second layer made of woven fabric that supports the first layer, wherein the first layer is bonded to the second layer so that the first layer extends only partially through the second layer and an interface formed between the first and second layers comprise airflow channels that extend in a plane parallel to the first and second layers; and drying the at least partially dewatered paper web at a drying section of the papermaking machine.





BRIEF DESCRIPTION OF THE DRAWINGS

The features and advantages of exemplary embodiments of the present invention will be more fully understood with reference to the following, detailed description when taken in conjunction with the accompanying figures, wherein:



FIG. 1 is a cross-sectional view of a fabric or belt according to an exemplary embodiment of the present invention;



FIG. 2 is a top planar view of the fabric or belt of FIG. 1;



FIG. 3 is a block diagram of a press section according to an exemplary embodiment of the present invention;



FIG. 4 is a cross-sectional view of a fabric or belt according to an exemplary embodiment of the present invention;



FIG. 5 is a planar view of the fabric of belt of FIG. 4;



FIG. 6 is a photo showing a magnified image of a fabric or belt according to an exemplary embodiment of the present invention;



FIG. 7 is a photo of a fabric or belt according to an exemplary embodiment of the present invention;



FIG. 8 is a photo showing air channels formed in the fabric or belt according to an exemplary embodiment of the present invention;



FIG. 9 is a photo of a welded polymer structuring layer according to the conventional art;



FIG. 10 is a cross-sectional view of a fabric or belt according to an exemplary embodiment of the present invention;



FIG. 11 is a cross-sectional view of a fabric or belt according to an exemplary embodiment of the present invention;



FIG. 12 is a sectional perspective view of a fabric or belt according to an exemplary embodiment of the present invention;



FIG. 13 is an image of a belt or fabric according to an exemplary embodiment of the present invention;



FIG. 14 is an image of a belt or fabric according to an exemplary embodiment of the present invention;



FIG. 15 is a representation of the formula used to calculated Sdr values; and



FIG. 16 shows Sdr values for ten samples each of six different NTT tissue products, including Comparative Examples 1 and 2, Example 1, and three commercially available NTT tissue products.





DETAILED DESCRIPTION

Current methods for manufacturing papermaking fabrics are very time consuming and expensive, requiring weaving together polymer monofilaments using a loom and optionally binding a polymer overlay, or binding strips of polymeric ribbon material together using ultrasonic, infrared, or ultraviolet welding techniques. According to an exemplary embodiment of the present invention, a layer of extruded polymeric material is formed separately from a woven fabric layer, and the layer of polymeric material is attached to the woven fabric layer to form the fabric or belt structure. The layer of polymeric material includes elevated elements that extend substantially in the machine direction or cross direction.


In an exemplary embodiment, the layer of polymeric material is extruded polymer netting. Extruded netting tubes were first manufactured around 1956 in accordance with the process described in U.S. Pat. No. 2,919,467. The process creates a polymer net which in general has diamond shaped openings extending along the length of the tube. Since this process was pioneered, it has grown tremendously, with extruded square netting tubes being described in U.S. Pat. Nos. 3,252,181, 3,384,692, and 4,038,008. Nets can also be extruded in flat sheets as described in U.S. Pat. No. 3,666,609 which are then perforated or embossed to a selected geometric configuration. Heating and stretching the netting is conducted to enlarge the openings in the net structure and orient the polymers to increase strength. Tube netting can be stretched over a cylindrical mandrel while both tube and flat sheet netting can be stretched in the longitudinal and transverse directions using several techniques. U.S. Pat. No. 4,190,692 describes a process of stretching the netting to orient the polymer and increase strength.


Today, various types of polymers can be extruded to provide the optimal level of strength, stretch, heat resistance, abrasion resistance and a variety of other physical properties. Polymers can be coextruded in layers allowing for an adhesive agent to be incorporated into the outer shell of the netting to facilitate thermal lamination of multiple layers of netting.


According to an exemplary embodiment of the present invention, extruded netted tubes are used in fabrics in the papermaking process to lower the material cost, improve productivity, and improve product quality. The positions where this type of fabric can have the most impact are as the forming fabrics of any paper machine or as the structuring fabric on Through Air Dried (creped or uncreped), ATMOS, NTT, QRT or ETAD tissue paper making machines.


The extruded netted tubes have openings that are square, diamond, circular, or any geometric shape that can be produced with the dye equipment used in the extrusion process. The netted tubes are composed of any combination of polymers necessary to develop the stretch, strength, heat resistance, and abrasion resistance necessary for the application. Additionally, coextrusion is preferred with an adhesive agent incorporated into the outer shell of the netting. The adhesive agent facilitates thermal lamination of multiple layers of netting, thermal lamination of netting to woven monofilaments, or thermal lamination of netting to woven monofilaments or multi-filamentous yarns needled with fine synthetic batt fibers. The netting is preferably stretched across a cylindrical mandrel to orient the polymers for increased strength and control over the size of the openings in the netting.


Netting that has been extruded in flat sheets and perforated with openings in the preferred geometric shapes can also be utilized. These nettings are preferably coextruded with an adhesive agent incorporated into the outer shell of the netting to facilitate thermal lamination of multiple layers of netting, thermal lamination of netting to woven monofilaments, or thermal lamination of netting to woven monofilaments or multi-filamentous yarns needled with fine synthetic batt fibers. The netting is preferable heated and stretched in the longitudinal and transverse direction to control the size of the opening and increase strength of the net. When flat netting is utilized, seaming is used to produce an endless tube. Seaming techniques using a laser or ultrasonic welding are preferred.



FIG. 1 is a cross-sectional view and FIG. 2 is a top planar view of a structuring belt or fabric, generally designated by reference number 1, according to an exemplary embodiment of the present invention. The belt or fabric 1 is multilayered and includes a layer 2 that forms the side of the belt or fabric carrying the paper web, and a woven fabric layer 4 forming the non-paper web contacting side of the belt or fabric. The layer 2 is comprised of netted tube of coextruded polymer with a thickness (1) of 0.25 mm to 1.7 mm, with openings being regularly recurrent and distributed in the longitudinal (MD) and cross direction (CD) of the layer 2 or substantially parallel (plus or minus 10 degrees) thereto. The openings are square with a width (8) and length (3) between 0.25 to 1.0 mm or circular with a diameter between 0.25 to 1.0 mm. The MD aligned elements of the netting of the layer 2 extend (5) 0.05 to 0.40 mm above the top plane of the CD aligned elements of the netting. The CD aligned elements of the netting of the structuring layer 2 have a thickness (8) of 0.34 mm. The widths (6) of the MD aligned elements of the netting of the layer 2 are between 0.1 to 0.5 mm. The widths (7) of the CD aligned elements are between 0.25 to 1.0 mm, as well. The two layers 2, 4 are laminated together using heat to melt the adhesive in the polymer of the layer 2. Ultrasonic, infrared, and laser welding can also be utilized to laminate the layers 2, 4. As discussed in further detail below, the lamination of the two layers results in the layer 2 extending only partially through the thickness of the woven fabric layer 4, with some portions of the layer 2 remaining unbonded to the woven fabric layer 4.


Optionally, as shown in FIG. 10, the MD aligned elements of the netting of the layer 1 can extend (9) up to 0.40 mm below the bottom plane of the CD aligned portion of the netting to further aid in air flow in the X-Y plane of the fabric or belt and supported web. In other embodiments, the elements described above as being MD and CD aligned elements may be aligned to the opposite axis or aligned off axis from the MD and/or CD directions.


The woven fabric layer 4 is comprised of a woven polymeric fabric with a preferred mesh of between 10-30 frames/cm, a count of 5 to 30 frames/cm, and a caliper from 0.5 mm to 1.5 mm. This layer preferably has a five shed non numerical consecutive warp-pick sequence (as described in U.S. Pat. No. 4,191,609) that is sanded to provide 20 to 50 percent contact area with the layer 2. The fabric or belt 1 with a woven fabric layer 4 of this design is suitable on any TAD or ATMOS asset. Optionally, the woven fabric layer 4 is composed of woven monofilaments or multi-filamentous yarns needled with fine synthetic batt fibers similar to a standard press fabric used in the conventional tissue papermaking press section. The fabric or belt 1 with a woven fabric layer 4 of this design is suitable on any NTT, QRT, or ETAD machine.



FIGS. 6-8 are photographs, FIG. 11 is a cross-sectional view and FIG. 12 is a perspective view of a belt or fabric, generally designated by reference number 300, according to an exemplary embodiment of the present invention. The belt or fabric 300 is produced by laminating an already cured polymer netted layer 318 to a woven fabric layer 310. The polymer netted layer 318 includes CD aligned elements 314 and MD aligned elements 312. The CD aligned elements 314 and the MD aligned elements 312 cross one another with spaces between adjacent elements so as to form openings. As best shown in the photographs of FIGS. 6-8, both the extruded polymer netting layer 318 and woven layer 310 have non-planar, irregularly shaped surfaces that when laminated together only bond together where the two layers come into direct contact. The lamination results in the extruded polymer layer 318 extending only partially into the woven layer 310 so that any bonding that takes place between the two layers occurs at or near the surface of the woven layer 310. In a preferred embodiment, the extruded polymer layer 318 extends into the woven layer 310 to a depth of 30 microns or less. As shown in FIG. 11, the partial and uneven bonding between the two layers results in formation of air channels 320 that extend in the X-Y plane of the fabric or belt 300. This in turn allows air to travel in the X-Y plane along a sheet (as well as within the fabric or belt 300) being held by the fabric or belt 300 during TAD, UCTAD, or ATMOS processes. Without being bound by theory, it is believed that the fabric or belt 300 removes higher amounts of water due to the longer airflow path and dwell time as compared to conventional designs. In particular, previously known woven and overlaid fabric designs create channels where airflow is restricted in movement in regards to the X-Y direction and channeled in the Z-direction by the physical restrictions imposed by pockets formed by the monofilaments or polymers of the belt. The inventive design allows for airflow in the X-Y direction, such that air can move parallel through the belt and web across multiple pocket boundaries and increase contact time of the airflow within the web to remove additional water. This allows for the use of belts with lower permeability compared to conventional fabrics without increasing the energy demand per ton of paper dried. The air flow in the X-Y plane also reduces high velocity air flow in the Z-direction as the sheet and fabric pass across the molding box, thereby reducing the formation of pin holes in the sheet.


In an exemplary embodiment, the woven layer 310 is composed of polyethylene terephthalate (PET). Conventional non-overlaid structuring fabrics made of PET typically have a failure mode in which fibrillation of the sheet side of the monofilaments occurs due to high pressure from cleaning showers, compression at the pressure roll nip, and heat from the TAD, UCTAD, or ATMOS module. The non-sheet side typically experiences some mild wear and loss of caliper due to abrasion across the paper machine rolls and is rarely the cause of fabric failure. By contrast, the extruded polymer layer 318 is composed of polyurethane, which has higher impact resistance as compared to PET to better resist damage by high pressure showers. It also has higher load capacity in both tension and compression such that it can undergo a change in shape under a heavy load but return to its original shape once the load is removed (which occurs in the pressure roll nip). Polyurethane also has excellent flex fatigue resistance, tensile strength, tear strength, abrasion resistance, and heat resistance. These properties allow the fabric to be durable and run longer on the paper machine than a standard woven fabric. Additionally the woven structure can be sanded to increase the surface area that contacts the extruded polymer layer to increase the total bonded area between the two layers. Varying the degree of sanding of the woven structure can alter the bonded area from 10% to up to 50% of the total surface area of the woven fabric that lies beneath the extruded polymer layer. The preferred bonded area is approximately 20-30% which provides sufficient durability to the fabric without closing excessive amounts of air channels in the X-Y plane of the fabric, which in turn maintains improved drying efficiency compared to conventional fabrics.



FIG. 3 shows a press section according to an exemplary embodiment of the present invention. The press section is similar to the press section described in US Patent Application Publication No. 2011/0180223 except the press is comprised of suction pressure roll 14 and an extended nip or shoe press 13. A paper web, supported upon a press fabric 10 composed of woven monofilaments or multi-filamentous yarns needled with fine synthetic batt fibers, is transported through this press section nip and transferred to the structuring belt 12. The structuring belt 12 is comprised of a structuring layer of extruded netting or welded polymeric strips made permeable with holes formed by laser drilling (or other suitable mechanical processes) and laminated to a support layer comprised of woven monofilaments or multi-filamentous yarns needled with fine synthetic batt fibers. The support layer is preferably comprised of a material typical of a press fabric used on a conventional tissue machine. The paper web is dewatered through both sides of the sheet into the press fabric 10 and structuring fabric 12 as the web passes through the nip of the press section. The suction pressure roll 14 is preferably a through drilled, blind drilled, and/or grooved polyurethane covered roll.


This press section improves the softness, bulk, and absorbency of web compared to the NTT process. The NTT process flattens the web inside the pocket of the fabric since all the force is being applied by the shoe press to push the web into a fabric pocket that is impermeable or of extremely low permeability to build up hydraulic force to remove the water. The inventive press section uses a press to push the web into a permeable fabric pocket while also drawing the sheet into the fabric pocket using vacuum. This reduces the necessary loading force needed by the shoe press and reduces the buildup of hydraulic pressure, both of which would compress the sheet. The result is that the web within the fabric pocket remains thicker and less compressed, giving the web increased bulk, increased void volume and absorbency, and increased bulk softness. The press section still retains the simplicity, high speed operation, and low energy cost platform of the NTT, but improves the quality of the product.



FIG. 4 is a cross-sectional view and FIG. 5 is a top planar view of a structuring belt or fabric, generally designated by reference number 100, according to another exemplary embodiment of the present invention. The belt or fabric 100 is multilayered and includes a layer 102 that forms the side of the belt or fabric carrying the paper web, and a woven fabric layer 104 forming the non-paper web contacting side of the belt or fabric. The layer 102 is made of a polymeric material and, in an exemplary embodiment, the layer 102 is made of a sheet of extruded polymeric material. Grooves 103 and corresponding ridges 105 between the grooves 103 are formed in the layer 102 by laser drilling and the grooves extend at an angle (1) relative to the machine direction, and in embodiments the grooves 103 are angled 0.1 degrees to 45 degrees relative to the machine direction, preferably 0.1 degrees to 5 degrees relative to the machine direction, and more preferably 2 degrees to 3 degrees relative to the machine direction. In a preferred exemplary embodiment, the grooves are angled 2 degrees relative to the machine direction. The grooves 103 have a depth (3) that varies (that is, the depth of each groove along its length varies) within the range of 250 microns to 800 microns, preferably 400 microns to 750 microns, and more preferably 400 microns to 600 microns. The variation in groove depth minimizes or prevents collapse of the grooves 103 (i.e., collapse of the surfaces defining the grooves 103) while the belt or fabric 100 is in the main press nip of the paper making machine. FIGS. 13 and 14 are images of an exemplary embodiment of the belt or fabric 100 showing the varying depth of the grooves. The ridges 105 are thinnest in width at locations along the length of the belt of fabric 100 where the grooves 103 are the deepest, so that at those locations the grooves 105 are closest together. The width (5) of the grooves 103 are within the range of 450 microns to 600 microns. The grooves 103 have a square, semicircular or tapered profile, and the distance (4) between each groove 103 is within the range of 100 microns to 1.5 mm, preferably 200 microns to 500 microns, and more preferably 200 microns to 300 microns. The layer 102 has a thickness (6) of 250 microns to 1.5 mm, preferably 500 microns to 1.0 mm, and more preferably 750 microns to 1.0 mm. In a preferred exemplary embodiment, the layer 102 has a thickness (6) of 1.4 mm and the woven fabric layer 104 has a thickness of 2.4 mm. In an exemplary embodiment, the fabric or belt 100 is subjected to punching, drilling or laser drilling to achieve an air permeability of 20 cfm to 200 cfm, preferably 20 cfm to 100 cfm, and more preferably 10 cfm to 50 cfm.


In a variation of the exemplary embodiment shown in FIG. 4, additional grooves are formed in the layer 102 which extend in the cross direction. Portions of the layer 102 between the cross direction grooves are lower than portions between the machine direction grooves, so that the portions between the machine direction grooves form elevated elements in the surface of the layer 102 in contact with the web, similar to the embodiment shown in FIG. 1.


According to an exemplary embodiment of the present invention, a tissue product is formed using the laser engraved structuring belt described with reference to FIGS. 4 and 5 within an NTT paper making machine, such as the NTT paper making machine described in PCT Patent Application Publication No. WO 2009/067079, the contents of which are incorporated herein by reference in their entirety. The resulting tissue exhibits a unique Sdr value as defined in ISO 25178-2 (2012) which is a parameter that defines the actual surface area of a material as compared to the projected surface area of the material. The formula used to calculate Sdr is as follows:










developed





interfacial





area











ratio





of





the





scale


-


limited





surface








S
dr






ratio





of





the





increment





of





the





interfacial





area





of





the





scale


-








limited





surface





within











the





definition





area






(
A
)






over





the







definition





area








S
dr

=


1
A



[





A




(



[

1
+


(




x


(

x
,
y

)





x


)

2

+


(




x


(

x
,
y

)





y


)

2


]


-
1

)


d





x





d





y



]







4.3

.2







In practical terms the formula can be represented as shown in FIG. 15.


The larger the Sdr parameter, the larger the actual surface area compared to the projected surface area. In terms of comparing tissue paper; assuming both sheets have the same length, width, and thickness, a tissue with a higher Sdr parameter will have a larger surface area, thereby providing enhanced ability to remove contaminants from any surface. Without being bound by theory, a tissue with a higher Sdr should be able to remove and retain a greater amount of contamination from a person's peranial area when using the tissue to clean after a bowel movement to provide improved cleaning compared to a tissue with a lower Sdr value.


The following example and test results demonstrate the advantages of the present invention.


Softness Testing


Softness of a 2-ply tissue web was determined using a Tissue Softness Analyzer (TSA), available from EMTEC Electronic GmbH of Leipzig, Germany. The TSA comprises a rotor with vertical blades which rotate on the test piece applying a defined contact pressure. Contact between the vertical blades and the test piece creates vibrations which are sensed by a vibration sensor. The sensor then transmits a signal to a PC for processing and display. The frequency analysis in the range of approximately 200 to 1000 Hz represents the surface smoothness or texture of the test piece and is referred to as the TS750 value. A further peak in the frequency range between 6 and 7 kHz represents the bulk softness of the test piece and is referred to as the TS7 value. Both TS7 and TS750 values are expressed as dB V2 rms. The stiffness of the sample is also calculated as the device measures deformation of the sample under a defined load. The stiffness value (D) is expressed as mm/N. The device also calculates a Hand Feel (HF) number with the higher the number corresponding to a higher softness as perceived when someone touches a tissue sample by hand. The HF number is a combination of the TS750, TS7, and stiffness of the sample measured by the TSA and calculated using an algorithm which also requires the caliper and basis weight of the sample. Different algorithms can be selected for different facial, toilet, and towel paper products. Before testing, a calibration check should be performed using “TSA Leaflet Collection No. 9” available from EMTECH dated 2016 May 10. If the calibration check demonstrates a calibration is necessary, follow “TSA Leaflet Collection No. 10” for the calibration procedure available from EMTECH dated 2015 Sep. 9.


A punch was used to cut out five 100 cm2 round samples from the web. One of the samples was loaded into the TSA, clamped into place (outward facing or embossed ply facing upward), and the TPII algorithm was selected from the list of available softness testing algorithms displayed by the TSA. After inputting parameters for the sample (including caliper and basis weight), the TSA measurement program was run. The test process was repeated for the remaining samples and the results for all the samples were averaged and the average HF number recorded.


Stretch & MD, CD, and Wet CD Tensile Strength Testing


An Instron 3343 tensile tester, manufactured by Instron of Norwood, Mass., with a 100N load cell and 25.4 mm rubber coated jaw faces was used for tensile strength measurement. Prior to measurement, the Instron 3343 tensile tester was calibrated. After calibration, 8 strips of 2-ply product, each one inch by four inches, were provided as samples for each test. The strips were cut in the MD direction when testing MD and in the CD direction when testing CD. One of the sample strips was placed in between the upper jaw faces and clamp, and then between the lower jaw faces and clamp with a gap of 2 inches between the clamps. A test was run on the sample strip to obtain tensile and stretch. The test procedure was repeated until all the samples were tested. The values obtained for the eight sample strips were averaged to determine the tensile strength of the tissue.


Basis Weight


Using a dye and press, six 76.2 mm by 76.2 mm square samples were cut from a 2-ply product being careful to avoid any web perforations. The samples were placed in an oven at 105 deg C. for 5 minutes before being weighed on an analytical balance to the fourth decimal point. The weight of the sample in grams was divided by (0.0762 m)2 to determine the basis weight in grams/m2.


Caliper Testing


A Thwing-Albert ProGage 100 Thickness Tester, manufactured by Thwing Albert of West Berlin, N.J., with a 2″ diameter pressure foot with a preset loading of 0.93 grams/square inch, was used for the caliper test. Eight 100 mm×100 mm square samples were cut from a 2-ply product. The samples were then tested individually and the results were averaged to obtain a caliper result for the base sheet.


Lint Testing


The amount of lint generated from a tissue product was determined with a Sutherland Rub Tester. This tester uses a motor to rub a weighted felt 5 times over the stationary tissue. The Hunter Color L value is measured before and after the rub test. The difference between these two Hunter Color L values is calculated as lint.


Lint Testing—Sample Preparation:


Prior to the lint rub testing, the paper samples to be tested should be conditioned according to Tappi Method #T4020M-88. Here, samples are preconditioned for 24 hours at a relative humidity level of 10 to 35% and within a temperature range of 22° to 40° C. After this preconditioning step, samples should be conditioned for 24 hours at a relative humidity of 48 to 52% and within a temperature range of 22° to 24° C. This rub testing should also take place within the confines of the constant temperature and humidity room.


The Sutherland Rub Tester may be obtained from Testing Machines, Inc. (Amityville, N.Y. 11701). The tissue is first prepared by removing and discarding any product which might have been abraded in handling, e.g. on the outside of the roll. For multi-ply finished product, three sections with each containing two sheets of multi-ply product are removed and set on the bench-top. For single-ply product, six sections with each containing two sheets of single-ply product are removed and set on the bench-top. Each sample is then folded in half such that the crease is running along the cross direction (CD) of the tissue sample. For the multi-ply product, make sure one of the sides facing out is the same side facing out after the sample is folded. In other words, do not tear the plies apart from one another and rub test the sides facing one another on the inside of the product. For the single-ply product, make up 3 samples with the off-Yankee side out and 3 with the Yankee side out. Keep track of which samples are Yankee side out and which are off-Yankee side out.


Obtain a 30″×40″ piece of Crescent #300 cardboard from Cordage Inc. (800 E. Ross Road, Cincinnati, Ohio, 45217). Using a paper cutter, cut out six pieces of cardboard of dimensions of 2.5″×6″. Puncture two holes into each of the six cards by forcing the cardboard onto the hold down pins of the Sutherland Rub tester.


If working with single-ply finished product, center and carefully place each of the 2.5″×6″ cardboard pieces on top of the six previously folded samples. Make sure the 6″ dimension of the cardboard is running parallel to the machine direction (MD) of each of the tissue samples. If working with multi-ply finished product, only three pieces of the 2.5″×6″ cardboard will be required. Center and carefully place each of the cardboard pieces on top of the three previously folded samples. Once again, make sure the 6″ dimension of the cardboard is running parallel to the machine direction (MD) of each of the tissue samples.


Fold one edge of the exposed portion of tissue sample onto the back of the cardboard. Secure this edge to the cardboard with adhesive tape obtained from 3M Inc. (¾″ wide Scotch Brand, St. Paul, Minn.). Carefully grasp the other over-hanging tissue edge and snugly fold it over onto the back of the cardboard. While maintaining a snug fit of the paper onto the board, tape this second edge to the back of the cardboard. Repeat this procedure for each sample.


Turn over each sample and tape the cross direction edge of the tissue paper to the cardboard. One half of the adhesive tape should contact the tissue paper while the other half is adhering to the cardboard. Repeat this procedure for each of the samples. If the tissue sample breaks, tears, or becomes frayed at any time during the course of this sample preparation procedure, discard and make up a new sample with a new tissue sample strip.


If working with multi-ply converted product, there will now be 3 samples on the cardboard. For single-ply finished product, there will now be 3 off-Yankee side out samples on cardboard and 3 Yankee side out samples on cardboard.


Lint Testing—Felt Preparation


Obtain a 30″×40″ piece of Crescent #300 cardboard from Cordage Inc. (800 E. Ross Road, Cincinnati, Ohio, 45217). Using a paper cutter, cut out six pieces of cardboard of dimensions of 2.25″×7.25″. Draw two lines parallel to the short dimension and down 1.125″ from the top and bottom most edges on the white side of the cardboard. Carefully score the length of the line with a razor blade using a straight edge as a guide. Score it to a depth about half way through the thickness of the sheet. This scoring allows the cardboard/felt combination to fit tightly around the weight of the Sutherland Rub tester. Draw an arrow running parallel to the long dimension of the cardboard on this scored side of the cardboard.


Cut the six pieces of black felt (F-55 or equivalent from New England Gasket, 550 Broad Street, Bristol, Conn. 06010) to the dimensions of 2.25″×8.5″×0.0625. Place the felt on top of the unscored, green side of the cardboard such that the long edges of both the felt and cardboard are parallel and in alignment. Make sure the fluffy side of the felt is facing up. Also allow about 0.5″ to overhang the top and bottom most edges of the cardboard. Snuggly fold over both overhanging felt edges onto the backside of the cardboard with Scotch brand tape. Prepare a total of six of these felt/cardboard combinations.


For best reproducibility, all samples should be run with the same lot of felt. Obviously, there are occasions where a single lot of felt becomes completely depleted. In those cases where a new lot of felt must be obtained, a correction factor should be determined for the new lot of felt. To determine the correction factor, obtain a representative single tissue sample of interest, and enough felt to make up 24 cardboard/felt samples for the new and old lots.


As described below and before any rubbing has taken place, obtain Hunter L readings for each of the 24 cardboard/felt samples of the new and old lots of felt. Calculate the averages for both the 24 cardboard/felt samples of the old lot and the 24 cardboard/felt samples of the new lot.


Next, rub test the 24 cardboard/felt boards of the new lot and the 24 cardboard/felt boards of the old lot as described below. Make sure the same tissue lot number is used for each of the 24 samples for the old and new lots. In addition, sampling of the paper in the preparation of the cardboard/tissue samples must be done so the new lot of felt and the old lot of felt are exposed to as representative as possible of a tissue sample. For the case of 1-ply tissue product, discard any product which might have been damaged or abraded. Next, obtain 48 strips of tissue each two usable units (also termed sheets) long. Place the first two usable unit strip on the far left of the lab bench and the last of the 48 samples on the far right of the bench. Mark the sample to the far left with the number “1” in a 1 cm by 1 cm area of the corner of the sample. Continue to mark the samples consecutively up to 48 such that the last sample to the far right is numbered 48.


Use the 24 odd numbered samples for the new felt and the 24 even numbered samples for the old felt. Order the odd number samples from lowest to highest. Order the even numbered samples from lowest to highest. Now, mark the lowest number for each set with a letter “Y.” Mark the next highest number with the letter “O.” Continue marking the samples in this alternating “Y”/“O” pattern. Use the “Y” samples for Yankee side out lint analyses and the “O” samples for off-Yankee side lint analyses. For 1-ply product, there are now a total of 24 samples for the new lot of felt and the old lot of felt. Of this 24, twelve are for Yankee side out lint analysis and 12 are for off-Yankee side lint analysis.


Rub and measure the Hunter Color L values for all 24 samples of the old felt as described below. Record the 12 Yankee side Hunter Color L values for the old felt. Average the 12 values. Record the 12 off-Yankee side Hunter Color L values for the old felt. Average the 12 values. Subtract the average initial un-rubbed Hunter Color L felt reading from the average Hunter Color L reading for the Yankee side rubbed samples. This is the delta average difference for the Yankee side samples. Subtract the average initial un-rubbed Hunter Color L felt reading from the average Hunter Color L reading for the off-Yankee side rubbed samples. This is the delta average difference for the off-Yankee side samples. Calculate the sum of the delta average difference for the Yankee-side and the delta average difference for the off-Yankee side and divide this sum by 2. This is the uncorrected lint value for the old felt. If there is a current felt correction factor for the old felt, add it to the uncorrected lint value for the old felt. This value is the corrected Lint Value for the old felt.


Rub and measure the Hunter Color L values for all 24 samples of the new felt as described below. Record the 12 Yankee side Hunter Color L values for the new felt. Average the 12 values. Record the 12 off-Yankee side Hunter Color L values for the new felt. Average the 12 values. Subtract the average initial un-rubbed Hunter Color L felt reading from the average Hunter Color L reading for the Yankee side rubbed samples. This is the delta average difference for the Yankee side samples. Subtract the average initial un-rubbed Hunter Color L felt reading from the average Hunter Color L reading for the off-Yankee side rubbed samples. This is the delta average difference for the off-Yankee side samples. Calculate the sum of the delta average difference for the Yankee-side and the delta average difference for the off-Yankee side and divide this sum by 2. This is the uncorrected lint value for the new felt.


Take the difference between the corrected Lint Value from the old felt and the uncorrected lint value for the new felt. This difference is the felt correction factor for the new lot of felt.


Adding this felt correction factor to the uncorrected lint value for the new felt should be identical to the corrected Lint Value for the old felt.


The same type procedure is applied to two-ply tissue product with 24 samples run for the old felt and 24 run for the new felt. But, only the consumer used outside layers of the plies are rub tested. As noted above, make sure the samples are prepared such that a representative sample is obtained for the old and new felts.


Lint Testing—Care of 4 Pound Weight


The four pound weight has four square inches of effective contact area providing a contact pressure of one pound per square inch. Since the contact pressure can be changed by alteration of the rubber pads mounted on the face of the weight, it is important to use only the rubber pads supplied by the manufacturer (Brown Inc., Mechanical Services Department, Kalamazoo, Mich.). These pads must be replaced if they become hard, abraded or chipped off


When not in use, the weight must be positioned such that the pads are not supporting the full weight of the weight. It is best to store the weight on its side.


Lint Testing—Rub Tester Instrument Calibration


The Sutherland Rub Tester must first be calibrated prior to use. First, turn on the Sutherland Rub Tester by moving the tester switch to the “cont” position. When the tester arm is in its position closest to the user, turn the tester's switch to the “auto” position. Set the tester to run 5 strokes by moving the pointer arm on the large dial to the “five” position setting. One stroke is a single and complete forward and reverse motion of the weight. The end of the rubbing block should be in the position closest to the operator at the beginning and at the end of each test.


Prepare a tissue paper on cardboard sample as described above. In addition, prepare a felt on cardboard sample as described above. Both of these samples will be used for calibration of the instrument and will not be used in the acquisition of data for the actual samples.


Place this calibration tissue sample on the base plate of the tester by slipping the holes in the board over the hold-down pins. The hold-down pins prevent the sample from moving during the test. Clip the calibration felt/cardboard sample onto the four pound weight with the cardboard side contacting the pads of the weight. Make sure the cardboard/felt combination is resting flat against the weight. Hook this weight onto the tester arm and gently place the tissue sample underneath the weight/felt combination. The end of the weight closest to the operator must be over the cardboard of the tissue sample and not the tissue sample itself. The felt must rest flat on the tissue sample and must be in 100% contact with the tissue surface. Activate the tester by depressing the “push” button.


Keep a count of the number of strokes and observe and make a mental note of the starting and stopping position of the felt covered weight in relationship to the sample. If the total number of strokes is five and if the end of the felt covered weight closest to the operator is over the cardboard of the tissue sample at the beginning and end of this test, the tester is calibrated and ready to use. If the total number of strokes is not five or if the end of the felt covered weight closest to the operator is over the actual paper tissue sample either at the beginning or end of the test, repeat this calibration procedure until 5 strokes are counted the end of the felt covered weight closest to the operator is situated over the cardboard at the both the start and end of the test.


During the actual testing of samples, monitor and observe the stroke count and the starting and stopping point of the felt covered weight. Recalibrate when necessary.


Lint Testing—Hunter Color Meter Calibration


Adjust the Hunter Color Difference Meter for the black and white standard plates according to the procedures outlined in the operation manual of the instrument. Also run the stability check for standardization as well as the daily color stability check if this has not been done during the past eight hours. In addition, the zero reflectance must be checked and readjusted if necessary.


Place the white standard plate on the sample stage under the instrument port. Release the sample stage and allow the sample plate to be raised beneath the sample port.


Using the “L-Y”,“a-X”, and “b-Z” standardizing knobs, adjust the instrument to read the Standard White Plate Values of “L”, “a”, and “b” when the “L”, “a”, and “b” push buttons are depressed in turn.


Lint Testing—Measurement of Samples


The first step in the measurement of lint is to measure the Hunter color values of the black felt/cardboard samples prior to being rubbed on the tissue. The first step in this measurement is to lower the standard white plate from under the instrument port of the Hunter color instrument. Center a felt covered cardboard, with the arrow pointing to the back of the color meter, on top of the standard plate. Release the sample stage, allowing the felt covered cardboard to be raised under the sample port.


Since the felt width is only slightly larger than the viewing area diameter, make sure the felt completely covers the viewing area. After confirming complete coverage, depress the L push button and wait for the reading to stabilize. Read and record this L value to the nearest 0.1 unit.


If a D25D2A head is in use, lower the felt covered cardboard and plate, rotate the felt covered cardboard 90 degrees so the arrow points to the right side of the meter. Next, release the sample stage and check once more to make sure the viewing area is completely covered with felt. Depress the L push button. Read and record this value to the nearest 0.1 unit. For the D25D2M unit, the recorded value is the Hunter Color L value. For the D25D2A head where a rotated sample reading is also recorded, the Hunter Color L value is the average of the two recorded values.


Measure the Hunter Color L values for all of the felt covered cardboards using this technique. If the Hunter Color L values are all within 0.3 units of one another, take the average to obtain the initial L reading. If the Hunter Color L values are not within the 0.3 units, discard those felt/cardboard combinations outside the limit. Prepare new samples and repeat the Hunter Color L measurement until all samples are within 0.3 units of one another.


For the measurement of the actual tissue paper/cardboard combinations, place the tissue sample/cardboard combination on the base plate of the tester by slipping the holes in the board over the hold-down pins. The hold-down pins prevent the sample from moving during the test. Clip the calibration felt/cardboard sample onto the four pound weight with the cardboard side contacting the pads of the weight. Make sure the cardboard/felt combination is resting flat against the weight. Hook this weight onto the tester arm and gently place the tissue sample underneath the weight/felt combination. The end of the weight closest to the operator must be over the cardboard of the tissue sample and not the tissue sample itself. The felt must rest flat on the tissue sample and must be in 100% contact with the tissue surface.


Next, activate the tester by depressing the “push” button. At the end of the five strokes the tester will automatically stop. Note the stopping position of the felt covered weight in relation to the sample. If the end of the felt covered weight toward the operator is over cardboard, the tester is operating properly. If the end of the felt covered weight toward the operator is over sample, disregard this measurement and recalibrate as directed above in the Sutherland Rub Tester Calibration section.


Remove the weight with the felt covered cardboard. Inspect the tissue sample. If torn, discard the felt and tissue and start over. If the tissue sample is intact, remove the felt covered cardboard from the weight. Determine the Hunter Color L value on the felt covered cardboard as described above for the blank felts. Record the Hunter Color L readings for the felt after rubbing. Rub, measure, and record the Hunter Color L values for all remaining samples.


After all tissues have been measured, remove and discard all felt. Felts strips are not used again. Cardboards are used until they are bent, torn, limp, or no longer have a smooth surface.


Lint Testing—Calculations


Determine the delta L values by subtracting the average initial L reading found for the unused felts from each of the measured values for the off-Yankee and Yankee sides of the sample. Recall, multi-ply-ply product will only rub one side of the paper. Thus, three delta L values will be obtained for the multi-ply product. Average the three delta L values and subtract the felt factor from this final average. This final result is termed the lint for the fabric side of the 2-ply product.


For the single-ply product where both Yankee side and off-Yankee side measurements are obtained, subtract the average initial L reading found for the unused felts from each of the three Yankee side L readings and each of the three off-Yankee side L readings. Calculate the average delta for the three Yankee side values. Calculate the average delta for the three fabric side values. Subtract the felt factor from each of these averages. The final results are termed a lint for the fabric side and a lint for the Yankee side of the single-ply product. By taking the average of these two values, an ultimate lint value is obtained for the entire single-ply product.


Crumple Testing


Crumple of a 2-ply tissue web was determined using a Tissue Softness Analyzer (TSA), available from EMTECH Electronic GmbH of Leipzig, Germany, using the crumple fixture (33 mm) and base. A punch was used to cut out five 100 cm2 round samples from the web. One of the samples was loaded into the crumple base, clamped into place, and the crumple algorithm was selected from the list of available testing algorithms displayed by the TSA. After inputting parameters for the sample, the crumple measurement program was run. The test process was repeated for the remaining samples and the results for all the samples were averaged. Crumple force is a good measure of the flexibility or drape of the product.


Method for Determining Actual Surface Area as Compared to Projected Surface Area.


Acquisition of images used to calculate the Sdr parameter were acquired using a Keyence Model VR-3200 G2 3D Macroscope equipped with motorized XY stage, VR-3000K controller, VR-H2VE version 2.2.0.89 Viewer software, VR-H2AE Analyzer software, and VR-H2J Stitching software. After following calibration procedures, as outlined by Keyence equipment manual, 2 to 3 sheets of bath tissue were torn from a roll and held in place using weights with the desired surface to be measured facing up (towards the macroscope lens). In this case the outward facing ply (the visible surface of the sheet on the roll of tissue paper) was the surface of interest. When tearing the sheets from the roll, the sheets were gently pulled as the perforation so avoid alteration of the topographic features. The machine direction (MD) of the sample was placed in the Y axis (front to back on the stage as seen from operator perspective in front of the system) while the cross direction (CD) was placed in the X axis (left to right on the stage as seen from operator perspective in front of the system). Care was taken to ensure no creases or folds were present in the sample and the sample was not under any MD or CD directional stress. 38× magnification was utilized with the following selections on the viewer software: “one shot 3D” viewer capture method, “normal” capture image type, “standard” height measurement mode, “both sides” measurement direction, “height” image type, “one” skip rate, and stitching turned “off”. Prior to measurement, the system was autofocused (double-click autofocus) and then measurement was able to commence by double-clicking “measure”. The measured dimensions of approximately 6 mm in the machine direction and approximately 8 mm in the cross direction, avoiding any embossments, was analyzed to attain a topographic profile of the sample. The instrument measured along the cross direction 1024 times then indexed in the machine direction and measured another 1024 times along the cross direction. The instrument indexed 768 times in the machine direction before completing the acquisition. This resulted in a pixel size of 7.887 micrometers both in the X and Y directions. The measurement was repeated 10 times on tissue sheets from the same product before testing a new tissue product. To export the 3-dimensional data as a CSV-Height file format, the 3D image was selected in the analyzer software. “File,” “Export,” “Output CSV file” were selected. In the window that appeared, “Main image of selected data” was selected. Under Image type, “Height” was selected and under the option Skip, “No skip” was selected. The CSV file was saved in the preferred folder. The collected raw surface profile data (CSV file) was then transferred to a computer running OmniSurf3D analysis software (v1.00.040), available from Digital Metrology Solutions, Inc. of Columbus, Ind., USA for parameter calculation.


The OmniSurf 3D filtering settings were set as follows for preprocessing: Edge Discarding-Use all data, Outlier Removal-None, Missing Data Filling-Linear Fill. The measured data was leveled based on least squares plane. Given the size of the surface features of interest, a wavelength band of 0.25-0.80 mm was selected with the following filtering setting:

  • Short Wavelength Limitation: Gaussian/0.25 mm/Synch X&Y
  • Long Wavelength Limitation: Gaussian/0.8 mm/Sync X&Y
  • Post-Filter Edge Discarding: None


For the parameter of interest, Sdr was selected. The Sdr parameter was calculated for all areal filtered surface profiles and the results were averaged to obtain an “Sdr” value for the 10 images of each tissue product.


Example 1

A 2-ply creped tissue web was produced on an NTT paper machine with a triple layer headbox, and the web had the following product attributes: Roll Diameter 122 mm, Sheet Count 170, Sheet Width 4 inches, Sheet Length 4 inches, Basis Weight 39.51 g/m2, Caliper 0.426 mm, MD tensile of 144.5 N/m, CD tensile of 51.1 N/m, MD stretch of 24.08%, CD stretch of 7.23%, 93.4 HF, TS7 value of 8.79, lint value of 4.27, Crumple value of 27.13, and an Sdr value of 3.2.


Each of the three layers of the stock system which feed the headbox were prepared using the same furnish ratio of 80% Eucalyptus, 20% NBSK. The NBSK was refined at 16 kwh/ton before blending in each layer. The first exterior layer, which was intended to be the layer that contacts the Yankee dryer and that faces outward when laminated into a 2 ply product, was prepared using 1.25 kg/ton of a synthetic polymer dry strength agent DPD-589 (Solenis, 500 Hercules Road, Wilmington Del., 19808) (for strength when wet and lint control). The interior layer was prepared using 1.0 kg/ton of T526, a softener/debonder (EKA Chemicals Inc., 1775 West Oak Commons Court, Marietta, Ga., 30062). The second exterior layer was prepared using 3.75 kg/ton of DPD-589.


The fiber and chemicals mixtures were diluted to a solids of 0.5% consistency and fed to separate fan pumps which delivered the slurry to a triple layered headbox. The headbox pH was controlled to 7.0 by addition of sodium bicarbonate to the thick stock before the fan pumps. The headbox deposited the slurry to a nip formed by a forming roll, an outer forming wire, and a press felt running at 1000 m/min. The slurry was drained through the outer wire, which is a KT194-P design supplied by Asten Johnson (4399 Corporate Rd, Charleston, S.C. (843) 747-7800)), to aid with drainage, fiber support, and web formation. When the fabrics separated, the web followed the press fabric over a suction roll supplying 60 kpa vacuum with steam applied to the sheet using a steambox at 40 kpa pressure before entering a main press, which was a long nip press, which supplied 400 kN/m nip load against a structuring fabric. The structuring fabric was multilayered and included a paper-web contacting layer that formed the side of the belt carrying the paper web. This layer was made of a sheet of extruded polymeric material with a thickness of 1.42 mm. A woven fabric layer having a thickness of 2.54 mm formed the non-paper web contacting side of the belt. Grooves were formed in the paper-web contacting layer by laser drilling. The grooves extended at an angle of 2 degrees relative to the machine direction. The grooves had a varying depth between 300 to 750 microns. The grooves were spaced 350 to 500 microns apart. The grooves were closest to each other at the deepest portions of the grooves where the laser produced a wider portion of the groove compared to the shallower portions of the groove. The width of the grooves were between 450 to 600 microns.


After passing through the main press the web followed the structuring fabric and was then transferred to the Yankee dryer where the web was held in intimate contact with the Yankee surface using an adhesive coating chemistry. The Yankee was provided steam at 600 kpa while the installed hot air impingement hood over the Yankee was blowing heated air at 450 deg C. The web was creped from the Yankee at 20% crepe at 98.2% dryness using a steel blade at a pocket angle of 90 degrees.


In the Converting process, the two webs were plied together using light embossing of the DEKO configuration (only the top sheet was embossed with glue applied to the inside of the top sheet at the high points derived from the embossments using an adhesive supplied by a cliché roll) with the second exterior layer of each web facing each other. The % coverage of the embossment on the top sheet was 4%. The product was wound into a 170 count product at 121 mm roll diameter.


Comparative Example 1

A 2-ply creped tissue web was produced on an NTT paper machine with a triple layer headbox, and the web had the following product attributes: Roll Diameter 122 mm, Sheet Count 170, Sheet Width 4 inches, Sheet Length 4 inches, Basis Weight 39.93 g/m2, Caliper 0.436 mm, MD tensile of 118.14 N/m, CD tensile of 64.86 N/m, MD stretch of 18.29%, CD stretch of 4.79%, 87.8 HF, TS7 value of 9.85, lint value of 3.74, Crumple value of 35.29, and Sdr value of 2.3.


Each of the three layers of the stock system which feed the headbox were prepared using the same furnish ratio of 80% Eucalyptus, 20% NBSK. The NBSK was refined at 16 kwh/ton before blending in each layer. The first exterior layer, which was intended to be the layer that contacts the Yankee dryer and that faces outward when laminated into a 2 ply product, was prepared using 1.25 kg/ton of a synthetic polymer dry strength agent DPD-589. The interior layer was prepared using 1.0 kg/ton of T526, a softener/debonder. The second exterior layer was prepared using 3.75 kg/ton of DPD-589.


The fiber and chemical mixtures were diluted to a solids of 0.5% consistency and fed to separate fan pumps which delivered the slurry to a triple layered headbox. The headbox pH was controlled to 7.0 by addition of sodium bicarbonate to the thick stock before the fan pumps. The headbox deposited the slurry to a nip formed by a forming roll, an outer forming wire, and a press felt running at 1000 m/min. The slurry was drained through the outer wire, which was a KT194-P design supplied by Asten Johnson (4399 Corporate Rd, Charleston, S.C. (843) 747-7800)), to aid with drainage, fiber support, and web formation. When the fabrics separated, the web followed the press fabric over a suction roll supplying 60 kpa vacuum with steam applied to the sheet using a steambox at 40 kpa pressure before entering a main press, which was a long nip press, supplying 600 kN/m nip load against a commercially available structuring fabric (typically referred to as the medium belt from Albany International, 216 Airport Drive Rochester, N.H. 03867 USA, 1-603-330-5850) made from extruded polymer with laser engraved holes laminated to a support layer composed of woven monofilaments or multi-filamentous yarns needled with fine synthetic batt fibers.


After passing through the main press the web followed the structuring fabric and was then transferred to the Yankee dryer where the web was held in intimate contact with the Yankee surface using an adhesive coating chemistry. The Yankee was provided steam at 600 kpa while the installed hot air impingement hood over the Yankee was blowing heated air at 450 deg C. The web was creped from the Yankee at 20% crepe at 98.2% dryness using a steel blade at a pocket angle of 90 degrees.


In the Converting process, the two webs were plied together using light embossing of the DEKO configuration (only the top sheet was embossed with glue applied to the inside of the top sheet at the high points derived from the embossments using and adhesive supplied by a cliché roll) with the second exterior layer of each web facing each other. The % coverage of the embossment on the top sheet was 4%. The product was wound into a 170 count product at 121 mm roll diameter.


Comparative Example 2

A 2-ply creped tissue web was produced on an NTT paper machine with a triple layer headbox, and the web had the following product attributes: Roll Diameter 122 mm, Sheet Count 170, Sheet Width 4 inches, Sheet Length 4 inches, Basis Weight 40.2 g/m2, Caliper 490.57 mm, MD tensile of 95.05 N/m, CD tensile of 44.14 N/m, an MD stretch of 18.32%, a CD stretch of 5.81%, 91.86 HF, TS7 value of 9.70, a lint value of 5.2, a Crumple value of 27.74, and an Sdr value of 2.06.


Each of the three layers of the stock system which feed the headbox were prepared using the same furnish ratio of 80% Eucalyptus, 20% NBSK. The NBSK was unrefined. The first exterior layer, which was intended to be the layer that contacts the Yankee dryer and faces outward when laminated into a 2 ply product, was prepared using 3.0 kg/ton of a synthetic polymer dry strength agent DPD-589. The interior layer was prepared using 1.0 kg/ton of T526. The second exterior layer was prepared using 3.0 kg/ton of DPD-589.


The fiber and chemical mixtures were diluted to a solids of 0.5% consistency and fed to separate fan pumps which delivered the slurry to a triple layered headbox. The headbox pH was controlled to 7.0 by addition of sodium bicarbonate to the thick stock before the fan pumps. The headbox deposited the slurry to a nip formed by a forming roll, an outer forming wire, and a press felt running at 1200 m/min. The slurry was drained through the outer wire, which is a KT194-P design supplied by Asten Johnson. When the fabrics separated, the web followed the press fabric over a suction roll supplying 60 kpa vacuum with steam applied to the sheet using a steambox at 40 kpa pressure before entering a main press, which was a long nip press, supplying 400 kN/m nip load against a commercially available structuring fabric (typically referred to as the coarse belt from Albany International) made from extruded polymer with laser engraved holes laminated to a support layer composed of woven monofilaments or multi-filamentous yarns needled with fine synthetic batt fibers.


After passing through the main press the web followed the structuring fabric and was then transferred to the Yankee dryer where the web was held in intimate contact with the Yankee surface using an adhesive coating chemistry. The Yankee was provided steam at 600 kpa while the installed hot air impingement hood over the Yankee was blowing heated air at 450 deg C. The web was creped from the Yankee at 20% crepe at 98.0% dryness using a steel blade at a pocket angle of 90 degrees.


In the Converting process, the two webs were plied together using light embossing of the DEKO configuration (only the top sheet was embossed with glue applied to the inside of the top sheet at the high points derived from the embossments using an adhesive supplied by a cliché roll) with the second exterior layer of each web facing each other. The % coverage of the embossment on the top sheet was 4%. The product was wound into a 170 count product at 121 mm roll diameter.


Comparative Test Results from Commercially Available Products


Table 1 shows various attributes of commercially available products as compared to those of Example 1.























TABLE 1












MD

CD








Wet



Basis

Ten-

Ten-








Laid



Wt
Caliper
sile
MD
sile
CD







Tech-



(g/
(mi-
Strong
Stretch
Strength
Stretch

Lint

Bulk/


Brand
nology
Month
City, State
Store
m{circumflex over ( )}2)
crons)
(N/m)
%
(N/m)
%
HF
Value
Sdr
Sdr





























EXAMPLE 1
NTT



39.51
426
144.5
24.1
51.1
7.2
93.4
4.3
3.200
133


Charmin
TAD
October
Mill Hall,
Walmart
33.98
507
174.4
26.4
77.4
15.8
86.5
1.6
5.871
86


Essentials

2016
PA
NE












Soft
















Charmin
TAD
November
Roseville,
Walmart
36.89
563
178.1
16.0
89.9
12.8
89.7
6.5
4.080
138


Strong West

2016
CA













Charmin
TAD
October
Mill Hall,
Walmart
28.05
347
184.9
25.3
76.2
7.6
88.1
5.9
2.256
154


Essentials

2016
PA
NE












Strong
















Charmin
TAD
October
Mill Hall,
Sam's
37.75
480
168.7
14.3
72.9
12.3
89.4
4.7
3.120
154


Strong NE

2016
PA
Club












Great Value
TAD
August
Roseville,
Walmart
41.39
491
162.5
15.4
105.5
6.8
86.4
6.2
3.188
154


Strong

2016
CA
West












Kirkland
Conven-
November
Roseville,
Costco
37.2
337
131.6
23.2
56.5
6.6
91.1
10.2
2.161
156


Signature
tional
2016
CA
West












Great Value
TAD
August
Roseville,
Walmart
45.82
486
134.4
19.4
89.0
6.7
91.1
8.0
2.854
170


Soft

2016
CA
West












Up & Up
TAD
August
Roseville,
Target
37.56
442
136.5
12.3
85.2
6.0
84.8
3.7
2.534
174


Ultra Soft

2016
CA
West












Cottonelle
UCTAD
October
Mill Hall,
Walmart
41.03
673
150.9
12.6
66.2
10.7
81.8
8.5
3.846
175


Cleancare

2016
PA
NE












Charmin
TAD
October
Mill Hall,
Walmart
38.05
502
182.5
15.8
94.7
15.1
89.6
5.0
2.801
179


Strong NE

2016
PA













Charmin
TAD
November
Roseville,
Sam's
46.73
569
125.9
24.1
63.0
12.1
95.6
9.9
3.108
183


Soft West

2016
CA
Club












Charmin
TAD
November
Roseville,
Sam's
37.45
434
196.2
16.5
100.2
9.3
89.9
5.6
2.361
184


Strong West

2016
CA
Club












Charmin
TAD
November
Roseville,
Walmart
45.12
487
130.9
22.4
67.5
13.0
97.7
15.5
2.633
185


Soft West

2016
CA













Quilted
ETAD
November
Roseville,
Sam's
41.12
482
141.4
26.0
79.4
9.2
85.3
4.9
2.531
190


Northern

2016
CA
Club
















West












DG Home
NTT
February
State
Dollar
39.45
401
140.0
21.0
72.5
6.5
81.8
3.1
2.104
191


Premium

2017
College,
General















Pennsylvania













Charmin
TAD
October
Mill Hall,
Sam's
48.65
557
134.5
25.3
68.2
12.6
97.5
10.2
2.753
202


Soft NE

2016
PA
Club












White Cloud
TAD
October
Mill Hall,
Walmart
39.67
439
164.5
18.2
118.8
7.3
88.2
7.9
2.083
211


Ultra Strong

2016
PA
NE












& Soft
















Charmin
TAD
October
Mill Hall,
Walmart
45.79
526
125.3
23.2
63.7
11.8
98.8
11.3
2.465
213


Soft NE

2016
PA













White Cloud
Conven-
October
Mill Hall,
Walmart
49.24
451
225.5
16.8
67.6
8.3
82.0
2.6
2.066
218


Ultra Soft
tional
2016
PA
NE












& Thick
















Cottonelle
UCTAD
November
Roseville,
Target
45.24
606
139.2
10.1
61.8
10.4
87.9
8.2
2.712
223


Comfortcare

2016
CA
West












Member's
NTT
September
Mexico
Sam's
32.63
273
231.5
18.2
60.6
7.2
85.4
1.1
1.174
233


Mark Mexico

2014

Club












Member's
TAD
September
Roseville,
Sam's
39.48
475
167.4
11.2
94.7
8.8
84.3
4.6
2.013
236


Mark

2016
CA
Club
















West












Level Max
NTT
September
Mexico
Sam's
30.75
401
183.7
16.7
60.2
9.8
84.7
3.6
1.650
243


Mexico

2014

Club












HEB Ultra
TAD
November
Antonio,
HEB
43.33
411
149.5
14.0
75.7
5.5
91.5
11.8
1.622
253


Soft

2016
TX
Texas












Angel Soft
Conven-
November
Roseville,
Walmart
37.23
474
140.0
18.4
50.5
10.0
84.6
5.8
1.410
336



tional
2016
CA
west












Quilted
Conven-
November
Roseville,
Costco
53.62
606
131.0
17.9
56.3
9.1
91.8
7.3
1.758
345


Northern
tional
2016
CA
West












Ultra
and ETAD









The test results shown in Table 1 confirm that the present invention is advantageous as all the other products do not demonstrate the same levels of high softness and low lint.


Also, as shown in FIG. 16, the tissue products made in accordance with the present invention exhibit improved Sdr values as compared to conventional tissue products. Specifically, FIG. 16 shows Sdr values for ten samples each of six different NTT tissue products, including Comparative Examples 1 and 2, Example 1, and three commercially available NTT tissue products. The three commercially available products include Resolute, which is produced on a standard “fine” NTT fabric from Albany International, and Level Max and Member's Mark, which were produced on an NTT machine in Mexicali, Mexico. All the products were two ply tissue. As shown, only Example 1 had an Sdr value greater than 2.75.


Example 2

A 2-ply creped tissue web was produced on a Through Air Dried paper machine with a triple layer headbox and dual TAD drums. The tissue web had the following product attributes: Basis Weight 39.87 g/m2, Caliper 0.586 mm, MD tensile of 126.32 N/m, CD tensile of 75.25 N/m, MD stretch of 13.19%, CD stretch 8.62%, 84 HF, lint value of 1.83, Ball Burst of 318 gf, Geometric Mean Tensile of 97.44 N/m, Geometric Mean Stretch of 10.66%, a value of 3.27 when Ball Burst is divided by Geometric Mean Tensile, and a value of 0.31 when Ball Burst is divided by the product of Geometric Mean Tensile and Geometric Mean Stretch.


The tissue web was multilayered, with the first exterior layer (the layer intended for contact with the Yankee dryer) prepared using 75% Eucalyptus Bleached Kraft and 25% Northern Softwood Bleached Kraft pulp with 1.25 kg/ton of Hercobond 1194 temporary wet strength and 0.25 kg/ton of Hercobond 6950 from Solenis (500 Hercules Road, Wilmington Del., 19808) as well as 0.875 kg/ton of Redibond 2038 amphoteric starch from Corn Products (10 Finderne Avenue, Bridgewater, N.J. 08807). The interior layer was composed of 75% Eucalyptus Bleached Kraft and 25% Northern Softwood Bleached Kraft pulp, with 1.09 kg/ton T526 and 1.25 kg/ton of Hercobond 1194. The second exterior layer was composed of 100% Northern Softwood Bleached Kraft pulp, 2.625 kg/ton of Redibond 2038 and 0.25 kg/ton of Hercobond 6950. The softwood was refined at 13 kwh/ton.


The fiber and chemical mixtures were diluted to a solids of 0.5% consistency and fed to separate fan pumps which delivered the slurry to a triple layered headbox. The headbox pH was controlled to 7.0 by addition of sodium bicarbonate to the thick stock before the fan pumps. The headbox deposited the slurry to a nip formed by a forming roll, an outer forming wire, and inner forming wire where the wires were running at a speed of 1060 m/min. The slurry was drained through the outer wire, which was a KT194-P design. When the fabrics separated, the web followed the inner forming wire and was dried to approximately 27% solids using a series of vacuum boxes and a steam box.


The web was then transferred to a structured fabric running at 1060 m/min with the aid of a vacuum box to facilitate fiber penetration into the structured fabric to enhance bulk softness and web imprinting. The structured fabric was comprised of an extruded polymer or copolymer netting with a thickness of 0.7 mm, with openings being regularly recurrent and distributed in the longitudinal (MD) and cross direction (CD) of the layer. The openings were approximately circular with a diameter of 0.75 mm. The MD aligned portions of the netting of the structuring layer extended 0.23 mm above the top plane of the CD aligned portions of the netting of the structuring layer. The width of the MD aligned portion of the netting of the structuring layer was 0.52 mm. The width of the CD aligned portion of the netting of the structuring layer was 0.63 mm and the length was 0.75 mm. The support layer was a Prolux N005, 5 shed 1,3,5,2,4 warp pick sequence woven polymer fabric sanded to 27% contact area, supplied by Albany with a caliper of 0.775 mm. The two layers were laminated together using ultrasonic welding.


The web was dried with the aid of two TAD hot air impingement drums to 81% moisture before transfer to the Yankee dryer. The web was held in intimate contact with the Yankee surface using an adhesive coating chemistry. The Yankee was provided steam at 300 kpa while the installed hot air impingement hood over the Yankee was blowing heated air at 125 deg C. The web was creped from the Yankee at 13.2% crepe at 98.2% dryness using a steel blade at a pocket angle of 90 degrees.


In the Converting process, the two webs were plied together using light embossing of the DEKO configuration (only the top sheet was embossed with glue applied to the inside of the top sheet at the high points derived from the embossments using an adhesive supplied by a cliché roll) with the second exterior layer of each web facing each other. The % coverage of the embossment on the top sheet was 4%. The product was wound into a 235 count product at 127 mm roll diameter with a sheet length of 101.5 mm (perforation to perforation) and a sheet width of 108.5 mm (top of roll to bottom of roll).


Comparative Example 3

A 2-ply creped tissue web was produced on a Through Air Dried paper machine with a triple layer headbox and dual TAD drums. The tissue product had the following product attributes: Basis Weight 39.60 g/m2, Caliper 0.567 mm, MD tensile of 128.91 N/m, CD tensile of 70.32 N/m, MD stretch of 15.90%, CD stretch of 7.43%, 88 HF, lint value of 4.37, Ball Burst of 269 gf, Geometric Mean Tensile of 95.14 N/m, Geometric Mean Stretch of 10.87%, a value of 2.93 when Ball Burst is divided by Geometric Mean Tensile, and a value of 0.26 when Ball Burst is divided by the product of Geometric Mean Tensile and Geometric Mean Stretch.


The tissue web was multilayered, with the first exterior layer, which was the layer intended for contact with the Yankee dryer, prepared using 75% Eucalyptus Bleached Kraft and 25% Northern Softwood Bleached Kraft pulp with 1.25 kg/ton of Hercobond 1194 temporary wet strength and 0.25 kg/ton of Hercobond 6950 from Solenis as well as 1.0 kg/ton of Redibond 2038 amphoteric starch from Corn Products. The interior layer was composed of 75% Eucalyptus Bleached Kraft and 25% Northern Softwood Bleached Kraft pulp, with 0.75 kg/ton T526 and 1.25 kg/ton of Hercobond 1194. The second exterior layer was composed of 100% Northern Softwood Bleached Kraft pulp, 3.0 kg/ton of Redibond 2038 and 0.25 kg/ton of Hercobond 6950. The softwood was refined at 17 kwh/ton.


The fiber and chemical mixtures were diluted to a solids of 0.5% consistency and fed to separate fan pumps which delivered the slurry to a triple layered headbox. The headbox pH was controlled to 7.0 by addition of sodium bicarbonate to the thick stock before the fan pumps. The headbox deposited the slurry to a nip formed by a forming roll, an outer forming wire, and inner forming wire where the wires were running at a speed of 1060 m/min. The slurry was drained through the outer wire, which was a KT194-P design. When the fabrics separated, the web followed the inner forming wire and was dried to approximately 27% solids using a series of vacuum boxes and a steam box.


The web was then transferred to a structured fabric running at 1060 m/min with the aid of a vacuum box to facilitate fiber penetration into the structured fabric to enhance bulk softness and web imprinting. The structured fabric was a Prolux 005, 5 shed 1,3,5,2,4 warp pick sequence woven polymer fabric sanded to 27% contact area supplied by Albany (216 Airport Drive Rochester, N.H. 03867 USA Tel: +1.603.330.5850) with a caliper of 1.02 mm


The web was dried with the aid of two TAD hot air impingement drums to 81% moisture before transfer to the Yankee dryer. The web was held in intimate contact with the Yankee surface using an adhesive coating chemistry. The Yankee was provided steam at 300 kpa while the installed hot air impingement hood over the Yankee was blowing heated air at 125 deg C. The web was creped from the Yankee at 13.2% crepe at 98.2% dryness using a steel blade at a pocket angle of 90 degrees.


In the Converting process, the two webs were plied together using light embossing of the DEKO configuration (only the top sheet was embossed with glue applied to the inside of the top sheet at the high points derived from the embossments using an adhesive supplied by a cliché roll) with the second exterior layer of each web facing each other. The % coverage of the embossment on the top sheet was 4%. The product was wound into a 235 count product at 127 mm roll diameter with a sheet length of 101.5 mm (perforation to perforation) and a sheet width of 108.5 mm (top of roll to bottom of roll).


Table 2 below provides the relevant data from Example 2 and Comparative Example 3, as well as for certain commercially available products:




























TABLE 2






Wet



Basis

MD

CD







Ball





Laid



Wt

Tensile
MD
Tensile
CD






Burst/
Ball




Tech-
Month/


(g/
Caliper
Strength
Stretch
Strength
stretch
CD
GM
GM
Ball

Limit
(GMT *
Burst/



Brand
nology
Yr
City, State
Store
m{circumflex over ( )}2)
microns
(N/m)
%
(N/m)
%
Wet
Tensile
Stretch
Burst
HF
Value
GMS)
GMT
Sdr


































Comparative
TAD
January
Karlstad,
N/A
39.6
567
128.9
15.9
70.3
7.4
10.11
95.21
10.87
269.08
88.1
4.4
0.26
2.83
3.180


Example

2017
Sweden


















Inventive
TAD
January
Karlstad,
N/A
39.87
586.16
126.3
13.2
75.3
8.6
13.02
97.50
10.66
318.44
84.1
1.8
0.31
3.27
3.402


Example

2017
Sweden


















Charmin
TAD
October
Mill Hall,
Walmart
33.98
507
174.4
26.4
77.4
15.8
19.84
116.18
20.41
362.54
86.5
1.6
0.15
3.12
5.871


Essentials

2016
PA
NE

















Soft





















Charmin
TAD
November
Roseville,
Walmart
36.89
563
178.1
16.0
89.9
12.8
19.33
126.50
14.28
370.03
89.7
6.5
0.20
2.93
4.080


Strong West

2016
CA


















Charmin
TAD
October
Mill Hall,
Walmart
28.05
347
184.9
25.3
76.2
7.6
18.99
118.69
13.87
228.89
88.1
5.9
0.14
1.93
2.256


Essentials

2016
PA
NE

















Strong





















Charmin
TAD
October
Mill Hall,
Sam's
37.75
480
168.7
14.3
72.9
12.3
17.29
110.86
13.29
312.6
89.4
4.7
0.21
2.82
3.120


Strong NE

2016
PA
Club

















Great Value
TAD
August
Roseville,
Walmart
41.39
491
162.5
15.4
105.5
6.8
12.97
130.93
10.23
255.18
86.4
6.2
0.19
1.95
3.188


Strong

2016
CA
West

















Kirkland
Conven-
November
Roseville,
Costco
37.2
337
131.6
23.2
56.5
6.6
10.76
86.23
12.42
123.54
91.1
10.2
0.12
1.43
2.161


Signature
tional
2016
CA
West

















Great Value
TAD
August
Roseville,
Walmart
45.82
486
134.4
19.4
89.0
6.7
17.21
109.37
11.42
181.98
91.1
8.0
0.15
1.66
2.854


Soft

2016
CA
West

















Up & Up
TAD
August
Roseville,
Target
37.56
442
136.5
12.3
85.2
6.0
11.27
107.83
8.58
216.15
84.8
3.7
0.23
2.00
2.534


Ultra Soft

2016
CA
West

















Cottonelle
UCTAD
October
Mill Hall,
Walmart
41.03
673
150.9
12.6
66.2
10.7
20.69
99.94
11.63
244.46
81.8
8.5
0.21
2.45
3.846


Cleancare

2016
PA
NE

















Charmin
TAD
October
Mill Hall,
Walmart
38.05
502
182.5
15.8
94.7
15.1
18.63
131.42
15.43
348.19
89.6
5.0
0.17
2.65
2.801


Strong NE

2016
PA


















Charmin
TAD
November
Roseville,
Sam's
46.73
569
125.9
24.1
63.0
12.1
15.29
89.05
17.04
206.45
95.6
9.9
0.14
2.32
3.108


Soft West

2016
CA
Club

















Charmin
TAD
November
Roseville,
Sam's
37.45
434
196.2
16.5
100.2
9.3
19.76
140.19
12.36
334.64
89.9
5.6
0.19
2.39
2.361


Strong West

2016
CA
Club

















Charmin
TAD
November
Roseville,
Walmart
45.12
487
130.9
22.4
67.5
13.0
17.82
93.97
17.09
252.14
97.7
15.5
0.16
2.68
2.633


Soft West

2016
CA


















Quilted
ETAD
November
Roseville,
Sam's
41.12
482
141.4
26.0
79.4
9.2
16.73
105.98
15.42
228.49
85.3
4.9
0.14
2.16
2.531


Northern

2016
CA
Club West

















DG Home
NTT
February
State
Dollar
39.45
401
140.0
21.0
72.5
6.5
N/A
100.75
11.68
200
81.8
3.1
0.17
1.99
2.104


Premium

2017
College,
General




















Pennsylvania


















Charmin
TAD
October
Mill Hall,
Sam's
48.65
557
134.5
25.3
68.2
12.6
18.74
95.79
17.84
248.3
97.5
10.2
0.15
2.59
2.753


Soft NE

2016
PA
Club

















White Cloud
TAD
October
Mill Hall,
Walmart
39.67
439
164.5
18.2
118.8
7.3
16.25
139.81
11.49
259.22
88.2
7.9
0.16
1.85
2.083


Ultra Strong

2016
PA
NE

















& Soft





















Charmin
TAD
October
Mill Hall,
Walmart
45.79
526
125.3
23.2
63.7
11.8
18.42
89.34
16.57
229.7
98.8
11.3
0.16
2.57
2.465


Soft NE

2016
PA


















White Cloud
Conven-
October
Mill Hall,
Walmart
49.24
451
225.5
16.8
67.6
8.3
11.68
123.47
11.84
289.15
82.0
2.6
0.20
2.34
2.066


Ultra Soft
tional
2016
PA
NE

















& Thick





















Cottonelle
UCTAD
November
Roseville,
Target
45.24
606
139.2
10.1
61.8
10.4
13.06
92.70
10.22
254.77
87.9
8.2
0.27
2.75
2.712


Comfortcare

2016
CA
West

















Member's
NTT
September
Mexico
Sam's
32.63
273
231.5
18.1
60.6
7.2
7.06
118.43
11.43
254.77
85.4
1.1
0.19
2.15
1.174


Mark

2014

Club

















Mexico





















Member's
TAD
September
Roseville,
Sam's
39.48
475
167.4
11.2
94.7
8.8
8.82
125.91
9.92
292.38
84.3
4.6
0.23
2.32
2.013


Mark

2016
CA
Club West

















Level Max
NTT
September
Mexico
Sam's
30.75
401
183.7
16.7
60.2
9.8
6.86
105.13
12.77
215.00
84.7
3.6
0.16
2.05
1.650


Mexico

2014

Club

















HEB Ultra
TAD
November
Antonio,
HEB
43.33
411
149.5
14.0
75.7
5.5
20.17
106.42
8.78
182.18
91.5
11.8
0.19
1.71
1.622


Soft

2016
TX
Texas

















Angel Soft
Conven-
November
Roseville,
Walmart
37.23
474
140.0
18.4
50.5
10.0
7.75
84.08
13.55
195.73
84.6
5.8
0.17
2.33
1.410



tional
2016
CA
west

















Quilted
Conven-
November
Roseville,
Costco
53.62
606
131.0
17.9
56.3
9.1
17.35
85.90
12.74
225.66
91.8
7.3
0.21
2.63
1.758


Northern
tional
2016
CA
West

















Ultra
and





















ETAD









As demonstrated above, Example 2, which was produced using the laminated structuring fabric with extruded polymer netting in accordance with an exemplary embodiment of the present invention, had a much higher Ball Burst strength and lower lint at nearly identical tensile strength (as measured by Geometric Mean Tensile) and stretch (as measured by Geometric Mean Stretch) values as compared to Comparative Example 3, which was made using a conventional structured fabric. The conditions used in Example 2 and Comparative Example 3 were nearly identical with the only significant difference being lower refining, lower starch, and higher debonder use in Example 2 in order to decrease tensile strength to target levels.


Without being bound by theory, it is believed that in accordance with the present invention a symmetric, continuous compressed fiber network is imprinted into the web corresponding to the MD and CD aligned ridges of the extruded polymer structuring fabric layer as the web is nipped between the pressure roll and the Yankee dryer. This symmetric continuous compressed fiber network enhances fiber to fiber bonding in these areas of compression. The Ball Burst strength or “puncture resistance” of the web improves due to the continuity of the network and the geometry of the network being aligned in the CD and MD direction. This geometry creates a symmetric network where every intersection of the MD and CD compressions are at approximately 90 degrees allowing for even distribution of force when a force is applied in the perpendicular direction or “Z” direction as occurs during the Ball Burst test. The Ball Burst test is an important physical property of the tissue web as it most closely simulates the type of force the product will undergo when in use, such as when a person applies force in the Z direction upon the tissue web when being used to clean the perianal area.


What is also of interest in the inventive product is that high Ball Burst strength can be achieved with a lower level of tensile strength, as measured by Geometric Mean Tensile. The inventive product also can achieve levels of Ball Burst at low levels of stretch, as measured by Geometric Mean Stretch. This is important because tensile strength and stretch are parameters that are primarily used to control Ball Burst strength, with higher levels increasing Ball Burst strength. In order to increase tensile strength, refining or chemical additives are typically added which increase the cost of the product (energy and chemical costs). Higher refining also slows drainage from the web in the forming section which will then need to be removed in the TAD section, increasing energy costs as higher temperatures will be required to remove the water. Generation of higher levels of stretch are also costly since the primary mechanism of stretch development is to run a speed differential between the forming and imprinting fabric or between the Yankee dryer and reel drum. If running a speed differential between the forming and imprinting fabric, the higher the differential is run, the higher stretch is developed, but also the higher the loss of strength. The same loss of tensile occurs if using a speed differential between the Yankee dryer and reel drum. Productivity can also be effected as both techniques require speed reductions in sections of the paper machine. Thus, it is very advantageous, on a cost and productivity basis, to generate Ball Burst strength by creating a unique compressed fiber network that is symmetric, continuous, and that has the ability to distribute forces uniformly when the force is applied perpendicularly to the product rather than relying on increasing tensile strength or stretch to generate Ball Burst strength.


Two parameters that demonstrate the uniquely high Ball Burst strength of the inventive product compared to the low values of tensile strength and stretch of the product are Ball Burst divided by the Geometric Mean Tensile or Ball Burst divided by the product of Geometric Mean Tensile and Geometric Mean Stretch. The Geometric Mean Tensile is simply the square root of the product of MD and CD tensile while Geometric Mean Stretch is the square root of the product of MD and CD stretch. The inventive product has higher values when looking at both of these parameters compared to conventional tissue products.


Now that embodiments of the present invention have been shown and described in detail, various modifications and improvements thereon will become readily apparent to those skilled in the art. Accordingly, the spirit and scope of the present invention is to be construed broadly and not limited by the foregoing specification.

Claims
  • 1. A tissue product comprising: a laminate of at least two plies of a multi-layer tissue web, the tissue product having a ball burst strength of at least 315 gf, a geometric mean tensile strength of 100 N/m or less and a geometric mean stretch of 11% or less.
  • 2. The tissue product of claim 1, wherein the tissue product has an Sdr of greater than 3.0.
  • 3. The tissue product of claim 1, wherein the tissue product has a lint value of less than 2.
  • 4. The tissue product of claim 1, wherein the tissue product is a TAD tissue product.
  • 5. A tissue product having a ball burst strength, a geometric mean tensile strength and a geometric mean stretch, wherein the ball burst strength measured in grams force divided by the product of the geometric mean tensile strength measured in N/m and the geometric mean stretch measured in percentage is greater than 0.31, and the ball burst strength is at least 315 gf.
  • 6. A 2-ply tissue product having a ball burst strength, a geometric mean tensile strength and a geometric mean stretch, wherein the ball burst strength measured in grams force divided by the product of the geometric mean tensile strength measured in N/m and the geometric mean stretch measured in percentage is greater than 0.31, and the ball burst strength is at least 315 gf.
  • 7. A 2-ply TAD tissue product having a ball burst strength, a geometric mean tensile strength and a geometric mean stretch, wherein the ball burst strength measured in grams force divided by the product of the geometric mean tensile strength measured in N/m and the geometric mean stretch measured in percentage is greater than 0.31, and the ball burst strength is at least 315 gf.
  • 8. A structured tissue product having a ball burst strength and a geometric mean tensile strength, wherein the ball burst strength measured in grams force divided by the geometric mean tensile strength measured in N/m is greater than 3.2, and the ball burst strength is at least 315 gf.
  • 9. A 2-ply tissue product having a ball burst strength and a geometric mean tensile strength, wherein the ball burst strength measured in grams force divided by the geometric mean tensile strength measured in N/m is greater than 3.2, and the ball burst strength is at least 315 gf.
  • 10. A 2-ply TAD tissue product having a ball burst strength and a geometric mean tensile strength, wherein the ball burst strength measured in grams force divided by the geometric mean tensile strength measured in N/m is greater than 3.2, and the ball burst strength is at least 315 gf.
US Referenced Citations (427)
Number Name Date Kind
2919467 Mercer Jan 1960 A
2926154 Keim Feb 1960 A
3026231 Chavannes Mar 1962 A
3049469 Davison Aug 1962 A
3058873 Keim et al. Oct 1962 A
3066066 Keim et al. Nov 1962 A
3097994 Dickens et al. Jul 1963 A
3125552 Loshaek et al. Mar 1964 A
3143150 Buchanan Aug 1964 A
3186900 De Young Jun 1965 A
3197427 Schmalz Jul 1965 A
3224986 Butler et al. Dec 1965 A
3224990 Babcock Dec 1965 A
3227615 Korden Jan 1966 A
3227671 Keim Jan 1966 A
3239491 Tsou et al. Mar 1966 A
3240664 Earle, Jr. Mar 1966 A
3240761 Keim et al. Mar 1966 A
3248280 Hyland, Jr. Apr 1966 A
3250664 Conte et al. May 1966 A
3252181 Hureau May 1966 A
3301746 Sanford et al. Jan 1967 A
3311594 Earle, Jr. Mar 1967 A
3329657 Strazdins et al. Jul 1967 A
3332834 Reynolds, Jr. Jul 1967 A
3332901 Keim Jul 1967 A
3352833 Earle, Jr. Nov 1967 A
3384692 Galt et al. May 1968 A
3414459 Wells Dec 1968 A
3442754 Espy May 1969 A
3459697 Goldberg et al. Aug 1969 A
3473576 Amneus Oct 1969 A
3483077 Aldrich Dec 1969 A
3545165 Greenwell Dec 1970 A
3556932 Coscia et al. Jan 1971 A
3573164 Friedberg et al. Mar 1971 A
3609126 Asao et al. Sep 1971 A
3666609 Kalwaites et al. May 1972 A
3672949 Brown Jun 1972 A
3672950 Murphy et al. Jun 1972 A
3773290 Mowery Nov 1973 A
3778339 Williams et al. Dec 1973 A
3813362 Coscia et al. May 1974 A
3855158 Petrovich et al. Dec 1974 A
3877510 Tegtmeier et al. Apr 1975 A
3905863 Ayers Sep 1975 A
3911173 Sprague, Jr. Oct 1975 A
3974025 Ayers Aug 1976 A
3994771 Morgan, Jr. et al. Nov 1976 A
3998690 Lyness et al. Dec 1976 A
4038008 Larsen Jul 1977 A
4075382 Chapman et al. Feb 1978 A
4088528 Berger et al. May 1978 A
4098632 Sprague, Jr. Jul 1978 A
4102737 Morton Jul 1978 A
4129528 Petrovich et al. Dec 1978 A
4147586 Petrovich et al. Apr 1979 A
4184519 McDonald et al. Jan 1980 A
4190692 Larsen Feb 1980 A
4191609 Trokhan Mar 1980 A
4252761 Schoggen et al. Feb 1981 A
4320162 Schulz Mar 1982 A
4331510 Wells May 1982 A
4382987 Smart May 1983 A
4440597 Wells et al. Apr 1984 A
4501862 Keim Feb 1985 A
4507351 Johnson et al. Mar 1985 A
4514345 Johnson et al. Apr 1985 A
4515657 Maslanka May 1985 A
4528239 Trokhan Jul 1985 A
4529480 Trokhan Jul 1985 A
4537657 Keim Aug 1985 A
4545857 Wells Oct 1985 A
4637859 Trokhan Jan 1987 A
4678590 Nakamura et al. Jul 1987 A
4714736 Juhl et al. Dec 1987 A
4770920 Larsonneur Sep 1988 A
4780357 Akao Oct 1988 A
4808467 Suskind et al. Feb 1989 A
4836894 Chance et al. Jun 1989 A
4849054 Klowak Jul 1989 A
4885202 Lloyd et al. Dec 1989 A
4891249 McIntyre Jan 1990 A
4909284 Kositake Mar 1990 A
4949668 Heindel et al. Aug 1990 A
4949688 Bayless Aug 1990 A
4983256 Combette et al. Jan 1991 A
4996091 McIntyre Feb 1991 A
5059282 Ampulski et al. Oct 1991 A
5143776 Givens Sep 1992 A
5149401 Langevin et al. Sep 1992 A
5152874 Keller Oct 1992 A
5211813 Sawley et al. May 1993 A
5239047 Devore et al. Aug 1993 A
5279098 Fukuda Jan 1994 A
5281306 Kakiuchi et al. Jan 1994 A
5334289 Trokhan et al. Aug 1994 A
5347795 Fukuda Sep 1994 A
5397435 Ostendorf et al. Mar 1995 A
5399412 Sudall et al. Mar 1995 A
5405501 Phan et al. Apr 1995 A
5409572 Kershaw et al. Apr 1995 A
5429686 Chiu et al. Jul 1995 A
5439559 Crouse Aug 1995 A
5447012 Kovacs et al. Sep 1995 A
5470436 Wagle et al. Nov 1995 A
5487313 Johnson Jan 1996 A
5509913 Yeo Apr 1996 A
5510002 Hermans et al. Apr 1996 A
5529665 Kaun Jun 1996 A
5581906 Ensign et al. Dec 1996 A
5591147 Couture-Dorschner et al. Jan 1997 A
5607551 Farrington, Jr. et al. Mar 1997 A
5611890 Vinson et al. Mar 1997 A
5628876 Ayers et al. May 1997 A
5635028 Vinson et al. Jun 1997 A
5649916 DiPalma et al. Jul 1997 A
5671897 Ogg et al. Sep 1997 A
5672248 Wendt et al. Sep 1997 A
5679222 Rasch et al. Oct 1997 A
5685428 Herbers et al. Nov 1997 A
5728268 Weisman et al. Mar 1998 A
5746887 Wendt et al. May 1998 A
5753067 Fukuda et al. May 1998 A
5772845 Farrington, Jr. et al. Jun 1998 A
5806569 Gulya et al. Sep 1998 A
5827384 Canfield et al. Oct 1998 A
5832962 Kaufman et al. Nov 1998 A
5846380 Van Phan et al. Dec 1998 A
5855738 Weisman et al. Jan 1999 A
5858554 Neal et al. Jan 1999 A
5865396 Ogg et al. Feb 1999 A
5865950 Vinson et al. Feb 1999 A
5893965 Trokhan et al. Apr 1999 A
5913765 Burgess et al. Jun 1999 A
5942085 Neal et al. Aug 1999 A
5944954 Vinson et al. Aug 1999 A
5948210 Huston Sep 1999 A
5980691 Weisman et al. Nov 1999 A
6036139 Ogg Mar 2000 A
6039838 Kaufman et al. Mar 2000 A
6048938 Neal et al. Apr 2000 A
6060149 Nissing et al. May 2000 A
6106670 Weisman et al. Aug 2000 A
6149769 Mohammadi et al. Nov 2000 A
6162327 Batra et al. Dec 2000 A
6162329 Vinson et al. Dec 2000 A
6187138 Neal et al. Feb 2001 B1
6200419 Phan Mar 2001 B1
6203667 Huhtelin Mar 2001 B1
6207734 Vinson et al. Mar 2001 B1
6231723 Kanitz et al. May 2001 B1
6287426 Edwards et al. Sep 2001 B1
6303233 Amon et al. Oct 2001 B1
6319362 Huhtelin et al. Nov 2001 B1
6344111 Wilhelm Feb 2002 B1
6420013 Vinson et al. Jul 2002 B1
6420100 Trokhan et al. Jul 2002 B1
6423184 Vahatalo et al. Jul 2002 B2
6458246 Kanitz et al. Oct 2002 B1
6464831 Trokhan et al. Oct 2002 B1
6473670 Huhtelin Oct 2002 B1
6521089 Griech et al. Feb 2003 B1
6537407 Law et al. Mar 2003 B1
6547928 Bamholtz et al. Apr 2003 B2
6551453 Weisman et al. Apr 2003 B2
6551691 Hoeft et al. Apr 2003 B1
6572722 Pratt Jun 2003 B1
6579416 Vinson et al. Jun 2003 B1
6602454 McGuire et al. Aug 2003 B2
6607637 Vinson et al. Aug 2003 B1
6610173 Lindsay et al. Aug 2003 B1
6613194 Kanitz et al. Sep 2003 B2
6660362 Lindsay et al. Dec 2003 B1
6673202 Burazin Jan 2004 B2
6701637 Lindsay et al. May 2004 B2
6755939 Vinson et al. Jun 2004 B2
6773647 McGuire et al. Aug 2004 B2
6797117 McKay et al. Sep 2004 B1
6808599 Burazin Oct 2004 B2
6821386 Weisman et al. Nov 2004 B2
6821391 Scherb et al. Nov 2004 B2
6827818 Farrington, Jr. et al. Dec 2004 B2
6863777 Kanitz et al. Mar 2005 B2
6896767 Wilhelm May 2005 B2
6939443 Ryan et al. Sep 2005 B2
6998017 Lindsay et al. Feb 2006 B2
6998024 Burazin Feb 2006 B2
7005043 Toney et al. Feb 2006 B2
7014735 Kramer et al. Mar 2006 B2
7105465 Patel et al. Sep 2006 B2
7155876 VanderTuin et al. Jan 2007 B2
7157389 Branham et al. Jan 2007 B2
7182837 Chen et al. Feb 2007 B2
7194788 Clark et al. Mar 2007 B2
7235156 Baggot Jun 2007 B2
7269929 VanderTuin et al. Sep 2007 B2
7294230 Flugge-Berendes et al. Nov 2007 B2
7311853 Vinson et al. Dec 2007 B2
7328550 Floding et al. Feb 2008 B2
7339378 Han et al. Mar 2008 B2
7351307 Scherb et al. Apr 2008 B2
7387706 Herman et al. Jun 2008 B2
7399378 Edwards et al. Jul 2008 B2
7419569 Hermans Sep 2008 B2
7427434 Busam Sep 2008 B2
7431801 Conn et al. Oct 2008 B2
7432309 Vinson Oct 2008 B2
7442278 Murray et al. Oct 2008 B2
7452447 Duan et al. Nov 2008 B2
7476293 Herman et al. Jan 2009 B2
7494563 Edwards et al. Feb 2009 B2
7510631 Scherb et al. Mar 2009 B2
7513975 Burma Apr 2009 B2
7563344 Beuther Jul 2009 B2
7582187 Scherb et al. Sep 2009 B2
7611607 Mullally et al. Nov 2009 B2
7622020 Awofeso Nov 2009 B2
7662462 Noda Feb 2010 B2
7670678 Phan Mar 2010 B2
7683126 Neal et al. Mar 2010 B2
7686923 Scherb et al. Mar 2010 B2
7687140 Manifold et al. Mar 2010 B2
7691230 Scherb et al. Apr 2010 B2
7744722 Tucker et al. Jun 2010 B1
7744726 Scherb et al. Jun 2010 B2
7799382 Payne et al. Sep 2010 B2
7811418 Klerelid et al. Oct 2010 B2
7815978 Davenport et al. Oct 2010 B2
7823366 Schoeneck Nov 2010 B2
7842163 Nickel et al. Nov 2010 B2
7867361 Salaam et al. Jan 2011 B2
7871692 Morin et al. Jan 2011 B2
7887673 Andersson et al. Feb 2011 B2
7905989 Scherb et al. Mar 2011 B2
7914866 Shannon et al. Mar 2011 B2
7931781 Scherb et al. Apr 2011 B2
7951269 Herman et al. May 2011 B2
7955549 Noda Jun 2011 B2
7959764 Ringer et al. Jun 2011 B2
7972475 Chan et al. Jul 2011 B2
7989058 Manifold et al. Aug 2011 B2
8034463 Leimbach et al. Oct 2011 B2
8051629 Pazdemik et al. Nov 2011 B2
8075739 Scherb et al. Dec 2011 B2
8092652 Scherb et al. Jan 2012 B2
8118979 Herman et al. Feb 2012 B2
8147649 Tucker et al. Apr 2012 B1
8152959 Elony et al. Apr 2012 B2
8196314 Munch Jun 2012 B2
8216427 Klerelid et al. Jul 2012 B2
8236135 Prodoehl et al. Aug 2012 B2
8303773 Scherb et al. Nov 2012 B2
8382956 Boechat et al. Feb 2013 B2
8402673 Da Silva et al. Mar 2013 B2
8409404 Harper et al. Apr 2013 B2
8435384 Da Silva et al. May 2013 B2
8440055 Scherb et al. May 2013 B2
8445032 Topolkaraev et al. May 2013 B2
8454800 Mourad et al. Jun 2013 B2
8470133 Cunnane et al. Jun 2013 B2
8506756 Denis et al. Aug 2013 B2
8544184 Da Silva et al. Oct 2013 B2
8574211 Morita Nov 2013 B2
8580083 Boechat et al. Nov 2013 B2
8728277 Boechat et al. May 2014 B2
8758569 Aberg et al. Jun 2014 B2
8771466 Denis et al. Jul 2014 B2
8801903 Mourad et al. Aug 2014 B2
8815057 Eberhardt et al. Aug 2014 B2
8822009 Riviere et al. Sep 2014 B2
8968517 Ramaratnam et al. Mar 2015 B2
8980062 Karlsson et al. Mar 2015 B2
9005710 Jones et al. Apr 2015 B2
D734617 Seitzinger et al. Jul 2015 S
9095477 Yamaguchi Aug 2015 B2
D738633 Seitzinger et al. Sep 2015 S
9382666 Ramaratnam et al. Jul 2016 B2
9506203 Ramaratnam et al. Nov 2016 B2
9580872 Ramaratnam et al. Feb 2017 B2
9702089 Ramaratnam et al. Jul 2017 B2
9702090 Ramaratnam et al. Jul 2017 B2
9719213 Miller, IV et al. Aug 2017 B2
9725853 Ramaratnam et al. Aug 2017 B2
20010018068 Lorenzi et al. Aug 2001 A1
20020028230 Eichhorn et al. Mar 2002 A1
20020060049 Kanitz et al. May 2002 A1
20020061386 Carson et al. May 2002 A1
20020098317 Jaschinski et al. Jul 2002 A1
20020110655 Seth Aug 2002 A1
20020115194 Lange et al. Aug 2002 A1
20020125606 McGuire et al. Sep 2002 A1
20030024674 Kanitz et al. Feb 2003 A1
20030056911 Hermans et al. Mar 2003 A1
20030056917 Jimenez Mar 2003 A1
20030070781 Hermans et al. Apr 2003 A1
20030114071 Everhart et al. Jun 2003 A1
20030159401 Sorensson et al. Aug 2003 A1
20030188843 Kanitz et al. Oct 2003 A1
20030218274 Boutilier et al. Nov 2003 A1
20040118531 Shannon et al. Jun 2004 A1
20040123963 Chen et al. Jul 2004 A1
20040126601 Kramer et al. Jul 2004 A1
20040126710 Hill et al. Jul 2004 A1
20040168784 Duan et al. Sep 2004 A1
20040173333 Hermans et al. Sep 2004 A1
20040234804 Liu et al. Nov 2004 A1
20050016704 Huhtelin Jan 2005 A1
20050069679 Stelljes et al. Mar 2005 A1
20050069680 Stelljes et al. Mar 2005 A1
20050098281 Schulz et al. May 2005 A1
20050112115 Khan May 2005 A1
20050123726 Broering et al. Jun 2005 A1
20050130536 Siebers et al. Jun 2005 A1
20050136222 Hada et al. Jun 2005 A1
20050148257 Hermans et al. Jul 2005 A1
20050150626 Kanitz et al. Jul 2005 A1
20050166551 Keane et al. Aug 2005 A1
20050241786 Edwards et al. Nov 2005 A1
20050241788 Baggot et al. Nov 2005 A1
20050252626 Chen et al. Nov 2005 A1
20050280184 Sayers et al. Dec 2005 A1
20050287340 Morelli et al. Dec 2005 A1
20060005916 Stelljes et al. Jan 2006 A1
20060013998 Stelljes et al. Jan 2006 A1
20060019567 Sayers Jan 2006 A1
20060083899 Burazin et al. Apr 2006 A1
20060093788 Behm et al. May 2006 A1
20060113049 Knobloch et al. Jun 2006 A1
20060130986 Flugge-Berendes et al. Jun 2006 A1
20060194022 Boutilier et al. Aug 2006 A1
20060269706 Shannon et al. Nov 2006 A1
20070020315 Shannon et al. Jan 2007 A1
20070131366 Underhill et al. Jun 2007 A1
20070137813 Nickel et al. Jun 2007 A1
20070137814 Gao Jun 2007 A1
20070170610 Payne et al. Jul 2007 A1
20070240842 Scherb et al. Oct 2007 A1
20070251659 Fernandes et al. Nov 2007 A1
20070251660 Walkenhaus et al. Nov 2007 A1
20070267157 Kanitz et al. Nov 2007 A1
20070272381 Elony et al. Nov 2007 A1
20070275866 Dykstra Nov 2007 A1
20070298221 Vinson Dec 2007 A1
20080035289 Edwards et al. Feb 2008 A1
20080076695 Uitenbroek et al. Mar 2008 A1
20080156450 Klerelid et al. Jul 2008 A1
20080199655 Monnerie et al. Aug 2008 A1
20080245498 Ostendorf et al. Oct 2008 A1
20080302493 Boatman et al. Dec 2008 A1
20080308247 Ringer et al. Dec 2008 A1
20090020248 Sumnicht et al. Jan 2009 A1
20090056892 Rekoske Mar 2009 A1
20090061709 Nakai et al. Mar 2009 A1
20090205797 Fernandes et al. Aug 2009 A1
20090218056 Manifold et al. Sep 2009 A1
20100065234 Klerelid et al. Mar 2010 A1
20100119779 Ostendorf et al. May 2010 A1
20100224338 Harper et al. Sep 2010 A1
20100230064 Eagles et al. Sep 2010 A1
20100236034 Eagles et al. Sep 2010 A1
20100239825 Sheehan et al. Sep 2010 A1
20100272965 Schinkoreit et al. Oct 2010 A1
20110027545 Harlacher et al. Feb 2011 A1
20110180223 Klerelid et al. Jul 2011 A1
20110189435 Manifold et al. Aug 2011 A1
20110189442 Manifold et al. Aug 2011 A1
20110206913 Manifold et al. Aug 2011 A1
20110223381 Sauter et al. Sep 2011 A1
20110253329 Manifold et al. Oct 2011 A1
20110265967 Van Phan Nov 2011 A1
20110303379 Boechat et al. Dec 2011 A1
20120144611 Baker et al. Jun 2012 A1
20120152475 Edwards et al. Jun 2012 A1
20120177888 Escafere et al. Jul 2012 A1
20120244241 McNeil Sep 2012 A1
20120267063 Klerelid et al. Oct 2012 A1
20120297560 Zwick et al. Nov 2012 A1
20130008135 Moore et al. Jan 2013 A1
20130029105 Miller et al. Jan 2013 A1
20130029106 Lee et al. Jan 2013 A1
20130133851 Boechat et al. May 2013 A1
20130150817 Kainth et al. Jun 2013 A1
20130160960 Hermans et al. Jun 2013 A1
20130209749 Myangiro et al. Aug 2013 A1
20130248129 Manifold et al. Sep 2013 A1
20130327487 Espinosa et al. Dec 2013 A1
20140004307 Sheehan Jan 2014 A1
20140041820 Ramaratnam et al. Feb 2014 A1
20140041822 Boechat et al. Feb 2014 A1
20140050890 Zwick et al. Feb 2014 A1
20140053994 Manifold et al. Feb 2014 A1
20140096924 Rekokske et al. Apr 2014 A1
20140182798 Polat et al. Jul 2014 A1
20140209264 Tirimacco et al. Jul 2014 A1
20140242320 McNeil et al. Aug 2014 A1
20140272269 Hansen Sep 2014 A1
20140272747 Ciurkot Sep 2014 A1
20140284237 Gosset Sep 2014 A1
20140360519 George et al. Dec 2014 A1
20150059995 Ramaratnam et al. Mar 2015 A1
20150102526 Ward et al. Apr 2015 A1
20150129145 Chou et al. May 2015 A1
20150211179 Alias et al. Jul 2015 A1
20150241788 Yamaguchi Aug 2015 A1
20150330029 Ramaratnam et al. Nov 2015 A1
20160060811 Riding et al. Mar 2016 A1
20160090692 Eagles et al. Mar 2016 A1
20160090693 Eagles et al. Mar 2016 A1
20160130762 Ramaratnam et al. May 2016 A1
20160145810 Miller, IV May 2016 A1
20160159007 Miller, IV et al. Jun 2016 A1
20160160448 Miller, IV et al. Jun 2016 A1
20160185041 Topolkaraev et al. Jun 2016 A1
20160185050 Topolkaraev et al. Jun 2016 A1
20160273168 Ramaratnam et al. Sep 2016 A1
20160273169 Ramaratnam et al. Sep 2016 A1
20160289897 Ramaratnam et al. Oct 2016 A1
20160289898 Ramaratnam et al. Oct 2016 A1
20160362843 Hermans Dec 2016 A1
20170044717 Quigley Feb 2017 A1
20170101741 Sealey et al. Apr 2017 A1
20170167082 Ramaratnam et al. Jun 2017 A1
20170226698 LeBrun et al. Aug 2017 A1
20170233946 Sealey et al. Aug 2017 A1
20170253422 Anklam et al. Sep 2017 A1
20170268178 Ramaratnam et al. Sep 2017 A1
Foreign Referenced Citations (40)
Number Date Country
2168894 Aug 1997 CA
2795139 Oct 2011 CA
1138356 Dec 1996 CN
1207149 Feb 1999 CN
1244899 Feb 2000 CN
1268559 Oct 2000 CN
1377405 Oct 2002 CN
2728254 Sep 2005 CN
4242539 Aug 1993 DE
0097036 Dec 1983 EP
0979895 Feb 2000 EP
1911574 Jan 2007 EP
1339915 Jul 2007 EP
2123826 May 2009 EP
946093 Jan 1964 GB
2013208298 Oct 2013 JP
2014213138 Nov 2014 JP
9606223 Feb 1996 WO
03082550 Oct 2003 WO
2004045834 Jun 2004 WO
2007070145 Jun 2007 WO
2008019702 Feb 2008 WO
2009006709 Jan 2009 WO
2009061079 May 2009 WO
2009067079 May 2009 WO
2011028823 Mar 2011 WO
2012003360 Jan 2012 WO
2013024297 Feb 2013 WO
2013136471 Sep 2013 WO
2014022848 Feb 2014 WO
2015000755 Jan 2015 WO
2015176063 Nov 2015 WO
2016077594 May 2016 WO
2016086019 Jun 2016 WO
2016090242 Jun 2016 WO
2016090364 Jun 2016 WO
2016085704 Jun 2016 WO
2017066465 Apr 2017 WO
2017066656 Apr 2017 WO
2017139786 Aug 2017 WO
Non-Patent Literature Citations (25)
Entry
International Preliminary Report on Patentability of PCT/US2013/053593 dated Feb. 3, 2015.
Supplementary European Search Report of EP 13 82 6461 dated Apr. 1, 2016.
International Application No. PCT/US2018/47463; International Search Report and Written Opinion dated Oct. 29, 2018.
Written Opinion of International Searching Authority for PCT/US15/62483 dated May 6, 2016.
International Search Report for PCT/US15/63986 dated Mar. 29, 2016.
Written Opinion of International Searching Authority for PCT/US15/63986 dated Mar. 29, 2016.
International Search Report for PCT/US15/64284 dated Feb. 11, 2016.
Written Opinion of International Searching Authority for PCT/US15/64284 dated Feb. 11, 2016.
International Search Report for PCT/US13/53593 dated Dec. 30, 2013.
Written Opinion of International Searching Authority for PCT/US13/53593 dated Dec. 30, 2013.
International Search Report for PCT/US15/31411 dated Aug. 13, 2015.
Written Opinion of International Searching Authority for PCT/US15/31411 dated Aug. 13, 2015.
International Search Report for PCT/US15/60398 dated Jan. 29, 2016.
Written Opinion of International Searching Authority for PCT/US15/60398 dated Jan. 29, 2016.
International Search Report for PCT/US15/62483 dated May 6, 2016.
International Search Report for PCT/US16/56871 dated Jan. 12, 2017.
Written Opinion of International Searching Authority for PCT/US16/56871 dated Jan. 12, 2017.
International Search Report for PCT/US2016/057163 dated Dec. 23, 2016.
Written Opinion of International Searching Authority for PCT/US2016/057163 dated Dec. 23, 2016.
International Search Report for PCT/US2017/029890 dated Jul. 14, 2017.
Written Opinion of International Searching Authority for PCT/US2017/029890 dated Jul. 14, 2017.
International Search Report for PCT/US2017/032746 dated Aug. 7, 2017.
Written Opinion of International Searching Authority for PCT/US2017/032746 dated Aug. 7, 2017.
International Search Report for PCT/US17/17705 dated Jun. 9, 2017.
Written Opinion of International Searching Authority for PCT/US17/17705 dated Jun. 9, 2017.
Related Publications (1)
Number Date Country
20190063001 A1 Feb 2019 US